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1 Last Lecture’s Review 

Last Lecture: Graph decomposition  

• Utilization of nice properties on good edges (intra-component) 

• Upper bound on the number of bad edges (inter-component) 

This Lecture: Graph sparsification (Edge, Vertex sparsification) 

• Preserve important properties of the original graph 

• Bounding the size of sparsified graph for computation efficiency 

2 Graph sparsification 

2.1 Edge sparsification 

G = (V,E) −→ H = (V,E′) 

Such that: property on H ≈ property on G, and |E′| ≪ |E|. Eg., 

Spanning forest for graph connectivity property. 

2.2 Vertex sparsification 

G = (V,E), (terminal set) T ⊂ V −→ H = (V ′,E′) 

Such that: T ⊂ V ′, property on T in H ≈ property on T in G, |V ′| ≪ |V |, |E′| ≪ |E|. Eg., 

weighted graph for distance property. 

 

3 VERTEX SPARSIFICATION FOR MIN-CUT PROPERTY

  



3 Vertex sparsification for min-cut property 

3.1 Problem 

Given G = (V,E), T ⊂ V , construct a vertex sparsifier H = (V ′,E′) such that: T ⊂ V ′, and 

for all partitions of T into (T ′,T \ T ′): 

mincutH(T ′,T \ T ′) = mincutG(T ′,T \ T ′). 

With additional parameter of threshold c: 

If mincutG(T ′,T \ T ′) ≤ c, then mincutH(T ′,T \ T ′) = mincutG(T ′,T \ T ′). 

If mincutG(T ′,T \ T ′) > c, then mincutH(T ′,T \ T ′) > c. 

3.2 The algorithm 

Definition 1 (Cut containment set) A set of edges E′ in G is called a cut containment set 

if ∀(T ′,T \T ′) with mincutG(T ′,T \T ′) ≤ c,∃ such a min-cut with edges 

C and C ⊂ E′. 

Definition 2 (Intersecting-all-mincut set (old definition)) Given G = (V,E), terminal 

set T ⊂ V and threshold c, we say a set of edges F in G is a set of edges intersecting all min 

terminal cuts if ∀(T ′,T \T ′) with mincutG(T ′,T \T ′) ≤ c,∃ such a min-cut with edges C and 

C ∩ F ̸= ∅. 

Definition 3 (Intersecting-all-mincut set (new definition)) Given G = (V,E), terminal 

set T ⊂ V and threshold c, we say a set of edges F in G is a set of edges intersecting all min 

terminal cuts if after removing F from G, ∀(T ′,T \ T ′) with mincutG(T ′,T \ T ′) ≤ c, no 

connected component in G \ F contains all the edges of a terminal min-cut. 

Theorem 4 For vertex sparsification with respect to the min-cut property with threshold 

parameter c, there exists a sparsifier of size |T| · cO(c). 

 (Can be improved to |T| · c3 · log4 n.) 

Suppose we have a cut containment set E′, we can construct a vertex sparsifier H 

from E′ in the following way: 

• Remove edges in E′ from G, breaking G into several connected components.  

• Shrink each connected component into 1 super-vertex in H. 



• Connect vertices in H with corresponding edges in E′. 

• If terminal vertices u,v are merged into the same connected component (thus the 

terminal nodes are lost in H), add u,v as vertices in H, connect each with c+1 

parallel edges to the super-vertex corresponding to the connected component 

they’re in. (There were no min-cut of size ≤ c between them in G.) 

Resulting H has number of edges (and vertices) ≤ |E′|+|T|·(c+1). Next, we need to 

upper-bound size of E′. 

 

Claim 5 Given G, T, c, ∃E′ st. |E′| = |T| · cO(c). 

Proof idea: recursively build E′ using intersecting-all-set F: 

• Initialize E′ = ∅. 

• Find intersecting-all-set Fc in G for given T = T0 and c. 

• Remove all edges in Fc from G, add them to E′, and add endpoints of edges in Fc to 

terminals: 

G ← G \ Fc, E′ ← E′ ∪ Fc, T1 ← T0 ∪ {u,v | (u,v) ∈ Fc}. 

• Continue to find intersecting-all-set Fc−1 with updated G and T1, until c = 1. 

• Return E′ (which is  

Claim 6 Given G, T, c, the intersecting-all-set Fc is of size |Fc| ≤ |T| · c. (Each terminal 

vertex is incident to at most c edges that are on any qualifying min terminal cut.) 

Proof of Claim 5 by induction: 

Base case: |Fc| ≤ |T| · c. 

Step 1: |T1| ≤ |T|+2|Fc| ≤ (1+2c)·|T| = O(c)·|T|, and |Fc−1| ≤ |T1|·c = O(c2)·|T|. 

General induction step: |Ti| ≤ |Ti−1| + 2|Fc−i+1| = O(ci) · |T|, |Fc−i| = O(ci+1) · |T|. Finally, 

|F1| = O(cc) · |T|. 

O . 


