
CS 594: Representations in Algorithm Design Spring 2022

Lecture (20): 3/17/22
Lecturer: Xiaorui Sun Scribe: Robert Finedore

1 Last time and today

• Matrix multiplication

– Naive Algorithm

– Strassen Algorithm

– Tensor

2 Matrix Multiplication Overview

2.1 Problem Definition and Naive Solution

Input: Matrix A and B where the dimensions of A is n*m and the dimensions of B is
m*p. The output is A * B where the resulting matrix is of dimensions n*p and where
the ith row and the jth column is equal to

m∑
k=1

aik ∗ bjk

Visually matrix multiplication looks like the following:

ith row from Matrix A: [
a1 a2

]
jth column from Matrix B: [

b1
b2

]
Output Matrix C where the ith and jth element is equal to[

a1 ∗ b1 + a2 ∗ b2
]

1



3 STRASSEN ALGORITHM 2

Let n=m=p then the trivial runtime is

O(n3)

Each entry needs to be evaluated when taking the product of two matrices thus the
lower bound is

Ω(n2)

Let ω denote the best exponent for the running time for matrix multiplication

2 ≤ ω ≤ 3

Current best runtime is ω ≈ 2.37. This runntime requires the use of tensors.

3 Strassen Algorithm

3.0.1 Overview

• Runtime is O(nlog2(7)) which is ≈ O(n2.81)

• Observe matrix A+B where the ith row and the jth column is equal to

aij + bij = O(n2)

• Since addition and subtraction is less expensive we would like to use more of
those operations instead of multiplication.

• General idea of Strassen Algorithm is to divide the matrix into smaller matrices.
Then do the addition/multiplication of the smaller matrices.

3.0.2 Example

Below is an example doing matrix multiplication with matrices A and B the naive way.

A =

[
a11 a12
a21 a22

]



3 STRASSEN ALGORITHM 3

B =

[
b11 b12
b21 b22

]

C = A ∗B =

[
a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]

• Notice that there are 8 multiplications and 4 additions.

• With Strassen Algorithm we can now create partitions in the following manner:

–
p1 = (a11 + a22) ∗ (b11 + b22)

–
p2 = (a21 + a22) ∗ b11

–
p3 = a11 ∗ (b12 − b22)

–
p4 = a22 ∗ (b21 − b11)

–
p5 = b22 ∗ (a11 + a12)

–
p6 = (a21 − a11) ∗ (b11 + b12)

–
p7 = (a12 − a22) ∗ (b21 + b22)

• With these partitions we can now find our output matrix , C , in the following
manner:

–
C11 = p1 + p4 − p5 + p7



3 STRASSEN ALGORITHM 4

–
C12 = p3 + p5

–
C21 = p2 + p4

–
C22 = p1 − p2 + p3 + p6

– Using Strassen Algorithm there are only 7 multiplications and 18 additions.

– Overall reduction in multiplication operation.

• More generally, let matrix A and B be size n where

n = 2k

. We can recursively partition the larger matrices in the following way:

A =

[
A11 A12

A21 A22

]

B =

[
B11 B12

B21 B22

]

C = A ∗B =

[
A11 ∗B11 + A12 ∗B21 A11 ∗B12 + A12 ∗B22

A21 ∗B11 + A22 ∗B21 A21 ∗B12 + A22 ∗B22

]

• With each partition calling Strassen(A,B) to generate smaller partitions.

• We can now see how to use Strassen Algorithm in a more general sense.



4 DEFINITIONS 5

3.0.3 Matrix Multiplication Recursion

Let T(n) be the running time for matrix multiplication for a n*n matrices.
Recursion for Strassen’s Matrix Multiplication Algorithm would be as followed:

T (n) =

{
Constant, if n = 1

7 ∗ T (n/2) + 18 ∗O(n2), n > 1
(1)

The constant factor of 18 comes from the 18 additions. Thus we have

T (n) = O(nlog2(7))

Recursion for matrix multiplication the naive way would be as followed:

T (n) =

{
Constant, if n = 1

8 ∗ T (n/2) +O(n2), n > 1
(2)

Thus we have
T (n) = O(n3)

4 Definitions

4.0.1 Quadratic Problem

Let variables x1, x2...xn exist in R. Let F = {f1, f2...fk} be a set of quadratic functions.
Where

fk =
n∑

i,j=1

ti,j,k ∗ xi ∗ xj

and where ti,j,k is a fixed coefficient.

The primary goal of this problem is to compute F . We can think of F as the output
of A*B in matrix multiplication.

4.0.2 Bilinear Problem

Let define variables x1, x2...xn and y1, y2...yn In this case x variables represent matrix
A and y variables represent matrix B. Then we can define

F = {f1, f2...fk}



5 MATRIX MULTIPLICATION AS BILINEAR PROBLEM 6

where once again F represents A*B and each

fk =
n∑

i=1

m∑
j=1

ti,j,k ∗ xi ∗ yj

If we look at

{ti,j,k}
n∑

i=1

m∑
j=1

k∑
k=1

We can notice it is 3 dimensional making it a 3-tensor. Knowing this tensor values
allows us to compute matrix multiplication faster.

5 Matrix Multiplication as Bilinear Problem

Let A =

 x11 x12 ... x1n

x21 x22 ... x2n

... ... ... xnn

 And let B =

 y11 y12 ... y1n
y21 y22 ... y2n
... ... ... ynn


Ultimately with these two matrices we have 2n2 variables.

Our output: A*B is defined as

 z11 z12 ... z1n
z21 z22 ... z2n
... ... ... znn


Let f(i, j) = zi,j

f(i, k) =
∑

(i0,j0),(j1,k1)

t(i0,j0),(j1,k1),(i,k) ∗ x(i0,j0) ∗ y(j1,k1)

We can separate out the tensor constant and have the following:

f(i, k) =
n∑

j=1

xi,j ∗ yj,k

T(i0,j0),(j1,k1),(i,k) =

{
1, if i0 = i, j0 = j1, k = k1

0, Otherwise
(3)


	Last time and today
	Matrix Multiplication Overview
	Problem Definition and Naive Solution

	Strassen Algorithm
	Overview
	Example
	Matrix Multiplication Recursion


	Definitions
	Quadratic Problem
	Bilinear Problem


	Matrix Multiplication as Bilinear Problem

