
CS 594: Representations in Algorithm Design Spring 2022

Lecture 6: 01/27/2022
Lecturer: Xiaorui Sun Scribe: Ian P. Swift

1 Last time and today

Last lecture, we were introduced to the concept that a tree T can represent a graph
G(V,E), such that certain desirable properties about the graph are reflected within
the representation.

In particular, we introduced the concept of ”Stretch”. Given and edge from the
original graph eu,v ∈ E, the stretch of an unweighted edge is the distance between u
and v in T : StretchT (e) = distT (u, v). We express the stretch of T across the entire
graph is the sum of the stretch of all the edges StretchT (G) =

∑
e∈E StretchT (e).

The goal is to find a tree s.t., StretchT (G) is small. This is called a ”low stretch
tree”, or in the case that the generated tree is a spanning tree, a ”low stretch spanning
tree”. In later sessions, we will discuss how a randomly generated tree can serve as a
good approximation for the distance between any two nodes.

Today, we will show a method known as Low Diameter Decomposition (LDD) which
can be used to generate trees which efficiently meet our goal. Once we have the LDD,
we will use it to generate a Low Stretch Spanning Tree.

2 Low Diameter Decomposition (LDD)

In order to achieve a low stretch spanning tree, we first attempt to partition the graph
into small pieces s.t., the diameter within the pieces is small. The intuition is that by
reducing the diameter in these subcomponents, the overall stretch will be smaller. We
call such a partition a Low Diameter Decomposition (LDD).

A partitioning of a graph into sets S1, S2, ...Sk is considered a LDD if it holds the
following properties:

• Within each set Si the diameter of G(Si) ≤ ∆

• The number of crossing edges is << the total number of edges in the graph.

1



2 LOW DIAMETER DECOMPOSITION (LDD) 2

Figure 1: A graph to be decomposed containing several subgraphs, connected by ”con-
necting edges”

By performing a LDD, our goal is to reduce the problem of finding a Low Stretch
Spanning Tree into smaller problems which are easier to solve than finding the tree for
the overall graph. Since this is a graph problem, the subcomponents (subgraphs) will
still be connected by ”bad” edges. However, by limiting the number of ”bad” edges,
we create problems that are easier to solve here as well.

As a side note, this general idea of ”graph decomposition” will work for other
problems as well. The only requirement is that the property wanted to be upheld is
upheld by the subgraphs the graph is decomposed into. The intent then is that the
solution for the decomposed ”special case” is a solution for the ”general case” that the
implementer is initially trying to solve.

2.1 Formal Definition

Lemma 1 For an unweighted graph G, there exists a polynomial time algorithm to
find a LDD S1, ..., Sk s.t.,

• G(Si) has a diameter ≤ ∆

• The number of crossing edges is bound by O(m×log(n)2

∆
)

In particular, by defining ∆ to be
√
n we find that we have a stretch of at most

O(m ×
√
(n)log(n)2). This also means that by running the LDD with ∆ =

√
n that

we find the following properties:

• Diameter of G(Si) ≤
√
n

• The number of crossing edges is bound by O(m×log(n)2√
n

)



2 LOW DIAMETER DECOMPOSITION (LDD) 3

Figure 2: A LDD with ∆ specified as
√
n yielding components with diameter at most√

n

Figure 3: A subcomponent represented using a BFS tree

2.2 An LDD of ∆ =
√
n

In order to construct a Low Stretch Spanning Tree, first we will choose an arbitrary
vertex and perform a Bredath First Search, generating a tree rooted at the node. We
can guarantee a stretch of

√
n by limiting the depth of the tree to

√
n. The distance

from the root to any node is
√
n, so the distance between any two nodes in this tree is

at most 2 ×
√
n. It follows that the total stretch of two nodes within the same these

trees is O(m× 2
√
n) ≤ O(m× 2

√
n× log(n)2)

Next, to connect the trees, use arbitrary edges between Si, ..., Sk s.t., the connected.
components form a tree. The distance between any two nodes on a tree that connects

all nodes is at most n. Since the number of crossing edges is at most m×log(n)2

∆
, and

the stretch of each of these edges is n, it follows that the stretch for all these edges is

≤ m×log(n)2√
n

× n = m×
√
n× log(n)2.



