Lecturer: Xiaorui Sun
Scribe: Shashwath Jawaharlal Sathyanarayan

1 Last Lecture's Review:

In the previous few lectures, we were introduced to the concept that a tree T can represent a graph $G(V, E)$, such that certain desirable properties about the graph are reflected within the representation. In particular, the concept of "Stretch" is discussed in detiled below.

- (Low stretch spanning) tree: Given and edge from the original graph eu,v E, the stretch of an unweighted edge is the distance between u and v in T : StretchT $(\mathrm{e})=\operatorname{dist} \mathrm{T}(\mathrm{u}, \mathrm{v})$. We express the stretch of T across the entire graph is the sum of the stretch of all the edges. Goal: We want to produce a low stretch tree using randomness using some probability. T is the disribution on trees - $\mathrm{T} 1, \mathrm{~T} 2$, $\mathrm{T} 3, \ldots . ., \mathrm{Tk} \mathrm{G}$ is A-probability embedded to T if the below condition is met: \mathcal{S} - :For each tree $\mathrm{Ti} \in \mathcal{T}\rangle, d_{T}(u, v) \geq d_{a}(u, v)-E_{T \in \mathcal{T}} \mathrm{~d}_{T}(u, v) \geq d_{a}(u, v)$

Relevant Readings:

- Lecture 6 scribe notes
- Review on the concept of a tree's stretch and how to generate a low stretch spanning tree
- Bartal's algorithm

2 Bartal's Theorem:

How low can we set the distortion factor so that, for any metric weighted graph G, we can find a distribution on trees D that allows an -probabilistic embedding of G? A theorem due to Bartal proposes such an and a way to construct D from any metric weighted graph G. Before proving the theorem, however, we introduce a procedure for
finding a "Low Diameter Randomized Decomposition" (LDRD for short) of graphs. The randomized, recursive procedure LDRD takes as input a graph $G=(V, E)$ and a parameter $\pi \geq 0$ and outputs a partition Vi - V such that:

- $\operatorname{diam}(\mathrm{G}[\mathrm{Vi}]) \geq \sigma$ for all i , where $\operatorname{diam}(\cdot)$ is the diameter function on graphs.
- $\operatorname{Pr}[$ edge i, j not in any $\mathrm{E}(\mathrm{G}[\mathrm{Vk}])](\mathrm{d}(\mathrm{i}, \mathrm{j}) \log \mathrm{n}) / \pi$. In other words, if the parts Vi were assigned distinct colors, this is an upper bound for the probability of an edge i, j being bichromatic.

Lemma: For each edge $\mathrm{e}=(\mathrm{u}, \mathrm{v}) P_{r}[\mathrm{e}$ is an crossing edge $] \leq \frac{\left(d_{a}(v, u) \log n\right.}{\Delta}$
Note: Distance on edge is large, then probability that edge e will bad is very high and vice versa
Observation: When e becomes an crossing edge,
$\rightarrow C(u) \neq \mathrm{C}(\mathrm{v})$
Assume $\mathrm{C}(\mathrm{u})=\mathrm{i}, \mathrm{C}(\mathrm{v})=\mathrm{j}$

1. Observation If edge e is an crossing edge, $\operatorname{dist}_{a}(\Delta(i), u) \leq R, \operatorname{dist}_{a}(\Delta(i), v)>R$

Claim If edge e is cut by vertex x , then $\mathrm{R} \in\left[\operatorname{dist}_{a}(x, u), \operatorname{dist}_{a}(x, 0)\right]$
Assumption: fix $\mathrm{e}=(\mathrm{u}, \mathrm{v})$
For another vertex x,
$L_{x}=\min \left(\operatorname{dist}_{a}(x, u), \operatorname{dist}_{a}(u, v)\right)$
$U_{x}=L_{x}+\operatorname{dist}_{a}(u, v)$
The claim is equivalent to $R \in\left[L_{x}, U\right)$ when an edge is cut by X , then one necessary condition

1. If $R<x$, then u and v are both outside of ball of x, so x cannot assign values to u and v.
2. If $\mathrm{R}>\mathrm{x}$, then u and v are contained inside the ball of x so x can assign the colors and u, v will be assigned same color by x .

