Lecture (20): 3/17/22

Lecturer: Xiaorui Sun

1 Last time and today

- Matrix multiplication
- Naive Algorithm
- Strassen Algorithm
- Tensor

2 Matrix Multiplication Overview

2.1 Problem Definition and Naive Solution

Input: Matrix A and B where the dimensions of A is $n * m$ and the dimensions of B is $\mathrm{m}^{*} \mathrm{p}$. The output is $\mathrm{A} * \mathrm{~B}$ where the resulting matrix is of dimensions $\mathrm{n}^{*} \mathrm{p}$ and where the ith row and the jth column is equal to

$$
\sum_{k=1}^{m} a_{i k} * b_{j k}
$$

Visually matrix multiplication looks like the following:
ith row from Matrix A:

$$
\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]
$$

jth column from Matrix B:

$$
\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Output Matrix C where the ith and jth element is equal to

$$
\left[a_{1} * b_{1}+a_{2} * b_{2}\right]
$$

Let $\mathrm{n}=\mathrm{m}=\mathrm{p}$ then the trivial runtime is

$$
O\left(n^{3}\right)
$$

Each entry needs to be evaluated when taking the product of two matrices thus the lower bound is

$$
\Omega\left(n^{2}\right)
$$

Let ω denote the best exponent for the running time for matrix multiplication

$$
2 \leq \omega \leq 3
$$

Current best runtime is $\omega \approx 2.37$. This runntime requires the use of tensors.

3 Strassen Algorithm

3.0.1 Overview

- Runtime is $O\left(n^{\log _{2}(7)}\right)$ which is $\approx O\left(n^{2.81}\right)$
- Observe matrix $A+B$ where the ith row and the jth column is equal to

$$
a_{i j}+b_{i j}=O\left(n^{2}\right)
$$

- Since addition and subtraction is less expensive we would like to use more of those operations instead of multiplication.
- General idea of Strassen Algorithm is to divide the matrix into smaller matrices. Then do the addition/multiplication of the smaller matrices.

3.0.2 Example

Below is an example doing matrix multiplication with matrices A and B the naive way.

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

$$
\begin{gathered}
B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
C=A * B=\left[\begin{array}{ll}
a_{11} * b_{11}+a_{12} * b_{21} & a_{11} * b_{12}+a_{12} * b_{22} \\
a_{21} * b_{11}+a_{22} * b_{21} & a_{21} * b_{12}+a_{22} * b_{22}
\end{array}\right]
\end{gathered}
$$

- Notice that there are 8 multiplications and 4 additions.
- With Strassen Algorithm we can now create partitions in the following manner:

$$
\begin{gathered}
p_{1}=\left(a_{11}+a_{22}\right) *\left(b_{11}+b_{22}\right) \\
p_{2}=\left(a_{21}+a_{22}\right) * b_{11} \\
p_{3}=a_{11} *\left(b_{12}-b_{22}\right) \\
p_{4}=a_{22} *\left(b_{21}-b_{11}\right) \\
p_{5}=b_{22} *\left(a_{11}+a_{12}\right) \\
p_{6}=\left(a_{21}-a_{11}\right) *\left(b_{11}+b_{12}\right) \\
p_{7}=\left(a_{12}-a_{22}\right) *\left(b_{21}+b_{22}\right)
\end{gathered}
$$

- With these partitions we can now find our output matrix, C , in the following manner:

$$
C_{11}=p_{1}+p_{4}-p_{5}+p_{7}
$$

$$
\begin{gathered}
C_{12}=p_{3}+p_{5} \\
C_{21}=p_{2}+p_{4} \\
C_{22}=p_{1}-p_{2}+p_{3}+p_{6}
\end{gathered}
$$

\qquad
\qquad

- Using Strassen Algorithm there are only 7 multiplications and 18 additions.
- Overall reduction in multiplication operation.
- More generally, let matrix A and B be size n where

$$
n=2^{k}
$$

. We can recursively partition the larger matrices in the following way:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \\
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \\
C=A * B=\left[\begin{array}{ll}
A_{11} * B_{11}+A_{12} * B_{21} & A_{11} * B_{12}+A_{12} * B_{22} \\
A_{21} * B_{11}+A_{22} * B_{21} & A_{21} * B_{12}+A_{22} * B_{22}
\end{array}\right]
\end{gathered}
$$

- With each partition calling Strassen(A,B) to generate smaller partitions.
- We can now see how to use Strassen Algorithm in a more general sense.

