
CS 594: Representations in Algorithm Design Spring 2022

Lecture on 03/15/2022
Lecturer: Xiaorui Sun Scribe: Muhammed Adeem Shaik

1 Last Lecture’s Review
• Approximate of Edit Distance the way it is solved in Dynamic Program.
• Faster algorithm for Edit Distance and the approximation factor and the way it is
evolved during the years.

2 Today’s Lecture
• Continuation of Approximation of Edit Distance.
• Problems on Graph

3 Approximation of Edit Distance

3.1 Problem Definition
To find the the Edit distance between for given two strings x, y over z and these two
sequences of characters come from the alphabet z. Now we have to see how many ope-
rations are needed to transform x to y.
Available Operations are -
• Add a character.
• Delete a character.
• Replace a character in a string by another character.
• Here x = y = n: which are of same length.

This problem can be solved in O(n2) running time and the classic approximate edit
distance in time is O (n1.618).

1

3 APPROXIMATION OF EDIT DISTANCE 2

Expression for row edit distance :

ED(x, y) ≤ ED (x, y) ≤ C.ED(x, y)

3.2 Idea
The Idea is Reducing to compute Edit distance between the sub-strings i.e

• Break string x, y into xi, yj such that |xi| = |yj| = w where w is n0.19.
• This implies that xi and yj are of same length as w.
• Sub-string of xi starts from the ith character of length w.

xi = xi + xi + 1 xi + w − 1

• Fact is that Edit distance is the smallest mapping of indices of 1st string to the
2nd string i.e. –

ED ≈ minΠi∼j

∑
i∈N

ed[xi,yΠ]
w

Consider that we have an entire string of x y and assume that we have an optimal
solution.

• The above string maps from xi to yj.
• For each sub-string of length w, it matches to the same sub-string in other string.
(Characters making between 2 (x to y)).
• From the above expression match such that the above quantity is minimized.

3 APPROXIMATION OF EDIT DISTANCE 3

• If we have the Edit distance between (xi, yj) for all the possible i, j then we can
compute Edit distance.

ED(xi, yj) ∀i, j.

• Now we figure out the minimum possible matching, Roughly we have n different
sub-strings xi and n different sub-strings yj.
• We need to consider n2 different pairs in order to know the distance and If we
compute edit distance between all pairs it becomes worse => n2.w2 which is a very
bad running time.(where w2 is a fixed value)
• First step is Now we reduce possible number of ‘i’ i.e., the possible number of pairs
• Consider i is a multiple of w.

Dividing into block of length W.

• Edit distance is the best matching such that all i’s are multiple of w for the edit
distance between xi and y(i).

ED ≈ minΠ
∑

ed[xi,yΠ(i)]i ∈ u,w...

• By this we don’t need w that is we are normalizing and the condition for over-
lapping is

π(i + 1) ≥ π(i) + w

• Number of subsets from x becomes n/w.n≈ n2/w
• Running time n2/w.w2 => n2w which is worse than previous where w = number of
sub-strings.

3 APPROXIMATION OF EDIT DISTANCE 4

• Second step is to reduce number of strings in y.
• It is okay to have an ∆n additive error, then we only need to consider n/w.∆ sub-
strings in y.
• Idea behind this is :

• Run the y sub-string to multiple of ∆w and if the sub-string is multiple of ∆w then
shifting Gives error of ∆ times w together the error is ∆n.
• If Edit distance is ∆n then there is an algorithm to compute edit distance in ti-
me ∆.n2, If Edit distance is small then xi is roughly matched to i−∆n to at most i+∆n.

• If Editdistance ≤ 0.9 then you have algorithm with running time n0.9 and in this
∆ is assumed to be ∆ ≥ 1/n0(1).
• Considering n/w different xi and n/w.∆ different yj.

4 PROBLEM DEFINITION 5

4 Problem Definition
- Edit Distance [xi,yj]

- xi is multiple of w
- yj is multiple of ∆ times w [∆.w]
- n/w.n/ ∆.w pairs => n2/ ∆w2.w2 ≈ n2/ ∆ running time.

4.1 Algorithm
1.Partition of xi and yj – Running time for this case is O(n).

2.Compute Edit distance (xi, yj) - Running time for this case is n/w.n/w∆.w2.

3.Approximate Edit distance based on ED (xi, yj). (Roughly dynamic programming
in time n/w.n/w∆).

• To get a good algorithm we need to improve the ’2’ step mentioned above and
key idea for this is not to compute ED(xi,yj)∀i, j. we should compute small pairs
O(n2/w2) pairs.
• Assuming we have string pairs i.e. xi, yj, yk.
• Assuming the edit distance between these ED(xi, yj), ED(yj, yk).
• Edit distance between ED(xi, yk) is the one which we have to compute.
• Edit distance between xi, yk is upper bounded by xi, yj and yj, yk.

ED (xi, yk) ≤ ED(xi, yj) ≤ ED(yj, yk) – Triangular inequality.

5 Graph Problem
Graph: Vertices are xi ∪yj.

5 GRAPH PROBLEM 6

• It is a Bipartite Graph
• Assuming that we have an Graph of G1, G2, G4, G8 Gw then it is sufficient
to calculate the edit distance. (W is upper bound of the sub-strings)
• ED(xi, yj) belongs to G∆ but not in G∆/2 than ED(xi, yj) ≈ ∆.
• At the end we want to roughly estimate the graph and now the question becomes
approximate G∆ for given ∆?
• We use triangular inequality but we get error.
• Approximation ∼ G∆ Edge(xi,yj) in G∆ if ED(1) ≤∆ and if (xi,yj) in ∼ G∆ then
ED (xi,yj) ≤3.∆ .

5.1 Easy Case
• In G∆ which is a bipartite graph every vertex xi has the degree ≥ constant×nE.

• Here every vertex will have some neighbors and every vertex in xi has relatively large
degrees.
• G∆ implies that if sample yj with probability 1/nE then for each xi at least one
neighbor in yj is sampled.
• This sample substring will help to find distance between the other strings (x,x).

5.2 Algorithm
• S = sample strings in yj w.plogn/nE.
• Compute the Edit distance for ED(yj, yj), ED(yj, xi).
• Use Triangular Inequality to estimate the ∼ G∆.
• Which means that if Edit distance between (xi,yj) and the Edit distance between
(yj.yj) is less than or equal to delta then add an edge (xi,yj).

That is if ED(xi,yj) ≤ ∆, ED(yj.yj) ≤ ∆ then Add Edge (xi,yj).

6 FINDING NEIGHBORS OF EDGES IN GRAPH 7

6 Finding Neighbors of Edges in Graph
• In a graph there are lot of edges and goal is to represent all edges in a simpler way
and also to identify neighbours.
• The first idea to estimate the distance between the pair of substrings is to identify
the neighbors as there are lot of edges in graph and the goal is to represent all edges
in a simpler way.
• Second idea is to assume that every vertex in G∆ has degree ≤nE and here no tri-
angular inequality is used because the degree is small.
• We use Edit distance structure i.e optimal matching substring.

6.1 Algorithm
• Approach for this case is to sample xi and compute ED(xi,yj).
• If ED(xi,yj) is small then (xi + ∆, yj + ∆) are potential edges in G∆.
• Now check if these potential edges are real edges

This approach does not identify all edges but its safe to ignore all the edges.

———————————–END—————————————–

	Last Lecture's Review
	Today's Lecture
	Approximation of Edit Distance
	Problem Definition
	Idea

	Problem Definition
	Algorithm

	Graph Problem
	Easy Case
	Algorithm

	Finding Neighbors of Edges in Graph
	Algorithm

