CS 594: Representations in Algorithm Design Spring 2022
Lecture on 02/08/2022

Lecturer: Xiaorui Sun Scribe: Siddarth Madanan Menon

1 Last Lecture’s Review

In the last lecture, we discussed Bartal’s algorithm. While we analysed Bartal’s Algo-
rithm we were able to come up with the following conclusion as shown below.

We also had some early discussions about Graph Representations which entailed Well-
Connected and Random Walks on Graphs.

e Conclusion:

The Edge which becomes crossing edge should have probability < W

2 Well-Connected Graph

The graph expansion which takes place is constant and the expansion rate can be found
out to be propotional to #

Clique Bad Example
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Figure 1: Graph Well Connectivity
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Expander: In an expander most edges are moving outside rather than staying in-
side.

Figure 2: Expander

Edge Expansion:

| E(S,9)
M R {Vol(S), Val()} = ! (1)
volume = Vol(S) = Zd(v) 2)

vES

If the graph has a large expansion then it is a good expander. Note that expansion of
a graph is constant

Random Walk: Looks at the surrounding neighbours and choose an arbitrary neigh-
bour (which is propotional to the edge weight)

Figure 3: Expander
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Hitting Time of Random Walk: It can be defined as the estimated time of the
first visit to vertex ”y” from the vertex ”x”.

G = (V,E,W), vertex(u) (3)
This is to define the hitting time to the vertex(u).

T, to denote E time to the first visit to to the vertex v

v=u—x,=0 (4)
w

v;éu—>xv:1+z ;Ui-%i (5)

Vi~V

Used to compute 1st visiting for the vertex

3 Graph Laplasian Matrix

Now we will discuss about the graph laplasian matrix.

Graph Adjacency Matrix
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Figure 4: Graph Adjacency Matrix
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Z L,.,= 0 for any u (7)

veV

In the following L(G) is the laplasian function for a graph ”"G”.

Symmetric:

Positive semidefinite: A of L(G) > 0

Eigen: 0 is the eigen value of L(G)

L(G)1=0 (9)
L(G) =) Nuju” (10)
i=1

)\iZOand )\i:O,Ulz]l (11)
L(G).1 =0 and L(G).z #y (13)

If \; # 0 then we could say that,

Now,

v#u (15)
L.(G).X =d, (16)
L.,(G).X =d—-2m.1lu (17)

Where 2m.1u is a vector and can be denoted by ”"z” and that z L 1=0
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Now we can find the pseudo-inverse,

Ty, =0 (18)
y = [L(G)]7'.(d — 2m.1u) where (d-2m.1u L 1) (19)

Relation between hitting time and graph expansion:

T,
y=[L(@)]"(d-2) (20)

Then the hitting time for v can be said to be,

(lv — 1u)"y = (v — 1) .L".(d — 2m.1u) (21)

Now the hitting time from v to u and vice versa can be found out to be,
(1v — 1u)". L7 .(d — 2m.1u) + (1u — 1v)T . Ly.(2m.1v — d) (22)
(1v — 1u)".L7.(2m.1v — 2m.1u) (23)

2m.(1v — 1u)'. LT . (1v — 1u) < 4mA; ' « Z W

Equation (24) is related to the 2nd eigen value of the Laplasian matrix. If A is larger
then the hitting time can be concluded to be smaller.

Theorem:
%-%(DalL(G).DaW) < ®(G) < v/ M(D,V?L(G).DY?) (25)

Equation (25) depicts and defines Cheeger’s inequality which we will talk about in the
next class.
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