
CHECKING EXTENDED CTL PROPERTIES USING GUARDED QUOTIENT

STRUCTURES

BY

XIAODONG WANG
B.S. (Wuhan University) 1997

M.S. (Institute of Software, Chinese Academy of Science) 2000

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2004

Chicago, Illinois

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my wife, Min, who has supported me

throughout the my research period. Her encouragement has helped me to get through all the difficulties.

I would like to sincerely thank my adviser, Professor Prasad Sistla for his extensive help and support

throughout my graduate studies. He has been the driving force behind this research. His help and

assistance made this project possible. I would like to thanks the members of the thesis committee,

Professor Buy and Professor Murata.

I feel a deep sense of gratitude toward my parent who always have strong confidence on me.

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 SYMMETRY BASED METHODS . 1
1.1 QS Method . 2
1.2 AQS Method . 5
1.3 GQS Method . 6

2 CCTL LOGIC . 10
2.1 Syntax of CCTL . 11
2.2 Semantics of CCTL . 13

3 INPUT LANGUAGE . 16

4 MODEL CHECKING ALGORITHM . 21
4.1 Model Checking Employing GQS . 22
4.2 Evaluate COUNT Term . 24
4.3 Data Structures . 27
4.4 Model Checking Procedures . 27
4.4.1 check Procedure . 28
4.4.2 EUCheck Procedure . 30
4.4.3 EGCheck Procedure . 32
4.4.4 efpCheck Procedure . 33
4.4.5 EfairGCheck Procedure . 35
4.5 Complexity Analysis . 37

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS 38
5.1 Implementation . 38
5.2 Experimental Results . 39

6 CONCLUSION . 42

CITED LITERATURE . 43

VITA . 45

iv

LIST OF TABLES

TABLE PAGE

I SYNTAX OF CCTL FORMULA . 12

II RESOURCE CONTROLLER PROTOCOL 20

III CHECK PROCEDURE . 29

IV EUCHECK PROCEDURE . 31

V EGCHECK PROCEDURE . 32

VI EFPCHECK PROCEDURE . 34

VII EFAIRGCHECK PROCEDURE . 36

VIII EXPERIMENTAL RESULTS . 40

v

LIST OF FIGURES

FIGURE PAGE

1 Reachability Graph of Mutual Exclusion Protocol of 2 Processes 4

2 Quotient Structure Obtained with QS Method 4

3 Quotient Structure Obtained with AQS Method 5

4 Reachability Graph of Mutual Exclusion Protocol with Process Priorities 7

5 Quotient Structure Obtained with GQS Method 8

vi

SUMMARY

State explosion problem is the major hurdle toward model checking concurrent systems consisting

of a large number of processes. Symmetry based methods have been proved to be very useful to contain

the state explosion problem when model checking such systems. In (1) Guarded Quotient Structure

(GQS) was introduced as the extension to Quotient Structure (QS) and Annotated Quotient Structure

(AQS). GQS is succinct representation of the reachability graph of a partially symmetric or even asym-

metric system. Model checking employing GQS can be much more efficient than with the original

system. This thesis employs GQS for model checking purpose. We extend CTL logic to a logic called

COUNT CTL (CCTL) which can be used to specify properties of concurrent systems with large num-

ber of processes. Given correctness specification in CCTL, we present a model checking algorithm for

symmetric or partially symmetric systems employing GQS. The thesis is organized into 6 chapters.

Chapter 1 introduces the early symmetry based methods. Chapter 2 defines the syntax and semantics of

CCTL formulas. Chapter 3 describes the input language in which the concurrent program and correct-

ness specification are specified. Chapter 4 presents the model checking algorithm for CCTL formulas.

Chapter 5 describes the implementation and reports experimental results. Chapter 6 concludes the thesis

with discussion of related work.

vii

CHAPTER 1

SYMMETRY BASED METHODS

There has been much interest in symmetry based methods for containing the state explosion problem

in model checking. The early symmetry based methods, introduced in (2; 3; 4), exploit the symmetries in

the system to identify states that are equivalent under symmetry and construct a quotient structure. The

model checking is carried out on the quotient structure. This method can primarily be used for verifying

symmetric properties specified in temporal logic, i.e. properties in which the atomic propositions have

same truth values on equivalent states. A later approach introduced in (5) constructs an Annotated

Quotient Structure (AQS) and unwinds it partially to verify a temporal property. This method can be

used for checking both symmetric and asymmetric properties under various notions of fairness. In (6)

the AQS method is further extended to check correctness under fairness on-the-fly. These methods have

been implemented in the SMC model checker (7).

