
CS 594: Representations in Algorithm Design Spring 2022

Lecture on 02/08/2022
Lecturer: Xiaorui Sun Scribe: Siddarth Madanan Menon

1 Last Lecture’s Review

In the last lecture, we discussed Bartal’s algorithm. While we analysed Bartal’s Algo-
rithm we were able to come up with the following conclusion as shown below.

We also had some early discussions about Graph Representations which entailed Well-
Connected and Random Walks on Graphs.

• Conclusion:
The Edge which becomes crossing edge should have probability ≤ 4d(u,v)O log(n)

∆j

2 Well-Connected Graph

The graph expansion which takes place is constant and the expansion rate can be found
out to be propotional to 1

n2

Figure 1: Graph Well Connectivity
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2 WELL-CONNECTED GRAPH 2

Expander: In an expander most edges are moving outside rather than staying in-
side.

Figure 2: Expander

Edge Expansion:

min
s≤v

E(S, S̄)

min{V ol(S), V ol(S̄)}2
≤ 1 (1)

volume = V ol(S) =
∑
v∈s

d(v) (2)

If the graph has a large expansion then it is a good expander. Note that expansion of
a graph is constant

Random Walk: Looks at the surrounding neighbours and choose an arbitrary neigh-
bour (which is propotional to the edge weight)

Figure 3: Expander
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Hitting Time of Random Walk: It can be defined as the estimated time of the
first visit to vertex ”y” from the vertex ”x”.

G = (V,E,W ), vertex(u) (3)

This is to define the hitting time to the vertex(u).

xv to denote E time to the first visit to to the vertex v

v = u −→ xv = 0 (4)

v ̸= u −→ xv = 1 +
∑
vi∼v

wvvi

dv
.xvi (5)

Used to compute 1st visiting for the vertex

dv.xv = dv +
∑
vi∼v

wvvi .xvi (6)

3 Graph Laplasian Matrix

Now we will discuss about the graph laplasian matrix.

Figure 4: Graph Adjacency Matrix
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∑
v∈V

Lu.v= 0 for any u (7)

In the following L(G) is the laplasian function for a graph ”G”.

Symmetric:

Luv(G) = Lvu(G) (8)

Positive semidefinite: λ of L(G) ≥ 0

Eigen: 0 is the eigen value of L(G)

L(G).
⇀

1 =
⇀

0 (9)

L(G) =
n∑

i=1

λi.ui.ui
T (10)

λi ≥ 0 and λi = 0, u1 = 1 (11)

Mui
= λi.ui (12)

L(G).1 =
⇀

0 and L(G).x ̸= y (13)

If λi ̸= 0 then we could say that,

ui ⊥ u1 ⇒ L(G).ui = λi.ui ̸= 0 (14)

Now,

v ̸= u (15)

Lu(G).X = du (16)

Lu(G).X = d− 2m.1u (17)

Where 2m.1u is a vector and can be denoted by ”z” and that z ⊥
⇀

1 = 0
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Now we can find the pseudo-inverse,

xu = 0 (18)

y = [L(G)]−1.(d− 2m.1u) where (d-2m.1u ⊥ 1) (19)

Relation between hitting time and graph expansion:

If,
⇀
y = [L(G)]−1.(d− z) (20)

Then the hitting time for v can be said to be,

(1v − 1u)T .y ⇒ (1v − 1u)T .LT .(d− 2m.1u) (21)

Now the hitting time from v to u and vice versa can be found out to be,

(1v − 1u)T .LT .(d− 2m.1u) + (1u− 1v)T .LT .(2m.1v − d) (22)

(1v − 1u)T .LT .(2m.1v − 2m.1u) (23)

2m.(1v − 1u)T .LT .(1v − 1u) ≤ 4mλ−1
2 ←

∑ wuv

2
(24)

Equation (24) is related to the 2nd eigen value of the Laplasian matrix. If λ2 is larger
then the hitting time can be concluded to be smaller.

Theorem:

1

2
.λ2(D

−1
a L(G).D−1/2

a ) ≤ Φ(G) ≤ 4
√

λ2(D
−1/2
a L(G).D1/2

a ) (25)

Equation (25) depicts and defines Cheeger’s inequality which we will talk about in the
next class.
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