CS 594: Representations in Algorithm Design

Spring 2022
Lecture on $03 / 29 / 2022$
Lecturer: Xiaorui Sun
Scribe: Sai Anish Garapati

1 Last Lecture's Review

In the last lecture Matrix multiplication was discussed and following algorithms were introduced to solve Matrix multiplication:

- Naive Algorithm
- Strassen Algorithm
- Tensor

2 Today's Lecture

- Matrix multiplication algorithm represented as Bilinear and Trilinear problem.
- Rank of a Tensor and application of Tensor Rank to solve Matrix multiplication algorithm.

3 Matrix multiplication as a linear problem

3.1 Bilinear Problem

There are two sets of variables $X_{1}, X_{2}, \ldots, X_{N}$ and $Y_{1}, Y_{2}, \ldots, Y_{N}$
The set of K Bilinear functions $F=\left\{f_{1}, f_{2}, \ldots, f_{K}\right\}$ can be defined as:

$$
f_{k}=\sum_{i=1}^{N} \sum_{j=1}^{M} t_{i j k} \cdot X_{i} \cdot Y_{j}
$$

where f_{k} is a bilinear function.
The goal is to compute Tensors $f_{1}, f_{2}, \ldots, f_{k}$ for given $X_{1}, X_{2}, \ldots, X_{N}$ and $Y_{1}, Y_{2}, \ldots, Y_{N}$

Then the n x n matrix multiplication of Matrices $\left\{x_{i, j}\right\}$ and $\left\{y_{j, k}\right\}$ for $\mathrm{i}, \mathrm{j}, \mathrm{k}=1$, $2, \ldots, \mathrm{n}$ can be written as:

$$
z_{i k}=\sum_{j=1}^{n} x_{i j} \cdot y_{j k}
$$

where $z_{i k}$ is element at $i^{\text {th }}$ row and $j^{\text {th }}$ column in matrix $X \cdot Y$.
In Bilinear problem:

$$
z_{i k}=\sum_{i, j^{\prime}, j, k^{\prime}, k, i^{\prime}} t_{\left(i, j^{\prime}\right)\left(j, k^{\prime}\right)\left(i^{\prime}, k\right)} \cdot x_{i j^{\prime}} \cdot y_{j k^{\prime}}
$$

where
$\mathrm{t}_{\left(i, j^{\prime}\right)\left(j, k^{\prime}\right)\left(i^{\prime}, k\right)}=\left\{\begin{array}{l}1 \text { if } i=i^{\prime}, j=j^{\prime}, k=k^{\prime} \\ 0 \text { otherwise }\end{array}\right.$

- Strassen's recursive approach can also be generelized to any Bilinear algorithm for Matrix multiplication.

3.2 Trilinear Problem

- The same set of coeffiecients used above can be used to represent the Matrix multiplication in Trilinear form:

$$
\sum_{i, j, k} t_{i j k} \cdot X_{i} \cdot Y_{j} \cdot Z_{k}
$$

where Z_{k} represents function f_{k} and $t_{i j k}$ is called an Order 3 Tensor.

4 Rank of Tensor

- The Rank of a Tensor $\sum_{i, j, k=1}^{N, M, K} t_{i j k} \cdot X_{i} \cdot Y_{j} \cdot Z_{k}$ is defined as the minimum of integer l such that \exists

$$
\begin{aligned}
\vec{u}_{\lambda} & =\left(u_{1}, u_{\lambda_{2}}, \ldots, u_{\lambda_{N}}\right) \\
\vec{v}_{\lambda} & =\left(v_{\lambda_{1}}, v_{\lambda_{2}}, \ldots, v_{\lambda_{M}}\right) \\
\vec{w}_{\lambda} & =\left(w_{\lambda_{1}}, w_{\lambda_{2}}, \ldots, w_{\lambda_{K}}\right)
\end{aligned}
$$

such that

$$
\sum_{i, j, k=1}^{N, M, K} t_{i, j, k} \cdot X_{i} \cdot Y_{j} \cdot Z_{k}=\sum_{\lambda=1}^{l}\left(\sum_{i=1}^{N} u_{\lambda_{i}} \cdot X_{i}\right)\left(\sum_{j=1}^{M} v_{\lambda_{j}} \cdot Y_{j}\right)\left(\sum_{k=1}^{k} w_{\lambda_{k}} \cdot Z_{k}\right)
$$

5 RANK OF A TENSOR AND RUNNING TIME OF MATRIX MULTIPLICATION3

- This can be seen as representing the function as a linear combination of products of atomic tensors.
- Another way to look at the above definition is:

For given vectors $\vec{u}_{\lambda}, \vec{v}_{\lambda}, \vec{w}_{\lambda}$,

$$
u_{\lambda} \otimes v_{\lambda} \otimes w_{\lambda}=\left(\sum_{i} u_{\lambda_{i}} X_{i}\right)\left(\sum_{j} v_{\lambda_{j}} Y_{j}\right)\left(\sum_{k} w_{\lambda_{k}} Z_{k}\right)
$$

