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1 Last time and today

• Matrix multiplication

– Naive Algorithm

– Strassen Algorithm

– Tensor

2 Matrix Multiplication Overview

2.1 Problem Definition and Naive Solution

Input: Matrix A and B where the dimensions of A is n*m and the dimensions of B is
m*p. The output is A * B where the resulting matrix is of dimensions n*p and where
the ith row and the jth column is equal to

m∑
k=1

aik ∗ bjk

Visually matrix multiplication looks like the following:

ith row from Matrix A: [
a1 a2

]
jth column from Matrix B: [

b1
b2

]
Output Matrix C where the ith and jth element is equal to[

a1 ∗ b1 + a2 ∗ b2
]

1
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Let n=m=p then the trivial runtime is

O(n3)

Each entry needs to be evaluated when taking the product of two matrices thus the
lower bound is

Ω(n2)

Let ω denote the best exponent for the running time for matrix multiplication

2 ≤ ω ≤ 3

Current best runtime is ω ≈ 2.37. This runntime requires the use of tensors.

3 Strassen Algorithm

3.0.1 Overview

• Runtime is O(nlog2(7)) which is ≈ O(n2.81)

• Observe matrix A+B where the ith row and the jth column is equal to

aij + bij = O(n2)

• Since addition and subtraction is less expensive we would like to use more of
those operations instead of multiplication.

• General idea of Strassen Algorithm is to divide the matrix into smaller matrices.
Then do the addition/multiplication of the smaller matrices.

3.0.2 Example

Below is an example doing matrix multiplication with matrices A and B the naive way.

A =

[
a11 a12
a21 a22

]
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B =

[
b11 b12
b21 b22

]

C = A ∗B =

[
a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]

• Notice that there are 8 multiplications and 4 additions.

• With Strassen Algorithm we can now create partitions in the following manner:

–
p1 = (a11 + a22) ∗ (b11 + b22)

–
p2 = (a21 + a22) ∗ b11

–
p3 = a11 ∗ (b12 − b22)

–
p4 = a22 ∗ (b21 − b11)

–
p5 = b22 ∗ (a11 + a12)

–
p6 = (a21 − a11) ∗ (b11 + b12)

–
p7 = (a12 − a22) ∗ (b21 + b22)

• With these partitions we can now find our output matrix , C , in the following
manner:

–
C11 = p1 + p4 − p5 + p7
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–
C12 = p3 + p5

–
C21 = p2 + p4

–
C22 = p1 − p2 + p3 + p6

– Using Strassen Algorithm there are only 7 multiplications and 18 additions.

– Overall reduction in multiplication operation.

• More generally, let matrix A and B be size n where

n = 2k

. We can recursively partition the larger matrices in the following way:

A =

[
A11 A12

A21 A22

]

B =

[
B11 B12

B21 B22

]

C = A ∗B =

[
A11 ∗B11 + A12 ∗B21 A11 ∗B12 + A12 ∗B22

A21 ∗B11 + A22 ∗B21 A21 ∗B12 + A22 ∗B22

]

• With each partition calling Strassen(A,B) to generate smaller partitions.

• We can now see how to use Strassen Algorithm in a more general sense.
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3.0.3 Matrix Multiplication Recursion

Let T(n) be the running time for matrix multiplication for a n*n matrices.
Recursion for Strassen’s Matrix Multiplication Algorithm would be as followed:

T (n) =

{
Constant, if n = 1

7 ∗ T (n/2) + 18 ∗O(n2), n > 1
(1)

The constant factor of 18 comes from the 18 additions. Thus we have

T (n) = O(nlog2(7))

Recursion for matrix multiplication the naive way would be as followed:

T (n) =

{
Constant, if n = 1

8 ∗ T (n/2) +O(n2), n > 1
(2)

Thus we have
T (n) = O(n3)

4 Definitions

4.0.1 Quadratic Problem

Let variables x1, x2...xn exist in R. Let F = {f1, f2...fk} be a set of quadratic functions.
Where

fk =
n∑

i,j=1

ti,j,k ∗ xi ∗ xj

and where ti,j,k is a fixed coefficient.

The primary goal of this problem is to compute F . We can think of F as the output
of A*B in matrix multiplication.

4.0.2 Bilinear Problem

Let define variables x1, x2...xn and y1, y2...yn In this case x variables represent matrix
A and y variables represent matrix B. Then we can define

F = {f1, f2...fk}
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where once again F represents A*B and each

fk =
n∑

i=1

m∑
j=1

ti,j,k ∗ xi ∗ yj

If we look at

{ti,j,k}
n∑

i=1

m∑
j=1

k∑
k=1

We can notice it is 3 dimensional making it a 3-tensor. Knowing this tensor values
allows us to compute matrix multiplication faster.

5 Matrix Multiplication as Bilinear Problem

Let A =

 x11 x12 ... x1n

x21 x22 ... x2n

... ... ... xnn

 And let B =

 y11 y12 ... y1n
y21 y22 ... y2n
... ... ... ynn


Ultimately with these two matrices we have 2n2 variables.

Our output: A*B is defined as

 z11 z12 ... z1n
z21 z22 ... z2n
... ... ... znn


Let f(i, j) = zi,j

f(i, k) =
∑

(i0,j0),(j1,k1)

t(i0,j0),(j1,k1),(i,k) ∗ x(i0,j0) ∗ y(j1,k1)

We can separate out the tensor constant and have the following:

f(i, k) =
n∑

j=1

xi,j ∗ yj,k

T(i0,j0),(j1,k1),(i,k) =

{
1, if i0 = i, j0 = j1, k = k1

0, Otherwise
(3)
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