In (8; 9), the method based on quotient structures is extended to verify symmetric properties of

partially symmetric and asymmetric systems. In (1), the AQS based method is extended to verify sym-

metric and asymmetric properties of partially symmetric and asymmetric systems as well. This method

is based on constructing a Guarded Quotient Structure (GQS). It can be used to verify asymmetric

properties of such systems as well.

This chapter introduces these symmetry based methods. It is organized into 3 sections. Section 1.1

introduces the QS method. Section 1.2 briefly describes the AQS method. Section 1.3 describes the

GQS method.

1

2

1.1 QS Method

We consider a concurrent program K consisting of n processes. We denote the process ids by the

integers 0, ..., n − 1 and let I denote the set {0, 1...., n − 1}. The processes in the concurrent program

communicate through variables. We call these as program variables. The name of a program variable

is given by an identifier subscripted with the names of processes that share the variable. For example,

u1,2, u2,3 are variables shared by processes 1, 2 and by processes 2, 3 respectively. Identifiers sub-

scripted with only one process are local variables in that process. For example, u1 is a local variable in

process 1. A state s of the program is a mapping associating values to program variables.

Let G = (S, E) be the reachability graph of the concurrent program. Let Sym I be the set of all

permutations π on I. Sym I forms a group with functional composition (◦) being the group operation.

Our convention is that πb ◦ πa is evaluated right-to-left: first apply πa, then πb. Let Id denote the

identity permutation and π−1 the inverse of π. For any indexed object b, such as a state, a variable,

or a formula, whose definition depends on I, we can define the notion of permutation π acting on b,

by simultaneously replacing each occurrence of index i ∈ I by π(i) in b to get the result π(b). For

a variable ui,j, π(ui,j) is uπ(i),π(j). For a state s, π(s) is the state where, for all program variables x,

π(s)(x) = s(π−1(x)). For a set C of states, let π(C) = {π(s) : s ∈ C}. Similarly, for a set of edges F,

we let π(F) = {(π(s), π(s ′)) : (s, s ′) ∈ F}.

A permutation π is called an automorphism of the graph G = (S, E) if π(G) = G, i.e., π(S) = S

and π(E) = E. The set of all automorphisms of G form a group and let G denote this group. As has

been shown in earlier works (2; 4; 3), G induces an equivalence relation ≡G on the set of states S given

by s ≡G t if there exists a π ∈ G, such that π(s) = t. QS method constructs a quotient structure

3

QS(G,G)induced by ≡G . We simply write it as QS when G is understood in later description. This

quotient structure QS can be employed to model check symmetric properties of G.

The QS method can be illustrated with the mutual exclusion protocol of two concurrent processes.

In this mutual exclusion protocol, concurrent processes iterate sequentially among non-critical section

(denoted by N), trying section (denoted by T) and critical section (denoted by C). These processes are

coordinated such that there is at most one process in the critical section at any time. The two processes

in this protocol are symmetric to each other. They go from non-critical section to trying section to

ask for permission to enter the critical section. If there is only one process in trying section, it will be

given the permission. If there are more than one process in the trying section, only one of them will

be non-deterministically picked and given the permission. All the other processes in trying section will

remain in trying section until a process leaves the critical section. At that time, another non-deterministic

selection will be made to give permission to another process in trying section. The process in the critical

section goes back to non-critical section and starts another iteration. The reachability graph G of this

protocol is showed in Figure 1. The nodes of reachability graph G are elements belonging to the set

{N1, T1, C1} × {N2, T2, C2}. Each node s of G is a two element set. For any such node s, if Ni ∈ s or

Ti ∈ s or Ci ∈ s (for i = 1, 2), this intuitively denotes that process i is in the non-critical section or in

the trying section or in the critical section, respectively. The group of automorphisms of G (G) consists

of two permutations: Flip and id. Here Flip is the permutation which interchanges processes 1 and

2; it defines an automorphism on the nodes of G that maps a node {Di, Ej} (where D,E are any of the

symbols N, T,C and 1 ≤ i, j ≤ 2) to the node {DFlip(i), EFlip(j)}. id is the identity permutation defining

the identity automorphism. According to QS method, G induces the quotient structure in Figure 2.

