
CS 594: Representations in Algorithm Design Spring 2022

Lecture 17: 03/08/2022
Lecturer: Xiaorui Sun Scribe: Chinmay Tarwate

1 Last time and today

Previously: Graph representations and ideas and connections between different graph
representations.
Today: Representations can be related to distribution, algebraic structure. why rep-
resentations can be useful.

2 Representations

a. If there is an additional structure then it can give an additional property. This
additional property can give more efficient algorithm. Each of this representation
is a special case of general representation. Special cases have additional property.
Examples:

• Tree: Tree is a special case of graph such that it does not have a cycle.

• Expander: In Edge expansion, for any cut of graph, there must exists one
side of cut such that the volume is low.

• Low diameter graphs: Between 2 vertices there must exists a path that is
not too long.

b. Solution for such special cases can be generalized for general cases of representa-
tions

• Approximation: Make use of special cases. Example: Using Low spanning
tree as preconditioner to solve

• Decomposition: Partitioning graph into pieces with good properties and
additional edges that are not good whose size is smaller than input size.
Example: Low diameter decomposition, Expander decomposition. (¿ vertex
partition)

1

2 REPRESENTATIONS 2

c. Sparsification - Specific properties restrictions to reduce size of graph and not
preserve entire graph

2.1 Decomposition

2.1.1 Short cycle decomposition

Definition: It is different in terms of vertex partition, It is about edge partition

E = E1UE2.....EkUE0

where E1 to Ek are good properties and E0 are not good properties

Ei is a short cycle and length is not too large
E0 are bad edges and |E0| (size) is small

Arbitrary graph

Bad edges does not belong to cycle then take it out. Vertex can be present multiple
times but edge appears only once.
Below are few examples of bad edges -

E1....E0 is a (α , β) short cycle decomposition where α, β are integers > 0

1. if each Ei such that i > 0 then Ei is a cycle of length <= α
2. |E0| <= β

If input is tree, then all edges of short cycle decomposition belong to E0 and no E1, E2...

2 REPRESENTATIONS 3

If graph is large cycle, then no short cycle decomposition as number of vertices close
to number of edges

β = O(nlogn) upper bounded by number of vertices(n)
α is as small as possible

Theorem 1 ∃(O(logn), O(n)) short cycle decomposition where O(logn) is α and O(n)
is β

Lemma 2 If G(graph) has degree >= 3 for all vertices then G has a cycle of
length <= O(logn)

BFS from arbitrary vertex with atleast 3 branches

Other cases than above two have vertices as below and
Number of vertices in level i+1 >= 2∗number of vertices in level i -

2.1.2 Algorithm: Short cycle decompose

1. Make graph to be a graph with degree >= 3

3 APPROXIMATE DYNAMIC PROGRAMMING (EDIT DISTANCE FOR STRINGS)4

2. Find a cycle of O(logn)
Go to step 1 if graph is not empty

Iteratively put edges incident to vertices with degree 1 or 2 to E0 until no vertex 1 or
2 is left
Put this cycle in short cycle decomposition
α = logn using lemma
β = O(n)

There exists algorithm components (nO(1), n1+O(1)) short cycle decomposition in time
m1+O(1) (where m is more number of bad edges)

3 Approximate Dynamic Programming (Edit dis-

tance for strings)

Edit distance Problem:
Input consists of 2 strings with respect to alphabet (ϵ)
Example: ϵ = C, T,A,G, S1 = CTACCG, S2 = TACATG
Output: Minimum number of operations needed to transform S1 to S2

Operations :

1. Add one character at any location

2. Delete one character

3. Replace one character by another character

Example:
S1 − > CTACCG to S2 − > TACATG

Below is one way to transform -
Replace (1 position) C − > T
S1 − > TTACCG
Replace (2 position) T − > A
S1 − > TAACCG
Replace (3 position) A − > C
S1 − > TACCCG
Replace (4 position) C − > A

4 NEXT TIME 5

S1 − > TACACG
Replace (5 position) C − > T
S1 − > TACATG

Number of operations: 5

Better way to transform will be with less number of operation as follows -
Delete (1 position) C
S1 − > TACCG
Replace (4 position) C − > A
S1 − > TACAG
Add (5 position) T
S1 − > TACATG

Number of operations: 3
Time complexity of these transforms will be O(n2)

3.1 Standard dynamic programming solution

d(i,j) = Minimum number of operations required to transform the first i characters of
S1 to first j characters of S2 where d is the edit distance

Example: d(2,3) − > Number of operations to transform CT to TAC: 3
Edit distance = d(|S1|, |S2|)
Problem: How to determine d(i,j)
d(i,j) = 0 if i = j = 0
d(i,j) = i if j = 0
d(i,j) = j if i = 0
d(i,j) = (replaced/deleted/not replaced or deleted) if i != 0 and j != 0

4 Next time

Solve the edit distance problem to complexity of O(n1.6..)

	Last time and today
	Representations
	Decomposition
	Short cycle decomposition
	Algorithm: Short cycle decompose

	Approximate Dynamic Programming (Edit distance for strings)
	Standard dynamic programming solution

	Next time