Consider all the vertices that can potentially cut the edges here we take $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ We consider L_{x}, U_{x} for the vertices and sort them according to L_{x}, U_{x}

1. For vertex $X_{j}, L_{x j}$ and $U_{x j}$, if it overlaps in the interval $\left(\Delta / 4, \Delta / 2\right.$, then vertex x_{2} or x_{n} cannot cut edge e.
2. For $X_{j}, L_{x j}$ and $U_{x j}$, if the $\Delta / 4>L_{x} j, U_{x} j<\Delta / 2$,
what is necessary condition that x_{j} cut edge e for permutation π
Suppose we x_{k} and x_{j} where $k<j$
If Rank of $x_{k}<$ Rank of x_{j}, then x_{j} cannot cut edge e as x_{k} have smaller $L_{x k}<L_{x j}$

Figure 1:
that is x_{k} has potential of cutting edge e. and one of two vertices u, v, one of u, v $\in B\left(x_{k}, R\right)$
Once the x_{k} is processed,one of u, v will be colored most likely, both of the vertices will be colored by then, so x_{j} will not have a chance to color the vertices.

Necessary Condition: For X to cut edge e in permutation π, then $\pi\left(x_{k}\right)>\pi\left(x_{j}\right)$ for all $\mathrm{k}<\mathrm{j}$.
Observation: For x_{j} to cut edge e, following two conditions should be satisfied,

1. $\mathrm{R} \in\left[L_{x} j, U_{x} j\right]$
2. $\mathrm{k}<\mathrm{j}, \pi^{-1}\left(x_{k}\right)>\pi^{-1}\left(x_{j}\right)$ i.e. Rank of $x_{k}>$ Rank of x_{j}

Based on 2 observations, find the upper bound of $P_{r}\left[\mathrm{e}\right.$ is cut by $\left.x_{j}\right]$
For a Random sample R in the range $(\Delta / 4, \Delta / 2)$, the probability that R falls in between $\left[L_{x j}, U_{x j}\right]$ is given by $P_{r}\left[R \in\left[L_{x j}, U_{x j}\right]\right] \leq \frac{d(u, v)}{\Delta / 4}$

Figure 2:
$P_{r}[$ Second condition holds $] \leq \frac{1}{j}$
If x_{j} is ranked fist among $x_{1}, x_{2} \ldots x_{j}$, then probably x_{j} cuts edge e.
$P_{r}[\mathrm{e}$ is cut by $x-j]=P_{r}\left[\mathrm{R} \in\left[L_{x j}, U_{x j}\right]\right]$ and x_{j} is ranked first among $x_{1}, x_{2} \ldots x_{j}$. $=P_{r}\left[\mathrm{R} \in\left[L_{x j}, U_{x j}\right]\right] P_{r}\left[x_{j}\right.$ is first $]$
$\leq \frac{d(u, v)}{\Delta / 4} \frac{1}{j}$
$=\frac{4 d(u, v)}{\Delta j}$
If P_{r} [e is cut by some vertex]
$=\sum_{x_{j}} P_{r}\left[\right.$ eiscutby $\left.x_{j}\right]$
$\leq \sum_{j=1}^{n} \frac{4 d(u, v)}{\Delta j}$
$\leq \frac{4 d(u, v)}{\Delta j} O \log (n)\left(\right.$ since $\left.\sum_{j=1}^{n} \frac{1}{j}=\log (n)\right)$
Therefore Edge becomes crossing edge should have probability $\leq \frac{4 d(u, v) O \log (n)}{\Delta j}$

3 Upcoming lecture:

- Claim: The distance $d_{T}(u, v) \geq d_{g}(u, v)$
- Proof: Base - If $d_{T}(u, v) \geq d_{a}(u, v)$ is a single vertex then $d_{T}(u, v) \geq d_{a}(u, v)$
- Induction hypothesis: $d_{T}(u, v) \geq d_{a}(u, v)$
- Induction: $\left[L_{x j}, U_{x j}\right]$ is given by $P_{r}\left[R \in\left[L_{x j}, U_{x j}\right]\right] \neq 4 D a$. If x is ranked in π. Methods used to tackle this problem are going to be analyzed in the upcoming classes

