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1 Matrix Multiplication

To understand how different algorithms work, we put matrix multiplication through a
tensor.
Let us consider a 3-tensor : xi yj zk
The matrix multiplication tensor would be :

t =
∑

tijkxiyjzk

tij’,jk’,ki’ = 1, if i=i’,j=j’,k=k’

else tij’,jk’,ki’ = 0

Rank of Tensor: Rank of a tensor R(t) for tensor t is defined as the minimum num-
ber of rank 1 tensors whose sum is equal to t.
Traid (rank 1 tensor) : (

∑
uixi)(

∑
vjyj)(

∑
wkzk)

We have the freedom to select any coefficients

Observation: If R(⟨ K,M,N ⟩) ≤ r, then ω ≤ 3logr
log(NMK)

To prove the observation we have to assume the matrix is symmetric
R(⟨ K,M,N ⟩) = R(⟨ K,N,M ⟩) = R(⟨ N,K,M ⟩)
Our goal is to find an upper bound on R(⟨ n,n,n ⟩)

Kronecker Product: Given t ∈ F K x M x N and t’ ∈ F K’ x M’ x N’,
we have (t ⊗ t’)KK’,MM’,NN’ = tijk.t’i’j’k’

ii’, jj’, kk’

Observation: R(t ⊗ t’) ≤ R(t).R(t’)
if we have T = N x M x K, then ⟨ T,T,T ⟩ = ⟨ K,N,M ⟩ ⊗ ⟨ N,M,K ⟩ ⊗ ⟨ M,K,N ⟩

Strassen proved that R(⟨ 2,2,2 ⟩) ≤ 7
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2 DIRECT SUM

Direct Sum: Given tijk ∈ F K x M x N and t’i’j’k’ ∈ F K’ x M’ x N’,we have
t ⊕ t’ = tijk if i ≤ K, j ≤ M, k ≤ N
t ⊕ t’ = t’i-K,j-M,k-N if i > K, j > M, k > N
t ⊕ t’ = 0 otherwise
The dimension of t ⊕ t’ = (K+K’) x (M+M’) x (N+N’)

Observation: R(t ⊕ t’) ≤ R(t).R(t’)
As per Strassen’s observation if R(⟨ 2,2,2 ⟩) = 7 then ω≤ 2.81
It was also shown that R(⟨ 2,2,3 ⟩) = 11 and 14 ≤ R(⟨ 2,3,3 ⟩) ≤ 15 which are both
not better than ⟨ 2,2,2 ⟩ tensor.
We have 19 ≤ R(⟨ 3,3,3 ⟩) ≤ 23 and if R(⟨ 3,3,3 ⟩) ≤ 21 then ω≤ 2.79
Pan showed that if R(⟨ 70,70,70 ⟩) ≤ 143640 then ω < 2.8

3 APPROXIMATE TENSOR

Lets say we have an infinite set of matrices M1,M2,..... where j → ∞ and Mj → M
Suppose r(Mj) ≤ r, then r(M) ≤ r
Look at any (r+1)x(r+1) submatrix Pj of Mf

Here the determinant of Pj = 0 hence determinant of P = 0

Suppose we have a tensor t with rank 3 such as {x0,x1},{y0,y1},{z0,z1} then,

t = x0y0z0 + x1y0z1 + x0y1z1

A tensor with parameter (ϵ)

t(ϵ) = (x0 + ϵx1) . (y0 + ϵy1) . 1/ϵ . z1 + x0 y0(z0 - z1/ϵ)
t(ϵ) = x0y0(1/ϵ)z1 + x0y1z1 + x1y0z1 + ϵx1y1z1 + x0y0z0 - 1/ϵx0y0z1
t(ϵ) = x0y1z1 + x1y0z1 + ϵx1y1z1 + x0y0z0

Here, the rank of t(ϵ) R(t(ϵ)) = 2 when ϵ → 0 and t(ϵ) → t

In approximation of a tensor we assume the coefficients of a tensor F. We extend
this with ϵ. So, the approximation would be F[ϵ].
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4 BORDER RANK

Border Rank: Given a tensor t and an integer h, the border rank of the tensor Rh(t)
be the smallest integer l such that:

t(ϵ) =
∑l

λ=1(
∑

Uλi Xi)(
∑

V λj yj)(
∑

W λk yk)

t(ϵ) = ϵh t + O (ϵh+1)

Where Uλi, Vλj and Wλk are of
∑n

i=1 aiϵ
i for ai ∈ F.

The border rank of the tensor is defined as R(t) = minh≥0 Rh(t). This will hold
for the previous example:

R(t)=3
if h=1
R1(t) ≤ 2 ⇒ R(t) ≤ 2

Theorem: Given a tensor t where Rh(t) ≤ r, then R(t) ≤
(
h+ 2
2

)
r.

This will not hold for the previous example but will hold for other tensor where t
is huge.

So, let us use border rank instead of rank to try and prove the observation if R(⟨
K,M,N ⟩) ≤ r, then ω ≤ 3logr

log(KMN)

Goal is bound the border rank of R(⟨ 2,2,3 ⟩). From the above we have already
shown that the rank of R(⟨ 2,2,3 ⟩) = 11. Hence we can say that the border rank of
R(⟨ 2,2,3 ⟩) ≤ 10. Which signifies that ω≤ 2.78.

Let us consider the below matrix multiplication:[
x11 x12

x21 x22

] [
y11 y12
y21 y22

]
=

[
z11 z12
z21 z22

]
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If we dot not consider z22 and only consider the other three entries of z to be a
tensor then its rank would be R(t)=6. Hence the border rank of the tensor would be
R(t) ≤ 5.

P1 = (x12 + ϵx22)y21

P2 = x11(y11 + ϵy12)

P3 = x12(y12 + y21 + ϵy22)

P4 = (x11 + x12 + ϵx21)y11

P5 = (x12 + ϵx21)(y11 + ϵy22)

ϵP1 + ϵP2 = ϵ.z11+O(ϵ2)

P2 - P4 + P5 = ϵ.z12+O(ϵ2)

P1 - P3 + P5 = ϵ.z21+O(ϵ2)

The tensor ⟨ 2,2,3 ⟩ is equivalent to two copies of t. This proves that the rank of
the tensor R(⟨ 2,2,3 ⟩) is upper bounded by 2 and the R(t) ≤ 10 which gives ω≤ 2.78.

5 NEXT CLASS

In the next class, we will discuss about Coppersmith-Winograd algorithm.

————————————————THE END————————————————
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