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1 Last time and today

Today, we will be continuing to study matrix multiplication algorithms with time
complexity less than O(n3).

We have already seen Strassen’s algorithm, which has time complexity O(n2.81). In
order to do significantly better, we have to introduce tensors.

This is the matrix multiplication tensor:

tij′,jk′,ki′ =

{
1 if i = i′, j = j′, k = k′

0 otherwise

Next, we define the rank of a tensor.

Definition 1 (Rank). The rank of a tensor t is the minimum number R(t) such that
there exists a set of R(t) rank-1 tensors that sum to t.

Observation 2. If R(〈K,M,N〉) ≤ r, then ω ≤ 3 log r
logNMK

, where ω is the optimal
matrix multiplication exponent.

Our goal is to find an upper bound on R(〈n, n, n〉). It is difficult to bound the rank
of this large tensor, so people often try to bound the sums and products of smaller
tensors to get new bounds for ω.

Definition 3 (Kronecker product). Given t ∈ FK×M×N and t′ ∈ FK′×M ′×N ′
, we have

(t⊗ t′)KK′,MM ′,NN ′

ii′,jj′,kk′
= tijk · t′i′,j′,k′ .

We also have the following bound on the rank of a Kronecker product.

Observation 4.
R(t⊗ t′) ≤ R(t) ·R(t′)

At the end of the last lecture, we mentioned that if we have T = N ×M ×K, then
〈T, T, T 〉 = 〈K,N,M〉⊗〈N,M,K〉⊗〈M,K,N〉. Once we can get a bound on the rank
for the RHS, then we can get one for the LHS.
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Remark. Strassen essentially showed that R(〈2, 2, 2〉) ≤ 7 and then used our observa-
tion to get an upper bound for ω.

Relevant Readings:

� Bini, Dario Andrea, Milvio Capovani, Francesco Romani, and Grazia Lotti. ”O
(N2. 7799) COMPLEXITY FOR N BY N APPROXIMATE MATRIX MULTI-
PLICATION.” (1979): 234-235.

2 Direct sum

The next operation we will be using is the direct sum.

Definition 5 (Direct sum). Given ti,j,k ∈ FK×M×N and t′i′,j′,k′ ∈ FK′×M ′×N ′
, then the

direct sum is defined as follows.

t⊕ t′ =


tijk ifi ≤ K, j ≤M,k ≤ N

t′i−K,j−M,k−N ifi > K, j > M, k > N

0 otherwise

We also have the following bound on the rank of a direct sum.

Observation 6.
R(t⊕ t′) ≤ R(t) +R(t′)

3 History

Many people used this idea of analyzing the rank of smaller tensors to get better
bounds on ω.

Strassen proved that R(〈2, 2, 2〉) = 7. It was also shown that R(〈2, 2, 3〉) = 11, but
this did not lead to better bounds on ω than the previous case. It has also been shown
that 19 ≤ R(〈3, 3, 3〉) ≤ 23. If R(〈3, 3, 3〉) ≤ 21, then we have ω ≤ 2.79. Pan (1980)
found that R(〈70, 70, 70〉) ≤ 143640, which implies ω < 2.8.

This was the status of the problem in the 1980s. To make more progress, new ideas
other than directly bounding the rank of small tensors were needed.
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4 Approximate tensors

The idea is to somehow “approximate” tensors.
To get an intuition, suppose we have an infinite sequence of matrices M1,M2, . . . .

Claim 7. Suppose as j goes to infinity, Mj converges to some matrix M . If r(Mj) ≤ r
for all j, then we can say r(M) ≤ r.

Proof sketch. Look at any (r + 1) × (r + 1) submatrix Pj of Mj. Fix the submatrix
that we are using for all Mj. The determinant of Pj is 0, and we can show that it is a
continuous function, so then P has determinant 0. Then, M has rank at most r.

A similar idea makes it so that bounding the rank of an approximate matrix multi-
plication tensor gives us a bound on the exact matrix multiplication tensor. The same
idea cannot be directly translated, though, since it is difficult to define the determinant
for tensors.

Suppose we have a tensor t of rank 3 that is with respect to {x0, x1}, {y0, y1}, {z0, z1}.

t = x0y0z0 + x1y0z1 + x0y1z1

Define a tensor with a parameter ε.

t(ε) = (x0 + εx1) · (y0 + εy1) · 1/ε · z1 + x0 × y0(z0 − z1/ε)
= x0y01/εz1 + x0y1z1 + x1y0z1 + εx1y1z1 + x0y0z0 − 1/εx0y0z1

= x0y1z1 + x1y0z1 + εx1y1z1 + x0y0z0

The rank of t(ε) is exactly 2. As ε goes to 0, t(ε) goes to t. t(ε) is an approximation
of t as ε shrinks, but its rank is smaller. Thus, for a fixed tensor t, we can find an
approximation with smaller rank.

Now we are going to try making use of an approximation with smaller rank to
speed up matrix multiplication. Before we had coefficients from a field F. For the
approximation, we extend this field with ε, so we have the field F[ε].

Definition 8 (Border rank). Given a tensor t and an integer h, let Rh(t) be the
smallest integer ` such that the following equation holds for some t′(ε).

εh−1t+ εht′(ε) =
∑̀
λ=1

(∑
UλiXi

)(∑
Vλjyj

)(∑
Wλkyk

)
,

where Uλi , Vλj , and Wλk are of the form
∑n

i=0 aiε
i for ai ∈ F. Then, the border rank

R(t) is defined as minh≥0Rh(t).
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Once we have the border rank of a tensor, we can use it to argue about the rank
of the original tensor.

Theorem 9. If you have a tensor t with Rh(t) ≤ r, then R(t) ≤
(
h+2
2

)
r.

Theorem 9 isn’t useful for our old example, but it is helpful for some examples
where t is very large.

Based on this, we can prove that if R(〈K,M,N〉) ≤ r, then ω ≤ 3 log r
log(KMN)

. So, we
can use the border rank instead of rank for the purposes of bounding ω.

Our goal is to bound the border rank of 〈2, 2, 3〉. we know that its rank is 11
already, but we can show that its border rank is at most 10, which gives us ω ≤ 2.78.

Proof. Suppose we have the following.[
x11 x12
x21 x22

] [
y11 y12
y21 y22

]
=

[
z11 z12
z21 z22

]
If we only care about the top left 3 entries of z, and consider those to be a tensor

t, then its rank is ≤ 6. We want to show that the border rank is ≤ 5.

P1 = (x12 + εx22)y21

P2 = x11(y11 + ε · y12)
P3 = x12(y12 + y21 + εy22)

P4 = (x11 + x12 + εx21)y11

P5 = (x12 + εx21)(y11 + εy22)

εP1 + εP2 = ε · z11 +O(ε2)

P2− P4 + P5 = ε · z12 +O(ε2)

P1− P3 + P5 = ε · z21 +O(ε2)

The tensor 〈2, 2, 3〉 is equivalent to two copies of t. This gives us that R(〈2, 2, 3〉)
is upper bounded by 2 ·R(t) ≤ 10.

This proof gives us ω ≤ 2.78! It was proposed by Bini et al. in 1979.

5 Next time

Next week, we will begin studying the Coppersmith-Winograd algorithm.
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