CS 594: Representations in Algorithm Design

Spring 2022
Lecture 21: 03/29/2022
Lecturer: Xiaorui Sun
Scribe: Arvind Gupta

1 Last time and today

- Tensor Rank and Matrix multiplication
- Quadratic problem
- Bilinear problem
- Matrix multiplication as a Bilinear problem

2 Tensor rank - bilinear problem

Proof: Consider a Bilinear problem:

$$
\begin{gathered}
X=\left(x_{1}, x_{2}, \ldots \ldots x_{n-1}, x_{n}\right) \text { and } Y=\left(y_{1}, y_{2}, \ldots \ldots y_{m-1}, y_{m}\right) \\
F=\left(f_{1}, f_{2}, \ldots \ldots, f_{k}\right),
\end{gathered}
$$

where f_{k} is a bilinear function.

$$
\begin{equation*}
f_{k}=\sum_{i=1}^{N} \sum_{j=1}^{M} t_{i j k} * x_{i} * y_{j} \tag{1}
\end{equation*}
$$

Goal: Compute $f_{1}, f_{2}, \ldots ., f_{k}$ for given:

$$
X=\left(x_{1}, x_{2}, \ldots \ldots . x_{n-1}, x_{n}\right) \text { and } Y=\left(y_{1}, y_{2}, \ldots \ldots . y_{m-1}, y_{m}\right)
$$

$$
x_{i, j} * y_{j, k} \text { where } \mathrm{i}, \mathrm{j}, \mathrm{k}=(1 \text { to } \mathrm{n}) \text { and, }
$$

$$
\begin{equation*}
z_{i, k}=\sum_{j=1}^{n} x_{i j} * y_{j k} \tag{2}
\end{equation*}
$$

where $\mathrm{i}=$ row, $\mathrm{y}=$ column in $\mathrm{X} * \mathrm{Y}$

$$
z_{i, k}=\sum_{i, j^{\prime}, j, k^{\prime}, k, i^{\prime}} t_{\left(i, j^{\prime}\right)\left(j, k^{\prime}\right)\left(i^{\prime}, k\right)} * x_{i j^{\prime}} * y_{j k^{\prime}}= \begin{cases}1, & \text { if } i=i^{\prime}, j=j^{\prime}, k=k^{\prime} \tag{3}\\ 0, & \text { otherwise }\end{cases}
$$

2.1 Trilinear Problem

$$
\begin{equation*}
\sum_{i, j, k} t_{i j k} * x_{i} * y_{j} * z_{k} \tag{4}
\end{equation*}
$$

where z_{k} represents function f_{k}, and $t_{i j k}$ represents order 3 tensor,

$$
\begin{aligned}
\vec{z} & =(1,0,0,0,0 \ldots \ldots ., 0) \\
& =(0,1,0,0,0 \ldots \ldots ., 0) \\
& =(0,0,1,0,0 \ldots \ldots ., 0)
\end{aligned}
$$

2.2 Rank of Tensor

Rank of :

$$
\sum_{i, j, k}^{N, M, K} t_{i j k} * x_{i} * y_{j} * z_{k},
$$

is the minimum of l, such that:

$$
\begin{aligned}
& \exists \vec{\mu}=\left(\mu_{\lambda_{1}}, \mu_{\lambda_{2}}, \ldots \ldots \ldots, \mu_{\lambda_{n}}\right), \\
& \vec{\nu}=\left(\nu_{\lambda_{1}}, \nu_{\lambda_{2}}, \ldots \ldots ., \nu_{\lambda_{n}}\right), \\
& \vec{\omega}=\left(\omega_{\lambda_{1}}, \omega_{\lambda_{2}}, \ldots \ldots ., \omega_{\lambda_{n}}\right), \\
& \text { for all } 1 \leq \lambda \leq 1
\end{aligned}
$$

$$
\begin{equation*}
\sum_{i, j, k}^{N, M, K} t_{i j k} * x_{i} * y_{j} * z_{k}=\sum_{\lambda=1}^{l}\left(\left(\sum_{i=1}^{N} \mu_{\lambda_{i}} * x_{i}\right) *\left(\sum_{j=1}^{M} \nu_{\lambda_{j}} * y_{j}\right) *\left(\sum_{k=1}^{K} \omega_{\lambda_{k}} * z_{k}\right)\right) \tag{5}
\end{equation*}
$$

for given $\overrightarrow{\mu_{\lambda}}, \overrightarrow{\nu_{\lambda}}, \overrightarrow{\omega_{\lambda}}$, where