4

N2

T1 N2

T1 T2

T2C1

N1 N2

N1 T2

N1 C2

T1 C2

C1

Figure 1. Reachability Graph of Mutual Exclusion Protocol of 2 Processes

N1 N2

C1 N2

C1 T2

T1 T2

T1 N2

Figure 2. Quotient Structure Obtained with QS Method

It has been proved in (4) that it is equivalent to model check symmetry properties employing QS

which can be much smaller than G.

5

1.2 AQS Method

In (5; 6), the QS method is extended to AQS method where an annotated quotient structure AQS(G,G)

is constructed. The annotated quotient structure is obtained by annotating the edges in QS(G,G) with

permutations. These permutations indicate how the process ids shift as G is compressed to obtain

AQS(G,G). We will write AQS(G,G) as AQS when G is understood. Figure 3 gives the annotated

quotient structure AQS of the above mutual exclusion protocol.

flip

flip

flip

T1 T2

id

id

id
id

id

id

N1 N2

T1 N2

C1 N2

C1 T2

Figure 3. Quotient Structure Obtained with AQS Method

With the permutations on the edges of AQS, AQS can be employed to check both symmetric

and asymmetric properties specified in CTL∗ (the atomic propositions need not have the same truth

values in equivalent states). (5; 6) describes how model checking can be carried out employing AQS.

6

When employed to model check asymmetric properties, AQS is partially unwound. During unwinding,

process ids in the CTL∗ properties are permuted along the unwound path. By doing this, asymmetric

properties can be checked.

1.3 GQS Method

In (8; 9), the method based on the quotient structure (QS) is further extended to check symmetric

properties of systems with less symmetry or no symmetry. In (1) the method based on the AQS is

extended to handle systems with less or no symmetry. The later work is based on constructing a Guarded

Quotient Structure (GQS). This method works as follow. In order to model check a property for

a program K, another program K ′ is considered so that the later program has lot more symmetries.

Usually, K ′ is obtained from K by simple transformations (such as ignoring process priorities, etc.).

Formally, if G and H are the global state graphs of K, K ′ respectively, then they have the same set of

states, but H has more edges. Further, the set of symmetries of H is a super set of the set of symmetries

of G. The GQS is constructed by first constructing the AQS of H and by adding edge conditions to the

AQS. By unwinding GQS with respect to its edge conditions, we can get G from GQS.

The above method can be described in a more formal way. To make the concurrent program more

symmetric, we considering another graph H = (S, F) which has the same set of states as G and satisfies

the following conditions: (i) F ⊇ E, i.e., it has all the edges of G and possibly more; (ii) its set of

automorphisms is a superset of G. We let H denote the set of automorphisms of H. Usually we choose

H so that H is much larger than G. The equivalence relation ≡H is extended to the edges in F in the

obvious way, i.e. for e, e ′ ∈ F, e ≡H e ′ if there exists a permutation π ∈ H such that e ′ = π(e).

Let class(e,H) be the set of edges in the equivalence class of e. The GQS of H with respect to H

7

is denoted by GQS(H,H, G) and is a triple (V, F, C) defined as follows: V ⊆ S is a set of states that

contains one representative for each equivalence class of ≡H ; F ⊆ V × V ×H is a set of labeled edges

such that, for every s ∈ V and t ∈ S such that (s, t) ∈ F, there exists an element (s, t, π) ∈ F such

that π(t) = t ; C is a function that associates a condition C(e) with each labeled edge e in F ; C(e)

denotes an edge condition such that the set of edges in class(e,H) that satisfy C(e) is exactly the set of

edges class(e,H)∩E. The edge conditions C(e) are specified by a propositional condition on program

variables. In context where G and H is understood, we write GQS(H,H, G) as GQS.

T1C1 N2

T1 N2

N1 N2

N1 T2

T2

C1 T2 T1

N1 C2

C2

Figure 4. Reachability Graph of Mutual Exclusion Protocol with Process Priorities

The GQS method can be illustrated with the mutual exclusion protocol with process priorities. The

only difference between this protocol and the protocol in in section 1.1 is that when both processes

are in trying section, process 1 now has higher priority to be given the permission. Figure 4 shows

8

the reachability graph G of the protocol. Note that the group of automorphism of G only consists of

permutation id. Permutation Flip is no longer a automorphism of G because process 1 and process 2

are not symmetric (process 1 has higher priority when both of them are trying to enter critical section).

