
CS 594: Representations in Algorithm Design Spring 2022

Lecture 2: 01/13/2022
Lecturer: Xiaorui Sun Scribe: Nima Shahbazi

1 Last Lecture’s Review

In the last lecture, we reviewed several representations of the graph. Graph is a very
powerful representation by itself, however, we want to simplify a graph to make it have
better properties so that more information can be computed from the abstract graph.

• (Spanning) Tree: Given a graph, we only keep a subset of edges and throw
away the rest such that the remaining graph is a tree (no cycle) and it preserves
the connectivity of the entire graph.

• DFS and BFS Tree: Special spanning trees with additional properties. BFS
preserves the property of distance. DFS makes sure all the non-tree edges con-
nected to the vertices such that one is the other’s ancestor. Using these trees,
based on different properties, we can solve different interesting problems, for ex-
ample using DFS tree we can identify bridges of the graph while BFS trees can
be used to compute distance.

• Claim: For a graph, with minimum deg ≥ 3, there is a cycle of the graph of size
≤ O(log n).

(If the minimum deg = 2, the graph can be a single cycle of length n, but if
the minimum deg increases by 1, there must exist some smallest cycle of size
≤ O(log n) in the graph.)

Relevant Readings:

• Lecture 1 scribe notes

• Review on graph and tree basics and properties (from CS401)

• ...

1



2 PROOF OF THE CLAIM 2

2 Proof of The Claim

Claim: For a graph, with minimum deg ≥ 3, there is a cycle of the graph of size
≤ O(log n).

Proof: Starting with a BFS tree, we use two properties of BFS trees:

1. Edges connect vertices at the same or adjacent level.

2. If ∃ a non-tree edge that has one end-point on level i =⇒ cycle of size ≤ 2i+ 2

First Property Proof: Assume Figure 1 is a BFS tree, and the red edge is a
non-tree edge with one endpoint at level i, then the other endpoint must be at level
i− 1 or level i or level i+1, because if it is at a level smaller than i− 1 then the green
vertex should be at a level smaller than i (the distance from the starting vertex to this
vertex will be smaller than i so this vertex will be at level smaller i). Similarly, if it
is at a level greater than i, the other endpoint must be at most at level i+ 1 because
this edge can be used as a tree edge to construct BFS tree.

i i

i+1

i-1

Lowest Common Ancestor

Figure 1: Example of a BFS tree

Second Property Proof: When you look at the paths in the BFS tree from the
two endpoints of the red edge in Figure 1 to the root, these two paths must meet
somewhere in the middle, because both paths at the end will go to the root so they
must share some vertices or edges at some point. The first shared vertex is called lowest
common ancestor. If you look at the path from one endpoint to the lowest common
ancestor and the other endpoint to the lowest common ancestor, together with the
non-tree edge (red edge) form a cycle of length 2i + 2 (because one path to the root
has at most i edges and the other path to the root has at most i+1 edges and together
with the non-tree edge itself the cycle size would be: i+ i+ 1 + 1 = 2i+ 2)



2 PROOF OF THE CLAIM 3

Second property shows that if we want to prove the claim, we only need to show
that in the BFS tree, there must be some non-tree edge with one endpoint at level
≤ O(log n).

Now let us have a closer look at the BFS tree based on the condition that for all
vertices in the graph, deg ≥ 3 in Figure 2. Starting with and arbitrary vertex v, it has
all of its neighbors at level 1 of the BFS tree. If the vertices at level 1 have a non-tree
edge in the BFS tree, then we are already done (we’ll have a cycle of size at most 4).
For each vertex at level 1, there is an edge to its parent vertex v and every other edge
goes to the next level and in particular all of these edges should also be tree-edges
cause otherwise we again have a non-tree edge and then we are done and so on so
forth. So in general, for some integer i, if there does not exist a non-tree edge at level i
or smaller, then each vertex will have a tree-edge in level i− 1 and all the other edges
must be tree edges and go to level i+ 1 and if at some level i there is a non-tree edge,
the cycle will be of size 2i + 2, so this property holds all the way to log n level. Now,
we use this property to see the number of vertices at each level (shown in Figure 2. So
all the argument to this moment is that we don’t have a cross edge at the level log n
using that property. However, there’s a contradiction because the number of vertices
in total before the level ≤ log n = 1 + 2 + 4 + ... + n = 2n − 1, while we only have n
vertices in the graph. Therefore, our initial assumption of graph not having any cross
(non-tree) edge before level log n is not right and there must be some non-tree edge in
the BFS tree prior to level log n, so, we have a cycle of size O(log n).

0

1

2

i≤ log n

i+1

i-1

Level # of Vertices

1

≥2

≥4

≥2i

2log n = nlog n

v

Figure 2: Number of vertices in each level of the BFS tree

This is an example to suggest that in many graph problems, tree is a basic structure



3 DYNAMIC ALGORITHMS FOR GRAPH CONNECTIVITY 4

and provides a lot of nice properties. Some properties that at first glance may not relate
to tree can be proven by a tree, so, tree representation if a graph is always the first
step to solve a problem. Sometimes it is sufficient and sometimes the computation of
the simpler version of the problem gives you a good approximation of the solution.