3 CONNECTING THE TENSOR RANK WITH RUNNING TIME OF MATRIX MULTIPLICATION3

$$
\begin{equation*}
\mu_{\lambda} \bigotimes \nu_{\lambda} \bigotimes \omega_{\lambda}=\left(\sum_{i=1}^{N} \mu_{\lambda_{i}} * x_{i}\right) *\left(\sum_{j=1}^{M} \nu_{\lambda_{j}} * y_{j}\right) *\left(\sum_{k=1}^{K} \omega_{\lambda_{k}} * z_{k}\right) \tag{6}
\end{equation*}
$$

the atomic tensors are defined in the above mentioned way, and atomic tensors are basically the tensors with rank 1.

2.2.1 Complexity to evaluate tensors

In order to evaluate single atomic tensor, the running time is $\mathrm{O}(\mathrm{N}+\mathrm{M}+\mathrm{K})$ If the rank of tensor is (l), then running time $=\mathrm{O}\left(\left(\mathrm{N}^{*} \mathrm{M} * \mathrm{~K}\right) * \mathrm{l}\right)$

3 Connecting the tensor rank with running time of matrix multiplication

3.1 Defining computing model :

Straight-line program model (SLP)

$$
\begin{array}{r}
\text { Input }=X_{1} \ldots \ldots X_{n} \\
\text { Goal }=F\left(X_{1} \ldots \ldots X_{N}\right),
\end{array}
$$

a sequence of operations $\left(g_{1} \ldots . . g_{s}\right)=\mathrm{F}\left(X_{1} \ldots . . X_{n}\right)$, where operations allowed are :

$$
\begin{gather*}
g_{i}=X_{j} \bigodot X_{j} \tag{7}\\
g_{i}=X_{j} \bigodot C, \text { whereC is a constant } \tag{8}\\
g_{i}=X_{j} \bigodot g_{k}, \text { wherek }<i \tag{9}\\
g_{i}=g_{j} \bigodot C, \text { whereC is a constant } \tag{10}\\
g_{i}=g_{j} \bigodot g_{k}, \text { where }(j, k<i) \tag{11}
\end{gather*}
$$

where $\odot=\left(+,-,{ }^{*}, /\right)$
Complexity $\mathrm{C}(\mathrm{F})=$ minimum number of operations used in an SLP to compute F Complexity of using only multiply $\left(^{*}\right)$ and divide (/) operations :
$C^{* /}=$ minimum number of multiply $\left({ }^{*}\right)$ and divide (/) operations used in SLP for (F)

4 Strassen Algorithm (1973)

Theorem: For a bilinear function (F) : $\left(X_{1}, \ldots \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots \ldots, Y_{m}\right)$, if complexity $C^{* /}=1$, then (F) is a linear combination of :

$$
\begin{equation*}
P_{\lambda}=\left(\sum_{i=1}^{n} \mu_{\lambda_{i}} * x_{i}\right) *\left(\sum_{j=1}^{m} \nu_{\lambda_{j}} * y_{j}\right) \tag{12}
\end{equation*}
$$

for all $1 \leq \lambda \leq l$ and for a tensor (t), if $C^{* /}(\mathrm{t})=l$, then

$$
\begin{equation*}
C^{* /}(t) \leq R(t) \leq Z * C^{* /}(t) \tag{13}
\end{equation*}
$$

where $R(t)$ is the rank of tensor (t),
Above equation implies that :

$$
\begin{equation*}
\omega \leq \log _{n} R(<n, n, n>) \tag{14}
\end{equation*}
$$

where ω is used to denote the exponent of number of operations used.

4.1 Kronecker Product

Let (t) be a tensor : $N \times M \times K$ and t^{\prime} be a tensor : $N^{\prime} \times M^{\prime} \times K^{\prime}$, then

$$
\begin{gather*}
\left(t \bigotimes t^{\prime}\right)_{i i^{\prime}, j j^{\prime}, k k /} i \text { a a tensor }=N N^{\prime} \times M M^{\prime} \times K K^{\prime} \tag{15}\\
\left(t \bigotimes t^{\prime}\right)_{i i^{\prime}, j j^{\prime}, k k^{\prime}}=t_{i j k} t_{i^{\prime} j^{\prime} k^{\prime}} \tag{16}
\end{gather*}
$$