According to the QS and AQS method, the QS(G,G) and AQS(G,G) constructed for G are of the

same size of G. That is, no reduction can be achieved with QS and AQS method. GQS method can

produce a much smaller quotient structure for this protocol. To construct GQS, we first ignore the

priorities by adding an edge from the node (T1, T2) to (T1, C2) (denoted by the dotted arrow in Figure 4)

to G and obtain H. H is more symmetric than G and thus the corresponding quotient structure can be

more succinct. The GQS corresponding to H is shown in Figure 5.

flip

flip

id

id
id

id

id

N1 N2

C1 N2

C1 T2

id, C ′

1

flip, C ′

1

T1 N2

T1 T2

Figure 5. Quotient Structure Obtained with GQS Method

9

For any F in {N1, N2, T1, T2, C1, C2}, we let F-nodes denote the set of nodes in H that contain

the element F. In the GQS in Figure 5 two edges have non-trivial edge conditions expressed as edge

predicates. The edge predicate T1 ∧ C ′
1 denotes the set of edges in H from a T1-node to a C1-node; it is

expressed as a formula stating that the current state satisfies T1 and that the next state satisfies C1 (the

clause C ′
1 states that C1 should be satisfied in the next state). Only edges from the node (T1, T2) to the

node (C1, T2) are labeled by this predicate.

In many situations, the GQS(H,H, G) can be constructed directly from the concurrent program

description. The GQS constructed from some asymmetric systems can be much smaller than AQS.

Model checking symmetric and asymmetric properties against symmetric and asymmetric systems

can be carried out efficiently employing GQS. In (1), the authors developed a method for checking a

property, specified in CTL∗, of the program by unwinding GQS(H,H, G) appropriately. They also pre-

sented optimizing techniques involving formula decomposition and sub formula tracking. The method

given there was partially implemented in the system PSMC.

CHAPTER 2

CCTL LOGIC

In this chapter, we extend the branching time temporal logic CTL to a new logic called COUNT

CTL (CCTL) for specifying properties of concurrent programs. CCTL has all the path quantifiers and

temporal operators of CTL and the fair path quantifiers of Fair CTL (10). In addition, it also allows

another construct, called COUNT , which is a function that returns the number of processes that satisfy

a given property in a given state. For example, if C(i) is an atomic proposition denoting that process i is

in critical section and M is a set of processes, then COUNT(i,M,C(i)) gives the number of processes

in M that are in the critical section in the state. COUNT can be nested with temporal operators.

COUNT is useful for specifying correctness specification of system with large number of processes.

With COUNT , CCTL can specify that a property should hold for some processes (or for all processes)

belonging to a process class; that is, it can express process quantifiers. CCTL is more expressive than

the logic ICTL considered in earlier paper (11). For example, it can express uniformly the property that

the number of processes i satisfying property P(i) equals the number of processes j satisfying property

Q(j). This property cannot be expressed in ICTL uniformly.

In this chapter, section 2.1 defines the syntax of CCTL formulas and section 2.2 defines the semantics

of CCTL formulas.

10

11

2.1 Syntax of CCTL

CCTL formulas use process variables that range over process ids of the system. They only use

program variables in which all the subscripts are process variables, i.e. no process id is used. CCTL

formulas also use constants belonging to the domains of program variables, a function symbol COUNT ,

sets of process ids and comparison operators in {=, <,>,>=, <=}. In addition to path quantifiers over

all paths, CCTL formula employs path quantifier Efair which quantifies over fair paths. We use standard

weak process fairness in (10), i.e. a path is strongly fair if every process is either executed or disabled

infinitely often.

Formally, CCTL formulas are defined as follows:

12

TABLE I

SYNTAX OF CCTL FORMULA

〈 formula 〉 :: 〈 atomic formula 〉 |

〈 count-term 〉 〈 comp-operator 〉 〈 count-term 〉 |

〈 formula 〉 ∧ 〈 formula 〉 | ¬ 〈 formula 〉 |

EX (〈 formula 〉) | EfairX (〈 formula 〉) |

EG (〈 formula 〉) | EfairG (〈 formula 〉) |

E (〈 formula 〉 U 〈 formula 〉) |

Efair (〈 formula 〉 U 〈 formula 〉)

〈 count-term 〉 :: COUNT(i, M, 〈formula〉) |

〈 constant 〉

The syntax of the CCTL formulas is easily understood from the above BNF notation.

13

An atomic formula in CCTL is any of the following: the constant True; a binary variable x which is

also called an atomic proposition; it is of the form x ρ y where x, y are program variables or constants

and ρ is a comparison operator; it is of the form i = j where i, j are process variables.