3.0.3 Matrix Multiplication Recursion

Let $T(n)$ be the running time for matrix multiplication for a $n * n$ matrices.
Recursion for Strassen's Matrix Multiplication Algorithm would be as followed:

$$
T(n)= \begin{cases}\text { Constant }, & \text { if } n=1 \tag{1}\\ 7 * T(n / 2)+18 * O\left(n^{2}\right), & \mathrm{n}>1\end{cases}
$$

The constant factor of 18 comes from the 18 additions. Thus we have

$$
T(n)=O\left(n^{\log _{2}(7)}\right)
$$

Recursion for matrix multiplication the naive way would be as followed:

$$
T(n)= \begin{cases}\text { Constant }, & \text { if } n=1 \tag{2}\\ 8 * T(n / 2)+O\left(n^{2}\right), & \mathrm{n}>1\end{cases}
$$

Thus we have

$$
T(n)=O\left(n^{3}\right)
$$

4 Definitions

4.0.1 Quadratic Problem

Let variables $x_{1}, x_{2} \ldots x_{n}$ exist in \mathbb{R}. Let $F=\left\{f_{1}, f_{2} \ldots f_{k}\right\}$ be a set of quadratic functions. Where

$$
f_{k}=\sum_{i, j=1}^{n} t_{i, j, k} * x_{i} * x_{j}
$$

and where $t_{i, j, k}$ is a fixed coefficient.
The primary goal of this problem is to compute F. We can think of F as the output of $\mathrm{A} * \mathrm{~B}$ in matrix multiplication.

4.0.2 Bilinear Problem

Let define variables $x_{1}, x_{2} \ldots x_{n}$ and $y_{1}, y_{2} \ldots y_{n}$ In this case x variables represent matrix A and y variables represent matrix B. Then we can define

$$
F=\left\{f_{1}, f_{2} \ldots f_{k}\right\}
$$

where once again F represents $\mathrm{A} * \mathrm{~B}$ and each

$$
f_{k}=\sum_{i=1}^{n} \sum_{j=1}^{m} t_{i, j, k} * x_{i} * y_{j}
$$

If we look at

$$
\left\{t_{i, j, k}\right\} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{k}
$$

We can notice it is 3 dimensional making it a 3 -tensor. Knowing this tensor values allows us to compute matrix multiplication faster.

5 Matrix Multiplication as Bilinear Problem

Let $A=\left[\begin{array}{cccc}x_{11} & x_{12} & \ldots & x_{1 n} \\ x_{21} & x_{22} & \ldots & x_{2 n} \\ \ldots & \ldots & \ldots & x_{n n}\end{array}\right]$ And let $B=\left[\begin{array}{cccc}y_{11} & y_{12} & \ldots & y_{1 n} \\ y_{21} & y_{22} & \ldots & y_{2 n} \\ \ldots & \ldots & \ldots & y_{n n}\end{array}\right]$
Ultimately with these two matrices we have $2 n^{2}$ variables.
Our output: $\mathrm{A}^{*} \mathrm{~B}$ is defined as $\left[\begin{array}{cccc}z_{11} & z_{12} & \ldots & z_{1 n} \\ z_{21} & z_{22} & \ldots & z_{2 n} \\ \ldots & \ldots & \ldots & z_{n n}\end{array}\right]$
Let $f(i, j)=z_{i, j}$

$$
f(i, k)=\sum_{\left(i_{0}, j_{0}\right),\left(j_{1}, k_{1}\right)} t_{\left(i_{0}, j_{0}\right),\left(j_{1}, k_{1}\right),(i, k)} * x_{\left(i_{0}, j_{0}\right)} * y_{\left(j_{1}, k_{1}\right)}
$$

We can separate out the tensor constant and have the following:

$$
\begin{gather*}
f(i, k)=\sum_{j=1}^{n} x_{i, j} * y_{j, k} \\
T_{\left(i_{0}, j_{0}\right),\left(j_{1}, k_{1}\right),(i, k)}= \begin{cases}1, & \text { if } i_{0}=i, j_{0}=j_{1}, k=k_{1} \\
0, & \text { Otherwise }\end{cases} \tag{3}
\end{gather*}
$$

