CS 594: Representations in Algorithm Design

Spring 2022

Lecture 3: 01/18

Lecturer: Xiaorui Sun

Scribe: Tianyu Zhu

Relevant Reading: Henzinger-King 1999 **Problem:** Dynamic Connectivity

- Input changes: maintain a data structure for some problem;
- Graph updates: edge insertions / deletions, query (x, y).

Goal: Handle updates and answer queries as fast as possible.

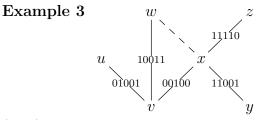
Theorem 1 Dynamic Connectivity is $O(\operatorname{poly} \log n)$ time for each update and query.

Approach: Maintain a spanning forest of the graph.

Observation 2 Each update requires at most 1 edge change in the spanning forest.

- Insertion
- (1) Two vertices are in the same connected component \Rightarrow No update,
- (2) Two vertices are in different connected components \Rightarrow Add to the spanning forest;
 - Deletion
- (3) Not in the spanning forest \Rightarrow No update,
- (4) In the spanning forest \Rightarrow Find a replacement if possible.

Approach: Randomly assign a unique binary name for each edge. Name of a vertex is exclusive-or sum of the names of incident edges. Name of a connected component is XOR sum of the names of all its vertices.



(w, x) is deleted, $S_u = 01001, S_w = 10011, S_v = 01001 \oplus 00100 \oplus 10011 = 11110.$ $CC_1 := \{u, v, w\}, S_{CC_1} = S_u \oplus S_v \oplus S_w = 00100.$

Conclusion

- If a connected component CC does not have any outgoing edges, then $S_{CC} = 0$;
- If outgoing edge e is unique, then $S_{CC} = S_e$, name of the edge;
- If outgoing edges are multiple, then $S_{CC} = \bigoplus_{e \in \delta(CC)} S_e$, XOR sum of their names. The sum can be 0, but only with low probability under enough long names.

Idea: It is easy when the replacement is unique. Otherwise, we make it unique by sampling some edges for a new graph G_p . Assume there are two connected components with t edges between them, then $\forall e \in E$, let $e \in E(G_p)$ with probability $\frac{1}{t}$.

 $Pr[\text{outgoing edge is unique in } G_p] = t \frac{1}{t} (1 - \frac{1}{t})^{t-1} \stackrel{t \to \infty}{\to} \frac{1}{s}.$

Since t is unknown, we maintain $\log n$ many G_p for $p = \frac{1}{2}, \frac{1}{4}, ..., \frac{1}{n}$. Claim $\exists p \text{ s.t. } \frac{1}{2t} , so <math>Pr \geq \frac{1}{e^2}$. Maintaining $\log^5 n$ many G_p for each p can improve Pr to $1 - \frac{1}{n^{100}}$. See relevant reading for details.

Definition 4 (ET Tree) (1) link two trees together by adding a new edge:

- (2) cut a tree into two trees by deleting an edge;
- (3) maintain label for each vertex and tree (sum of its vertices);
- (4) get root of the tree containing given vertex.

Data Structure: Spanning forest and poly $\log n$ many sampled graphs G_p , where ET trees are built with vertex labels being binary names (sum of incident edge names). Insert(x, y)

- Insert (x, y) to spanning forest if needed;
- Maintain G_p : For each G_p , add (x, y) with probability p.

Delete(x, y)

- Maintain G_p : If $(x, y) \in E(G_p)$, then delete it and maintain ET tree;
- Find replacement: For each G_p , let CC_1 be the connected component containing x, and use ET tree (4) to get S_{CC_1} . If $\exists e \in E(G_p)$ s.t. $S_{CC_1} = S_e$, then e is the replacement to be added to the spanning forest.

Query(x, y): Get root (r_x, r_y) of (x, y), return $r_x == r_y$.

Note: Above data structure is non-adaptive (fixed once built) and more likely to make mistakes as time goes. This can be modefied by rebuilding the data structure after too many updates.