A count-term is a term of the form COUNT(i,M,φ(i)) where φ(i) is another CCTL formula,

M is a set of process ids and i is a process variable whose occurrences in φ are not bounded. A

count-term can also be an integer constant. Unless otherwise stated, throughout the paper, a count term

will refer to a non-constant count-term. The set M of process ids may either be explicitly given or be

specified by a symbolic name which is bound to a set of process ids. We say that the occurrences of i in

COUNT(i,M,φ(i)) are bound.

2.2 Semantics of CCTL

An occurrence of a process variable i in a CCTL formula is said to be free if it is not a bound

occurrence. We assume that either all the occurrences of a process variable in a CCTL formula are free

or all its occurrences are bound in the formula. This property can always be satisfied by renaming the

process variables in the formula. For a CCTL formula φ, let free var(φ) denote the set of process

variables appearing free in φ. An evaluation for φ is a partial function from the free var(φ) to I, the

set of process ids. For a count-term u, we define free var(u) and evaluation for u, exactly on the same

lines as that for a formula. For a count-term u and evaluation f for u, we let val(s, u, f), as defined

below, denote the value of the term u in the state s with respect to the evaluation f.

The semantics of a formula φ are defined in a global state graph G = (S, E) with respect to an

evaluation for φ in an inductive manner. We denote the satisfaction of φ in a state s in G with respect to

an evaluation f by G, s, f |= φ. Since G is understood here, we simply write s, f |= φ. The satisfaction

14

relation |= and the function val (i.e., the value of count-terms) are defined mutually inductively. For

a subscripted program variable x and an appropriate evaluation f, let f(x) denote the program variable

obtained by substituting process variables as given by f for process ids. For an atomic formula of the

form x ρy where x, y are subscripted program variables, s, f |= x ρy if the values of the program

variables f(x), f(y) in the program state s are related by ρ. For an atomic formula of the form i = j,

s, f |= i = j if f(i) = f(j). The satisfaction of CCTL formulas of the form g ∧ h, ¬g, E(gUh), EX(g)

and EG(g) are defined in the standard way as they are defined for CTL formulas. The satisfaction of

Efair(gUh), EfairX(g) and EfairG(g) are all defined naturally by considering only fair paths. For

example, Efair(gUh) is satisfied at a state s if there exists a fair path from s on which g continues to be

satisfied until h is satisfied. For a formula of the form u ρ v where u, v are count-terms, s, f |= u ρ v

if val(s, u, f) and val(s, v, f) are related by the comparison operator ρ, e.g., the values of the two

count-terms in the state s are equal if ρ is the equality operator.

For any count-term u, state s, evaluation f for u, we define the value val(s, u, f) as follows. If u

is a constant then val(s, u, f) is the constant itself. Let u be the count-term COUNT(i,M, g(i)). Let

g ′(i) be the formula obtained from g(i) by instantiating process variables in g according to evaluation f.

Note that process variable i will not be instantiated because evaluation f does not associate any process

id with bounded process variables in u such as i. For any process id c in M, let fc denote the evaluation

for g ′(i) such that fc(i) = c. We define val(s, u, f) to be the number of distinct values of c in M such

that s, fc |= g(i).

15

CCTL can be used to express universal and existential process quantifiers ranging over a set M

of process ids. For example, the property ∀i ∈ M (h(i)) can be expressed as COUNT(i,M,h(i))

= COUNT(i,M, True).

Other standard CTL temporal operators such as A(φ1Uφ2), AG(φ1), AX(φ1), Afair(φ1Uφ2),

AfairG(φ1) and AfairX(φ1) can all be expressed in CCTL. For example, Afair(φ1Uφ2) ≡

¬(Efair(¬φ2U(¬φ1 ∧ ¬φ2)) ∨ EfairG(¬φ2)).

CHAPTER 3

INPUT LANGUAGE

The concurrent program and its correctness specification are given in an input language extended

from the input language in (12). An input consists of three sections: the program section specifying

the concurrent program from which GQS is constructed; the formula section specifying the correctness

specification of the program as a CCTL formula; the evaluation section giving the evaluation for the

CCTL formula. Recall that CCTL formula does not use process ids. To specify the correctness specifi-

cation concerning specific process ids, we replace these process ids with a new set of process variables

in the formula. These process variables are then instantiated to the corresponding process ids in the

evaluation section.

The concurrent program given in the program section is divided into modules where each module

consists of a set of processes that are identical up to renaming. Automorphisms induced by process

permutations are considered to construct GQS. Given the above syntax of the concurrent program, it is

easy to see that any permutation mapping processes in a module to processes with in the same module is

an automorphism of the reachability graph of the concurrent program without process priorities. These

automorphisms form a group which can be used to construct quotient structures such as GQS.