- Rank: The Rank of Tensor is defined as the number of atomic tensors required in combination to produce the original tensor.
- The Rank of a Tensor is analogous to the Time complexity of the Tensor.
- The Rank of a Matrix mirrors the number of rows required to produce all the rows inside the Matrix by some linear combination.
- For atomic tensors (rank 1 tensor or triad) the time complexity is given as $O(N+$ $M+K$)
- For l ranked tensor the time complexity is given as $O((N+M+K) \cdot l)$

5 Rank of a Tensor and Running Time of Matrix Multiplication

5.1 Computing model: Straight Line Program (SLP) model

- For a given input $X_{1}, X_{2}, \ldots, X_{N}$, the goal is to compute $F\left(X_{1}, X_{2}, \ldots, X_{N}\right)$, a sequence of operations $g_{1}, g_{2}, \ldots, g_{s}$ are allowed which are:

1. $g_{i}=x_{j} \odot x_{j}$ where $\odot \in\{+,-, \times, /\}$
2. $g_{i}=X_{j} \otimes C$
3. $g_{i}=X_{j} \otimes g_{k}$ for $k<i$
4. $g_{i}=g_{j} \otimes C$
5. $g_{i}=g_{j} \otimes g_{k}$ for $j, k<i$

5 RANK OF A TENSOR AND RUNNING TIME OF MATRIX MULTIPLICATION4

- $g_{1}, g_{2}, \ldots, g_{s}=F\left(X_{1}, X_{2} \ldots, X_{3}\right)$ and the last operation g_{s} gives the function value.
- The Complexity $C(F)$ is calculated as the Minimum number of operations used in a SLP model to compute the function value F .
- $C^{\times /}(F)$ is the minimum number of \times or / operations used in a SLP model to compute the function value F .

Theorem (Strassen in 1973):

For a bilinear form $F\left(X_{1}, X_{2}, \ldots, X_{N}\right)$, if complexity $C^{\times /}(F)=l$, then F is a linear combination of

$$
\begin{gathered}
P_{\lambda}=\left(\sum u_{\lambda_{i}} X_{i}\right)\left(\sum v_{\lambda_{j}} X_{i}\right) \\
\text { for } 1<=\lambda<=l
\end{gathered}
$$

- For a Tensor t :

$$
\begin{gathered}
\text { if complexity } C^{\times /}(t)=l \Longrightarrow \text { Rank of Tensor } t<=l \\
\Longrightarrow C^{\times /}(t)<=R(t)<=2 \cdot C^{\times /}(t)
\end{gathered}
$$

- Omega w is defined as the smallest P such that $C(<n, n, n>)<=O\left(n^{p}\right)$.
- $<n, m, k>$ is used to denote the Matrix multiplication tensor for $\mathrm{N} \times \mathrm{M}$ and $\mathrm{M} \times \mathrm{K}$ matrices.

Theorem:

$$
R(<n, n, n>)=O(C(<n, n, n>))
$$

- The Rank $R(<n, n, n>)$ can be related with the Rank of a smaller tensor say $R(<2,2,2>)$.
- In order to relate larger tensor with smaller tensor we use operations such as Kronecker product.

5 RANK OF A TENSOR AND RUNNING TIME OF MATRIX MULTIPLICATION5

Let t be tensor $\mathrm{N} \times \mathrm{M} \times \mathrm{K}$ and t^{\prime} be tensor $N^{\prime} \times M^{\prime} \times K^{\prime}$, then $\left(t \otimes t^{\prime}\right)_{i i^{\prime}, j j^{\prime}, k k^{\prime}}$ is a tensor $=t_{i j k} \cdot t_{i^{\prime} j^{\prime} k^{\prime}}$

Observation:

Let Tensor $T=N \cdot M \cdot K$, then

$$
<T, T, T>=<N, M, K>\otimes<M, K, N>\otimes<K, N, M>
$$

Claim:

$$
R\left(t \otimes t^{\prime}\right)<=R(t) \cdot R\left(t^{\prime}\right)
$$

Claim:

$$
\begin{gathered}
R(<N, M, K>)=R(<M, K, N>) \\
\Longrightarrow R(<T, T, T>)<=R(<N, M, K>)^{3}
\end{gathered}
$$

- If $R(<N, M, K>)<=r$ where r is an upper limit:
then $w<=\frac{3 \cdot \log r}{\log (K M N)}$
- For $N=2, M=2$ and $K=2$, we get

$$
R(<2,2,2>) \Longrightarrow w<=\frac{3 \cdot \log _{2} 7}{\log _{2} 8}=\log _{2} 7
$$

