CS 594: Representations in Algorithm Design Spring 2022

Lecture on 03/01/2022
Lecturer: Xiaorui Sun Scribe: Kushal Reddy Palvai

1 Last Lecture’s Review

In the last lecture, we discussed how the edge sparsification of the graph works.

2 Edge Sparsification of graph

Given a G = (V,E) -> H = (V,E’) We need to show that graph property on H is
approximately the same as on G.

|E’| « |E| we do Edge Sparsification versus (V/S) Vertex Sparsification, where Edge
Sparsification is weaker compared to Vertex Sparsification which is comprehensively
stronger.

3 Laplacian

L g~ LH
G = (V,EW)
deg(V) = > (vx)er W(V.X)

1. L @, This is a Symmetric Matrix. It is also a positive semi - definite matrix.
VXX Lg X >0

2. L g, Eigen values are real and non negative. 0 is always an Eigen value.

4 PSD Matrix

we take a PSD Matrix A,B
A~.B
(l-e). B=A=<X(1+¢).B
where < is the Loewner ordering of PSD matrices
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5 SOLVE LINEAR SYSTEM
A<XB<=>VXXTAX < X*.B.X

Find H, Show that Goal: L ¢ =, L

X S T L G-X § = 2 Cut Size (S,g)
G,b,.Lg.X = b < LaplacianSystem
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Figure 1: Implementation in PSD Matrix
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5 Solve Linear System

Ax=Db O(n?) (where A < nan)



6 THEOREM: ALGORITHM TO CONSTRUCT EDGE SPARSIFICATION OF L 3

By Matrix Multiplication: O(n")
where w = Constant for base matrix multiplication algorithm
2<w<3
w=237...

Solve Laplacian Matrix O(m.polylog(n))
Approximate Algorithm for graph maxflow in O(m).
Exact algorithm for maxflow O(m?/?)

6 Theorem: Algorithm to construct Edge Sparsifi-
cation of L ¢

O(n.logn +€?)edges
Algorithm: Independently, Sample edges with probability Depending on G.
For each edge, e eF
where, P . < Sample Probability

e < Weight in Sparsi fication

With Probability P., add e to H with ae.
————————————— (1 = Pe), Discard e.
L G = EeLe
Y . to be the Laplacian Contribution in sampling process for edge e.
Y . = {Omatriz 1— P,
Y. = {aeLe P,
LH:EeeEYezLG
E [L g|= L¢
where E = Expectation, and Expectation of L g is same as L q.
E [Y e ]: L e
Set ae = 1/ P,

7 Theorem: Matrix Concentration

X1, Xojyerrennn. Xm is a Sequence of nxn Independent.
Random matrices show that
0 < X; <é€/logn.I



7 THEOREM: MATRIX CONCENTRATION

oF oF <[] <
= m$<: <

VoV

Figure 2: Ye to be the laplacian Contribution in sampling process for edge e

X = EXi
ifElx] =1
{zi, .....xn}

Then we have to prove X ~ o/
Fact: A < B,VU,
UTAU <UT.B.U

Want U



7 THEOREM: MATRIX CONCENTRATION

UT LyU=1I

UTLeU=1

From This we get

(Lg™?)T. Lg.(Lg™/?) =1

V.VT=l

X. = (Lg 7/?). Yo(Lg */?)

From this we can find the Expectation E, E[e..X]
= (L g ™?).Lg.(L g ?

Amax(Xe) < €2/logn
Amax(1/Peo(L/?).Le.(L1/?)) < €2 /logn
te[1/Pe(L/?). Lo (LF7?)] < € [logn
Po > (t[1/Pe (L+/2).Le-(L+/2>]-Logn>/62

THE END
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