CS 594: Representations in Algorithm Design

Spring 2022

Lecture 7: 02/01/2022

Lecturer: Xiaorui Sun

Scribe: Shashwath Jawaharlal Sathyanarayan

1 Last Lecture's Review:

In the previous few lectures, we were introduced to the concept that a tree T can represent a graph G(V,E), such that certain desirable properties about the graph are reflected within the representation. In particular, the concept of "Stretch" is discussed in detiled below.

(Low stretch spanning) tree: Given and edge from the original graph eu,v E, the stretch of an unweighted edge is the distance between u and v in T : StretchT (e) = distT (u, v). We express the stretch of T across the entire graph is the sum of the stretch of all the edges. Goal: We want to produce a low stretch tree using randomness using some probability. T is the disribution on trees - T1, T2, T3,, Tk G is A-probability embedded to T if the below condition is met:
S - :For each tree Ti ∈ T >, d_T(u, v) ≥ d_a(u, v) - E_{T∈T}d_T(u, v) ≥ d_a(u, v)

Relevant Readings:

- Lecture 6 scribe notes
- Review on the concept of a tree's stretch and how to generate a low stretch spanning tree
- Bartal's algorithm

2 Bartal's Theorem:

How low can we set the distortion factor so that, for any metric weighted graph G, we can find a distribution on trees D that allows an -probabilistic embedding of G? A theorem due to Bartal proposes such an and a way to construct D from any metric weighted graph G. Before proving the theorem, however, we introduce a procedure for

2 BARTAL'S THEOREM:

finding a "Low Diameter Randomized Decomposition" (LDRD for short) of graphs. The randomized, recursive procedure LDRD takes as input a graph G = (V, E) and a parameter $\pi \ge 0$ and outputs a partition Vi - V such that:

- diam(G[Vi]) $\geq \sigma$ for all i, where diam(·) is the diameter function on graphs.
- Pr[edge i, j not in any E(G[Vk])] (d(i, j) log n)/π. In other words, if the parts Vi were assigned distinct colors, this is an upper bound for the probability of an edge i, j being bichromatic.

Lemma: For each edge $e = (u,v) P_r$ [e is an crossing edge] $\leq \frac{(d_a(v,u) \log n}{\Delta}$ Note: Distance on edge is large, then probability that edge e will bad is very high and vice versa

Observation: When e becomes an crossing edge , $\rightarrow C(u) \neq C(v)$ Assume C(u) = i, C(v) = j

1. Observation If edge e is an crossing edge, $dist_a(\Delta(i), u) \leq R, dist_a(\Delta(i), v) > R$

Claim If edge e is cut by vertex x, then $R \in [dist_a(x, u), dist_a(x, 0)]$ Assumption: fix e=(u,v)For another vertex x, $L_x = min(dist_a(x, u), dist_a(u, v))$ $U_x = L_x + dist_a(u, v)$ The claim is equivalent to $R \in [L_x, U)$ when an edge is cut by X, then one necessary

- If R < x, then u and v are both outside of ball of x, so x cannot assign values to
 - 2. If R > x, then u and v are contained inside the ball of x so x can assign the colors and u ,v will be assigned same color by x.

Consider all the vertices that can potentially cut the edges here we take e = (u,v)We consider L_x, U_x for the vertices and sort them according to L_x, U_x

1. For vertex X_j , L_{xj} and U_{xj} , if it overlaps in the interval $(\Delta/4, \Delta/2)$, then vertex x_2 or x_n cannot cut edge e.

2. For X_j, L_{xj} and U_{xj} , if the $\Delta/4 > L_x j, U_x j < \Delta/2$,

what is necessary condition that x_j cut edge e for permutation π

Suppose we x_k and x_j where k < j

u and v.

If Rank of $x_k < \text{Rank}$ of x_j , then x_j cannot cut edge e as x_k have smaller $L_{xk} < L_{xj}$

Figure 1:

that is x_k has potential of cutting edge e. and one of two vertices u,v , one of u,v $\in B(x_k,R)$

Once the x_k is processed, one of u,v will be colored most likely, both of the vertices will be colored by then, so x_j will not have a chance to color the vertices.

Necessary Condition: For X to cut edge e in permutation π , then $\pi(x_k) > \pi(x_j)$ for all k < j.

Observation: For x_j to cut edge e, following two conditions should be satisfied,

1. $\mathbf{R} \in [L_x j, U_x j]$

2. k < j ,
$$\pi^{-1}(x_k) > \pi^{-1}(x_j)$$
 i.e. Rank of $x_k > \text{Rank of } x_j$

Based on 2 observations , find the upper bound of $P_r[e \text{ is cut by } x_j]$ For a Random sample R in the range $(\Delta/4, \Delta/2)$, the probability that R falls in between $[L_{xj}, U_{xj}]$ is given by $P_r[R \in [L_{xj}, U_{xj}]] \leq \frac{d(u, v)}{\Delta/4}$

 $P_r[$ Second condition holds $] \leq \frac{1}{j}$ If x_j is ranked fist among $x_1, x_2...x_j$, then probably x_j cuts edge e.

 $P_r[$ e is cut by $x - j] = P_r[$ R $\in [L_{xj}, U_{xj}]]$ and x_j is ranked first among x_1, x_2, \dots, x_j . = $P_r[$ R $\in [L_{xj}, U_{xj}]] P_r[x_j$ is first]

$$\leq \frac{d(u,v)}{\Delta/4} \frac{1}{j}$$

$$= \frac{4d(u,v)}{\Delta j}$$
If $P_r[e \text{ is cut by some vertex}]$

$$= \sum_{x_j} P_r[eiscutbyx_j]$$

$$\leq \sum_{j=1}^n \frac{4d(u,v)}{\Delta j}$$

3 UPCOMING LECTURE:

 $\leq \frac{4d(u,v)}{\Delta j}O\log(n)$ (since $\sum_{j=1}^{n}\frac{1}{j} = \log(n)$)

Therefore Edge becomes crossing edge should have probability $\leq \frac{4d(u,v)O\log(n)}{\Delta j}$

3 Upcoming lecture:

- Claim: The distance $d_T(u, v) \ge d_g(u, v)$
- Proof: Base If $d_T(u, v) \ge d_a(u, v)$ is a single vertex then $d_T(u, v) \ge d_a(u, v)$
- Induction hypothesis: $d_T(u, v) \ge d_a(u, v)$
- Induction: $[L_{xj}, U_{xj}]$ is given by $P_r[R \in [L_{xj}, U_{xj}]] \neq 4Da$. If x is ranked in π . Methods used to tackle this problem are going to be analyzed in the upcoming classes