
CS 594: Representations in Algorithm Design Spring 2022

Lecture 3: 01/18
Lecturer: Xiaorui Sun Scribe: Tianyu Zhu

Relevant Reading: Henzinger-King 1999
Problem: Dynamic Connectivity

• Input changes: maintain a data structure for some problem;

• Graph updates: edge insertions / deletions, query (x, y).

Goal: Handle updates and answer queries as fast as possible.

Theorem 1 Dynamic Connectivity is O(poly log n) time for each update and query.

Approach: Maintain a spanning forest of the graph.

Observation 2 Each update requires at most 1 edge change in the spanning forest.

• Insertion

(1) Two vertices are in the same connected component ⇒ No update,

(2) Two vertices are in different connected components⇒ Add to the spanning forest;

• Deletion

(3) Not in the spanning forest ⇒ No update,

(4) In the spanning forest ⇒ Find a replacement if possible.

Approach: Randomly assign a unique binary name for each edge. Name of a vertex
is exclusive-or sum of the names of incident edges. Name of a connected component is
XOR sum of the names of all its vertices.

Example 3 w

10011

z

11110

u

01001

x

00100 11001

v y

(w, x) is deleted, Su = 01001, Sw = 10011, Sv = 01001⊕ 00100⊕ 10011 = 11110.
CC1 := {u, v, w}, SCC1 = Su ⊕ Sv ⊕ Sw = 00100.

1



2

Conclusion

• If a connected component CC does not have any outgoing edges, then SCC = 0;

• If outgoing edge e is unique, then SCC = Se, name of the edge;

• If outgoing edges are multiple, then SCC = ⊕e∈δ(CC)Se, XOR sum of their names.
The sum can be 0, but only with low probability under enough long names.

Idea: It is easy when the replacement is unique. Otherwise, we make it unique by
sampling some edges for a new graph Gp. Assume there are two connected components
with t edges between them, then ∀e ∈ E, let e ∈ E(Gp) with probability 1

t
.

Pr[outgoing edge is unique in Gp] = t
1

t
(1− 1

t
)t−1

t→∞→ 1

e
.

Since t is unknown, we maintain log n many Gp for p = 1
2
, 1
4
, ..., 1

n
.

Claim ∃p s.t. 1
2t

< p ≤ 1
t
, so Pr ≥ 1

e2
. Maintaining log5 n many Gp for each p can

improve Pr to 1− 1
n100 . See relevant reading for details.

Definition 4 (ET Tree) (1) link two trees together by adding a new edge;

(2) cut a tree into two trees by deleting an edge;

(3) maintain label for each vertex and tree (sum of its vertices);

(4) get root of the tree containing given vertex.

Data Structure: Spanning forest and poly log n many sampled graphs Gp, where ET
trees are built with vertex labels being binary names (sum of incident edge names).
Insert(x, y)

• Insert (x, y) to spanning forest if needed;

• Maintain Gp: For each Gp, add (x, y) with probability p.

Delete(x, y)

• Maintain Gp: If (x, y) ∈ E(Gp), then delete it and maintain ET tree;

• Find replacement: For each Gp, let CC1 be the connected component containing
x, and use ET tree (4) to get SCC1 . If ∃e ∈ E(Gp) s.t. SCC1 = Se, then e is the
replacement to be added to the spanning forest.

Query(x, y): Get root (rx, ry) of (x, y), return rx == ry.
Note: Above data structure is non-adaptive (fixed once built) and more likely to make
mistakes as time goes. This can be modefied by rebuilding the data structure after too
many updates.


