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1 Last Lecture’s Review

In the last lecture Matrix multiplication was discussed and following algorithms were
introduced to solve Matrix multiplication:

• Naive Algorithm
• Strassen Algorithm
• Tensor

2 Today’s Lecture

• Matrix multiplication algorithm represented as Bilinear and Trilinear problem.
• Rank of a Tensor and application of Tensor Rank to solve Matrix multiplication
algorithm.

3 Matrix multiplication as a linear problem

3.1 Bilinear Problem

There are two sets of variables X1, X2, ..., XN and Y1, Y2, ..., YN

The set of K Bilinear functions F = {f1, f2, ..., fK} can be defined as:

fk =
N∑
i=1

M∑
j=1

tijk ·Xi · Yj

where fk is a bilinear function.
The goal is to compute Tensors f1, f2, ..., fk for given X1, X2, ..., XN and Y1, Y2, ..., YN
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Then the n x n matrix multiplication of Matrices {xi,j} and {yj,k} for i, j, k = 1,
2, ..., n can be written as:

zik =
n∑

j=1

xij · yjk

where zik is element at ith row and jth column in matrix X · Y .
In Bilinear problem:

zik =
∑

i,j′ ,j,k′ ,k,i′

t(i,j′ )(j,k′ )(i′ ,k) · xij′ · yjk′

where

t(i,j′ )(j,k′ )(i′ ,k) =

{
1 if i = i

′
, j = j

′
, k = k

′

0 otherwise

• Strassen’s recursive approach can also be generelized to any Bilinear algorithm for
Matrix multiplication.

3.2 Trilinear Problem

• The same set of coeffiecients used above can be used to represent the Matrix mul-
tiplication in Trilinear form: ∑

i,j,k

tijk ·Xi · Yj · Zk

where Zk represents function fk and tijk is called an Order 3 Tensor.

4 Rank of Tensor

• The Rank of a Tensor
∑N,M,K

i,j,k=1 tijk ·Xi · Yj ·Zk is defined as the minimum of integer
l such that ∃

u⃗λ = (u1 , uλ2 , ..., uλN
)

v⃗λ = (vλ1 , vλ2 , ..., vλM
)

w⃗λ = (wλ1 , wλ2 , ..., wλK
)

such that

N,M,K∑
i,j,k=1

ti,j,k ·Xi · Yj · Zk =
l∑

λ=1

(
N∑
i=1

uλi
·Xi)(

M∑
j=1

vλj
· Yj)(

k∑
k=1

wλk
· Zk)
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• This can be seen as representing the function as a linear combination of products of
atomic tensors.

• Another way to look at the above definition is:
For given vectors u⃗λ, v⃗λ, w⃗λ,

uλ ⊗ vλ ⊗ wλ = (
∑
i

uλi
Xi)(

∑
j

vλj
Yj)(

∑
k

wλk
Zk)

• Rank: The Rank of Tensor is defined as the number of atomic tensors required in
combination to produce the original tensor.

• The Rank of a Tensor is analogous to the Time complexity of the Tensor.

• The Rank of a Matrix mirrors the number of rows required to produce all the
rows inside the Matrix by some linear combination.

• For atomic tensors (rank 1 tensor or triad) the time complexity is given as O(N +
M +K)

• For l ranked tensor the time complexity is given as O((N +M +K) · l)

5 Rank of a Tensor and Running Time of Matrix

Multiplication

5.1 Computing model: Straight Line Program (SLP) model

• For a given inputX1, X2, ..., XN , the goal is to compute F (X1, X2, ..., XN), a sequence
of operations g1, g2, ..., gs are allowed which are:

1. gi = xj ⊙ xj where ⊙ ∈ {+,−,×, /}

2. gi = Xj ⊗ C

3. gi = Xj ⊗ gk for k < i

4. gi = gj ⊗ C

5. gi = gj ⊗ gk for j, k < i
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• g1, g2, ..., gs = F (X1, X2..., X3) and the last operation gs gives the function value.

• The Complexity C(F ) is calculated as the Minimum number of operations used
in a SLP model to compute the function value F.

• C×/(F ) is the minimum number of × or / operations used in a SLP model to
compute the function value F.

Theorem (Strassen in 1973):
For a bilinear form F (X1, X2, ..., XN), if complexity C×/(F ) = l, then F is a linear
combination of

Pλ = (
∑

uλi
Xi)(

∑
vλj

Xi)

for 1 <= λ <= l

• For a Tensor t:

if complexity C×/(t) = l =⇒ Rank of Tensor t <= l

=⇒ C×/(t) <= R(t) <= 2 · C×/(t)

• Omega w is defined as the smallest P such that C(< n, n, n >) <= O(np).

• < n,m, k > is used to denote the Matrix multiplication tensor for N × M and
M × K matrices.

Theorem:
R(< n, n, n >) = O(C(< n, n, n >))

• The Rank R(< n, n, n >) can be related with the Rank of a smaller tensor say
R(< 2, 2, 2 >).

• In order to relate larger tensor with smaller tensor we use operations such as Kro-
necker product.
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Let t be tensor N × M × K and t
′
be tensor N

′ × M
′ × K

′
, then (t ⊗ t

′
)ii′ ,jj′ ,kk′

is a tensor = tijk · ti′j′k′

Observation:
Let Tensor T = N ·M ·K, then

< T, T, T > = < N,M,K > ⊗ < M,K,N > ⊗ < K,N,M >

Claim:
R(t⊗ t

′
) <= R(t) ·R(t

′
)

Claim:
R(< N,M,K >) = R(< M,K,N >)

=⇒ R(< T, T, T >) <= R(< N,M,K >)3

• If R(< N,M,K >) <= r where r is an upper limit:
then w <= 3·logr

log(KMN)

• For N = 2, M = 2 and K = 2, we get

R(< 2, 2, 2 >) =⇒ w <=
3 · log27
log28

= log27
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