2 LOW DIAMETER DECOMPOSITION (LDD) 4

These two values are the same yielding a stretch that is O(m×
√
n×log(n)2). These

values converge because the chosen delta was n0.5. Hit it been a larger or smaller power
of n, they would not have converged.

2.3 A smaller stretch tree using LDD

Figure 4: Nine subcomponents, each cre-
ated using a BFS tree.

Figure 5: Three groups of three subcom-
ponents, by BFS using edges connecting
subcomponents.

Next we take an iterative approach to the problem in order to achieve a smaller
stretch. In this version, we will set ∆ = n1/3. After performing the first LDD, we
achieve the series of subcomponents and connecting edges depicted in Figure 4. For
this LDD, we have the properties: diameter of G(Si) ≤ n1/3 and the number of crossing

edges is bound by O(m×log(n)2

n1/3 ).
Next we take each subcomponent and reduce it to a single vertex Ri. Using this

reduced graph we again perform a LDD with ∆ = n1/3. In these contracted sub-
components we see the following property. The distance between two points u, v in a
contracted subgraph is equal to the number of edges in the contracated graph (≤ n1/3)
times the size of the connected subgraphs (≤ n1/3). Meaning that the distance between
any vertices edges in the contracted subgraphs is ≤ n2/3.

We now look at the contribution of various edges. Since the distance of a crossing
edge in the first LDD is at most n2/3 and the number of crossing edges is bound by

O(m×log(n)2

n1/3 ), the total contribution is bound by O(m×n1/3log(n)2). The contribution
from crossing edges in the second LDD is n, since they can cover the entire graph.

Additionally, the number of crossing edges in the second LDD is bound by O(m×log(n)4

n2/3 )



3 NEXT TIME... 5

meaning that the contribution of these edges o the stretch is O(m × n1/3log(n)4).
Finally, the original subcomponents generated had a stretch bound by O(n1/3) the
contributions of these is simply bound by O(m× n1/3).

Thus, since all the stretch contributions are within a polylog difference of each
other, by repeating the process twice with a ∆ of n1/3 we see a stretch of O(m ×
n1/3polylog(n)). Equally you can repeat this process many times times. In doing so
we see the following:

Lemma 2 By setting ∆ = n1/t and repeating the LDD on a graph t − 1 times, con-
tracting the graph in between each LDD, a stretch is achieved bounded by O(m ×
n1/tlog(n)O(t)).

By setting t =
√

log(n)
loglog(n)

, the stretch is bounded by O(m×n

√
loglog(n)
log(n) logn) = O(m×

2
√

log(n)×loglog(n)). It is demonstrable that this value is lower bounded by an arbitrarily
large power of log(n) time and upper bounded by an arbitrarily small power of n time,
meaning that this equation is O(m ∗ no(1))

3 Next Time...

Another property that can be asked is how about for all vertex pairs. We will start
with the assumption that for a graph G(V,E, ω) and for any two connected nodes u, v
that ω(u, v) ≤ ω(u, x) + ω(x, v)∀x.

For a distribution of tree T , G is considered to be α embedded to T if:

• For each T ∈ T , dT (u, v) ≤ dG(u, v)

• E[dT (u, v)] ≤ α× dG(u, v)

Based on this, it will be demonstrated in the next class that ∃ randomized algorithm
which ouputs trees s.t., G is O(log(∆)× log(n)) embedded to T .


	Last time and today
	Low Diameter Decomposition (LDD)
	Formal Definition
	An LDD of = n
	A smaller stretch tree using LDD

	Next Time...

