CS 594: Representations in Algorithm Design

Lecture on 02/08/2022

Lecturer: Xiaorui Sun
Scribe: Siddarth Madanan Menon

1 Last Lecture's Review

In the last lecture, we discussed Bartal's algorithm. While we analysed Bartal's Algorithm we were able to come up with the following conclusion as shown below.

We also had some early discussions about Graph Representations which entailed WellConnected and Random Walks on Graphs.

- Conclusion:

The Edge which becomes crossing edge should have probability $\leq \frac{4 d(u, v) O \log (n)}{\Delta j}$

2 Well-Connected Graph

The graph expansion which takes place is constant and the expansion rate can be found out to be propotional to $\frac{1}{n^{2}}$

Figure 1: Graph Well Connectivity

Expander: In an expander most edges are moving outside rather than staying inside.

Figure 2: Expander

Edge Expansion:

$$
\begin{gather*}
\min _{s \leq v} \frac{E(S, \bar{S})}{\min \{\operatorname{Vol}(S), \operatorname{Vol}(\bar{S})\}^{2}} \leq 1 \tag{1}\\
\text { volume }=\operatorname{Vol}(S)=\sum_{v \in s} d(v) \tag{2}
\end{gather*}
$$

If the graph has a large expansion then it is a good expander. Note that expansion of a graph is constant

Random Walk: Looks at the surrounding neighbours and choose an arbitrary neighbour (which is propotional to the edge weight)

Figure 3: Expander

Hitting Time of Random Walk: It can be defined as the estimated time of the first visit to vertex "y" from the vertex "x".

$$
\begin{equation*}
G=(V, E, W), \operatorname{vertex}(u) \tag{3}
\end{equation*}
$$

This is to define the hitting time to the vertex (u).
x_{v} to denote E time to the first visit to to the vertex v

$$
\begin{gather*}
v=u \rightarrow x_{v}=0 \tag{4}\\
v \neq u \rightarrow x_{v}=1+\sum_{v_{i} \sim v} \frac{w_{v v_{i}}}{d_{v}} \cdot x_{v_{i}} \tag{5}
\end{gather*}
$$

Used to compute 1st visiting for the vertex

$$
\begin{equation*}
d_{v} \cdot x_{v}=d_{v}+\sum_{v_{i} \sim v} w_{v v_{i}} \cdot x_{v_{i}} \tag{6}
\end{equation*}
$$

3 Graph Laplasian Matrix

Now we will discuss about the graph laplasian matrix.

Graph Adjacency Matrix

Figure 4: Graph Adjacency Matrix

$$
\begin{equation*}
\sum_{v \in V} L_{u \cdot v}=0 \text { for any } \mathrm{u} \tag{7}
\end{equation*}
$$

In the following $\mathrm{L}(\mathrm{G})$ is the laplasian function for a graph " G ".

Symmetric:

$$
\begin{equation*}
L_{u v}(G)=L_{v u}(G) \tag{8}
\end{equation*}
$$

Positive semidefinite: λ of $\mathrm{L}(\mathrm{G}) \geq 0$
Eigen: 0 is the eigen value of $\mathrm{L}(\mathrm{G})$

$$
\begin{gather*}
L(G) \cdot \overrightarrow{\mathbb{1}}=\overrightarrow{0} \tag{9}\\
L(G)=\sum_{i=1}^{n} \lambda_{i} \cdot u_{i} \cdot u_{i}^{T} \tag{10}\\
\lambda_{i} \geq 0 \text { and } \lambda_{i}=0, u_{1}=\mathbb{1} \tag{11}\\
M_{u_{i}}=\lambda_{i} \cdot u_{i} \tag{12}\\
L(G) \cdot \mathbb{1}=\overrightarrow{0} \text { and } L(G) \cdot x \neq y \tag{13}
\end{gather*}
$$

If $\lambda_{i} \neq 0$ then we could say that,

$$
\begin{equation*}
u_{i} \perp u_{1} \Rightarrow L(G) \cdot u_{i}=\lambda_{i} \cdot u_{i} \neq 0 \tag{14}
\end{equation*}
$$

Now,

$$
\begin{gather*}
v \neq u \tag{15}\\
L_{u}(G) \cdot X=d_{u} \tag{16}\\
L_{u}(G) \cdot X=d-2 m \cdot 1 u \tag{17}
\end{gather*}
$$

Where 2 m .1 u is a vector and can be denoted by " z " and that $\mathrm{z} \perp \overrightarrow{\mathbb{1}}=0$

Now we can find the pseudo-inverse,

$$
\begin{gather*}
x_{u}=0 \tag{18}\\
y=[L(G)]^{-1} \cdot(d-2 m \cdot 1 u) \text { where }(\mathrm{d}-2 \mathrm{~m} \cdot 1 \mathrm{u} \perp \mathbb{1}) \tag{19}
\end{gather*}
$$

Relation between hitting time and graph expansion:

If,

$$
\begin{equation*}
\vec{y}=[L(G)]^{-1} \cdot(d-z) \tag{20}
\end{equation*}
$$

Then the hitting time for v can be said to be,

$$
\begin{equation*}
(1 v-1 u)^{T} \cdot y \Rightarrow(1 v-1 u)^{T} \cdot L^{T} \cdot(d-2 m \cdot \mathbb{1} u) \tag{21}
\end{equation*}
$$

Now the hitting time from v to u and vice versa can be found out to be,

$$
\begin{gather*}
(1 v-1 u)^{T} \cdot L^{T} \cdot(d-2 m \cdot 1 u)+(1 u-1 v)^{T} \cdot L_{T} \cdot(2 m \cdot 1 v-d) \tag{22}\\
(1 v-1 u)^{T} \cdot L^{T} \cdot(2 m \cdot 1 v-2 m \cdot 1 u) \tag{23}\\
2 m \cdot(1 v-1 u)^{T} \cdot L^{T} \cdot(1 v-1 u) \leq 4 m \lambda_{2}^{-1} \leftarrow \sum \frac{w_{u v}}{2} \tag{24}
\end{gather*}
$$

Equation (24) is related to the 2nd eigen value of the Laplasian matrix. If λ_{2} is larger then the hitting time can be concluded to be smaller.

Theorem:

$$
\begin{equation*}
\frac{1}{2} \cdot \lambda_{2}\left(D_{a}^{-1} L(G) \cdot D_{a}^{-1 / 2}\right) \leq \Phi(G) \leq \sqrt[4]{\lambda_{2}}\left(D_{a}^{-1 / 2} L(G) \cdot D_{a}^{1 / 2}\right) \tag{25}
\end{equation*}
$$

Equation (25) depicts and defines Cheeger's inequality which we will talk about in the next class.