3 Dynamic Algorithms for Graph Connectivity

3.1 Motivation

In the modern big data era, the input to many problems are super large which causes
a lot of problems like the cost of computation and running time. Additionally, in the
big data era the input size is not static anymore and keeps changes for example in
social networks, a person becomes friend with a new person or maybe unfriend each
other but the point is that a super large graph may change overtime with respect to
number of edges, vertices, connected components, diameter of the graph, etc. This
change of graph, requires redoing the computation which is super expensive due to the
size of the graph. Therefore, people started to consider that if they have the solution
before the change in graph, is it possible to get the solution after the change in a
more efficient manner? This question makes sense, especially because in practice for
large inputs the change is frequent but is also small. For example each change in a
social network graph is minor compared to the size of the graph. So if we are able
to incorporate these small changes into the super large input, then potentially we can
avoid to do the re-computation from scratch. This is called dynamic algorithms. The
idea of a dynamic algorithm is to maintain some data structure so that updates can
be quickly incorporated. Usually, we are interested in the problems that the update
can be handled in o(n) time. Let us see this in an example of how it is not needed to
redo the whole computation and it is possible to just keep track of the change:

Example: Sum problem
Input: n integers a1, a2, ..., an
Update: a1 −→ a′1
Goal: Maintain S as sum of ai
Claim: O(1) to maintain the sum
Proof: If ai −→ a′i then S −→ S + a′i − ai



3 DYNAMIC ALGORITHMS FOR GRAPH CONNECTIVITY 5

3.2 Dynamic Connectivity

Problem Definition:
Input: Undirected graph with n vertices
Update: Add or delete and edge
Query: For vertices x and y, is x connected to y or not?
Goal: Update in o(n)

In this setting, the algorithm can process the initial graph, but after the initial process-
ing, there will be updates or queries (with no particular order of operation or knowing
the type of update).

a b

c

d

e

Query (a,e): NoInitial Add (b,d)

a b

c

d

e

Query (a,e): Yes Delete (a,b)

a b

c

d

e

Query (a,e): No Query (b,e): Yes

Figure 3: Example of dynamic connectivity

Theorem: Dynamic connectivity can be solved in O(log n) time with a randomized
algorithm (best current deterministic algorithm time is O(no(1))).

In order to solve this problem, we need to think which kind of data structure
we need to maintain, in order to update and query graph connectivity and which
kind of information we need for the connectivity. Since we want to answer the query
efficiently, we don’t need to keep all the information of the graph. A spanning forest
(spanning tree for each connected component) is the data structure needed to maintain
the connectivity because it preserves the connectivity between any two vertices, so if
we are able to maintain a spanning forest for the graph with respect to the updates of
the graph, then this spanning forest is sufficient to tell us the connectivity:

Two vertices connected in spanning forest F ⇐⇒ Two vertices connected in G

So whenever given any two vertices, we only need to check if they belong to the
same tree, if yes they are connected in the graph, otherwise no.

Goal: Maintain a spanning forest F of G in O(log n) time complexity.

Here we consider a few different scenarios for the updates with an example. In
Figure 4, graph G is illustrated and the spanning forest is marked by the blue edges.
G is not connected and there are two trees in this forest.



3 DYNAMIC ALGORITHMS FOR GRAPH CONNECTIVITY 6

Figure 4: (Left) Graph G and spanning tree F . (Right) Four update scenarios in
dynamic connectivity.

• Assume at the first step, the update is adding an edge (red edge). If the following
edge is added to the graph, is there any change that need to be applied to the
spanning forest? No and it is because this update inserts and edge between two
vertices in the same connected component. So adding this edge does not connect
the two trees together. So before and after the update, it is still a spanning forest
and therefore no update is required.

• In the second step, we remove an edge from the graph. Is there any change that
need to be applied to the spanning forest? No and it is because this update
removes an edge that does not belong to the spanning forest.

• In the third step, we add an edge (green edge) to the graph. Is there any change
that need to be applied to the spanning forest? Yes, because previously the graph
had two connected components but with this edge, it becomes a single connected
component. So to insert an edge connecting two different connected components,
we need to add the newly added edge to the spanning forest F .

• In the last step, we remove a spanning tree edge from the forest and now F has
two connected components, however, if we look at the entire graph, we still have
a single connected component (using the red edge). So, in order to maintain the
spanning forest property, we need to add the red edge which previously was a
non-tree edge to the spanning tree. Therefore, if we delete a tree edge, we need
to find a replacement if possible.

Given a spanning forest, distinguishing these four cases is easy, because what we
need to do for the insert case is to check if two endpoints of an edge belongs to the



3 DYNAMIC ALGORITHMS FOR GRAPH CONNECTIVITY 7

same connected component (done with a query) and for the delete case, we need to
check if the edge is in the spanning forest or not. The first three cases are simple but
how do we find a replacement for the fourth case? The naive way is to go over all the
edges in the first connected component and check if there is an outgoing edge to the
other connected component but potentially can be super slow.

Idea: “Sample” an edge going out of one connected component.

Let us consider a simple case illustrated in Figure 5:

01001
10011

11110

00100
11001

00011

00101
11111

v

u

w

Figure 5: Recovering the edge connecting the two connected components

Idea: Edge going out of the connected component is unique. Assign a random
binary name of the same length to each edge.
Sv is the binary sum (XOR) of names of incident edges to vertex v.
Sv = 01001, Su = 01001⊕ 10011⊕ 00100 = 11110, Sw = 10011
Scc = ⊕v∈cc = 01001⊕ 11110⊕ 10011 = 00100

Scc is exactly the name of the edge connecting two components. It is because if an
edge has two endpoints in the same connected component they will cancel each other
out in the sum and only the edge going out of the component will remain. Therefore
we can recover the edge connecting two components using the sum of the edges in the
connected component.

But what if multiple edges go out from one connected component to the other
connected component? We will explain that in the next lecture.


	Last Lecture's Review
	Proof of The Claim
	Dynamic Algorithms for Graph Connectivity
	Motivation
	Dynamic Connectivity


