
CS 594: Representations in Algorithm Design Spring 2022

Lecture 18: March 10, 2022
Lecturer: Xiaorui Sun Scribe: Tanmay Kelkar

1 Last time and today

Previously:

� Solutions for special cases of graph representations can be generalized by approx-
imation, decomposition and sparsification.

Starting today:

� Computing edit distance for strings using exact algorithms (eg: DP) and approx-
imation algorithms.

2 Computing Edit Distance for strings

Let us assume that we have two strings X and Y, where X, Y consist of characters from
the alphabet. The edit distance is the minimum number of basic operations required
to change X into Y (or Y into X). The types of operations that we can make are:

� Adding a character to X

� Deleting a character from X

� Replacing a character of X by another character

Example: X: ‘CTACCG’
Y: ‘TACATG’

We can perform the following operations to change X into Y:

1. Delete the first character. We get: ‘TACCG’

2. Add ‘A’ after the third character. We get: ‘TACAT’

1



2 COMPUTING EDIT DISTANCE FOR STRINGS 2

3. Add ‘T’ after the fourth character. We get: ‘TACATG’, which is Y.

Therefore, the edit distance is 3.

The standard approach to solving this problem is through dynamic programming.

2.1 Dynamic Programming solution

Let us assume that d(i,j) is the edit distance between substrings of the first ‘i’ characters
in X and the first ‘j’ characters in Y.
If |X| = |Y | = n, then d(n,n) is the edit distance between X and Y.

Edit distance ≈ n-size of largest alignment (because the largest alignment is less likely
to change or be deleted).
⇒ Edit distance ≤ 2 * n-size of largest alignment

As we can see from the previous example, the substring corresponding to Xi=3 is

‘CTA’ and for Yi=2 is ‘TA’. This corresponds to an edit distance d(3,2). The following
possibilities arise with this kind of matching:

1. Xi is matched with Yi

2. Xi is removed

3. Some character is added after Xi

4. Xi is replaced with Yi

These following statements can be made respectively from the above:

1. d(i,j) = d(i-1, j-1)

2. d(i,j) = d(i-1, j) +1

3. d(i,j) = d(i, j-1) +1

4. d(i,j) = d(i-1, j-1) +1



3 FASTER ALGORITHM FOR EDIT DISTANCE 3

We compute d(i,j) by looking at the following piecewise function:


min{d(i− 1, j − 1) + w, d(i− 1, j) + 1, d(i, j − 1) + 1} , i ≥ 1, j ≥ 1, [w=0 if Xi=Yj, otherwise w=1]

j , i = 0

i , j = 0

The pseudocode for this is:

FOR i=0 to n DO
FOR j=0 to n DO

Compute d(i,j)

The running time of this solution is O(n2). This algorithm leads to an exact solution.

3 Faster algorithm for Edit Distance

[Masek − Peterson(1980)]
This algorithm provides an improvement in running time over the previous algorithm.
Its running time is O(n2/log2n) for |Σ| = O(1) (the case where the alphabet set is
constant).
If the Strong Exponential Time Hypothesis (SETH) holds, then no algorithm will solve
the edit distance problem in n2−O(1). This means that the edit distance problem cannot
be solved in time n1.999.... Further, this implies that the 3SAT (NP-Complete) problem
cannot be solved in time 2O(n).

4 Approximate algorithm to find Edit Distance

We define the Approximation Factor (AF) for the algorithm in question to be:

ED Estimated by the algorithm
Optimal ED

≥ 1

The goal of this algorithm is to minimize AF for the worst case.
The following are examples of approximate algorithms developed over time:



4 APPROXIMATE ALGORITHM TO FIND EDIT DISTANCE 4

� AF: log nO(1/ϵ) approximate algorithm with running time O(n1+ϵ) for any ϵ >
0 [Andoni−Krauthgamer −Onak (2008)]

� AF: O(1) approximate algorithm with running time timeO(n1.618) [Chakraborty−
Das−Goldenberg −Kouchy − Saks (2018)]

� AF: 2O(1+1/ϵ) approximate algorithm with running timeO(n1+ϵ) [Andoni−Nasatzki]

We will look into the second algorithm above more closely. Here, We reduce the
problem of the edit distance into the edit distance between two substrings. We refer
back to optimal alignment. The replacement operation can be simulated by a
character insertion and a character deletion. This increases the edit distance by a
constant factor.
We can think of the alignment as a function π that matches each position of a
character into another position of the character with ⊥ denoting that the character
doesnt match with any character in the other string. This can be represented as:
π : [n] −→ [n] ∪ ⊥

with the restrictions that:
π(i), π(j) ̸= ⊥
π(i) < π(j)



4 APPROXIMATE ALGORITHM TO FIND EDIT DISTANCE 5

We break X and Y into substrings of fixed length w (as shown in the figure above),
where w ≈ n0.9. We use xi to denote the substring at the ith character of X and yi to
denote the substring at the ith character of Y. We want to know how a substring of
length w in X gets aligned to some part of Y.
We can make an observation here. Let’s assume that Xi ∼ Yi (some match occurs). If
w matches a substring of length T where T > w, then:

EditDistance ≥ T − w, and T can be truncated to make t-w.

EditDistance ≈ min
∑

i

ED(Xi,Yπ(i))

w

The main reasoning here is that computing the edit distance of strings can be
reduced to computing the edit distance of substrings.


	Last time and today
	Computing Edit Distance for strings
	Dynamic Programming solution

	Faster algorithm for Edit Distance
	Approximate algorithm to find Edit Distance