Processes in the concurrent program communicate through shared variables. A shared variable

is specified by a name together with a list of process Indies. If a process in a module C has a shared

variable with another process in module D, then every process in C has such a shared variable with every

process in D. A different type of variables, called index variables, are used in defining the processes in

16

17

a module. An index variable ranges over the process ids of a module. A module specification starts

with the declaration of a single index variable, called the primary index variable, and is followed by

a set of transition schemas. The primary index variable identifies the process to which the instance of

the transition schema belongs to. Each transition schema is given by a condition part and an action

part. The condition part is a boolean expression over atomic conditions and the action part is a set of

concurrent assignment statements. The transitions instantiated from the transition schemas are enabled

when its condition part is evaluated to true. When an enabled transition is fired, the program variables

are updated according to transition’s action part.

Processes within a module may have different priorities for a transition schema. Priorities can be

specified with transition schema having two index variables, where priorities are defined with respect to

the non-primary index variable. We call this non-primary index variable the secondary index variable.

For instance, the single transition schema in the controller module of the resource controller protocol

given in Table II has the two index variables cl, k appearing in it, where k is the secondary index vari-

able. Priorities for this transition schema can be defined by having the following command immediately

after it:

Priority (X1;X2;...;Xk)

where X1, X2, ..., Xk are disjoint sets of process ids belonging to the client module. In this command,

each Xi is specified either as a symbolic representation of a set of process ids or as a list of process

ids (or ranges of process ids) separated by commas. Such a specification states that, for this transition

schema, all client processes belonging to Xi have the same priority and, for i < j, processes belonging

to Xi have higher priority than processes belonging to Xj. The formal semantics of this priority scheme

18

for the transition schema in the server module is defined as follows. Fix the the value of the index

variable s. Let ti, for 0 ≤ i < 80, denote the transitions in the controller process s when the constant i

is substituted for the index variable c in the above transition schema. Let δ denote a global state of the

above system. Transition ti can be executed in δ if ti is enabled in δ (i.e., its condition part is satisfied

in δ) and there is no j (0 ≤ j < 80) such that tj is enabled in δ and j has higher priority than i. Thus,

priorities in the above transition schema state that the server process s must grant the waiting request to

one of the clients with the highest priority.

In (12), the input language only allows one priority specification be specified for a process module.

The input language is extended here by allowing multiple priority specifications to be specified with

transition schemas in the same process module. It also allows user to define and use priority class which

is the symbolic representation of a set of process ids that have the same priority.

The resource controller protocol given in Table II is used to illustrate the input language. In the

resource controller protocol, the concurrent program consists of a controller module and a client mod-

ule. The controller module in this example has only one controller process which controls the resource

allocation such that only one client process can hold the resource at a time. The client module con-

sists of several client processes. The clients request for the resource through requesting channel (im-

plemented with shared variables request[controller, client]). The controller acknowledges the re-

quest from the client with highest priority through replying channel (implemented with shared variables

reply[controller, client]) if the resource is available. The client to which the resource is granted

hold the resource by changing its status to lk[k] = 2. It then releases the resource (buzy[cl] = 0) and

19

changes back its status (lk[k] = 0). The initial state of the processes are given by initial values of the

program variables given in the beginning of the program.

The CCTL formula following the input program specifies the correctness specification. It asserts

that no two client processes can hold the resource at the same time. Note that the universal quantifier

used in the CCTL formula is a short-cut defined in chapter 2.

Since the CCTL formula does not contain any free process variable, an empty evaluation is given

for the CCTL formula.

20

TABLE II

RESOURCE CONTROLLER PROTOCOL

Program

Module controller = 1;
Module client = 13;

lc[controller]=0;
lk[client]=0;
request[controller, client]=0;
reply[controller, client]=0;
buzy[controller]=0;

i of controller;

PriorityClass pclass1:client = (0);
PriorityClass pclass2:client = (1-12);

cl of controller :
{
lc[cl] == 0 & request[cl, k] == 1 & ALL(i: reply[i,k] == 0) ->
reply[cl, k] = 1, buzy[cl] = 1 ,
lc[cl] = 1 (Priority pclass1:pclass2);

lc[cl] == 1 & buzy[cl] == 0 -> lc[cl] = 0 ;
}

k of client :
{
lk[k] == 0 -> ALL(cl: request[cl, k] = 1) , lk[k] = 1;

lk[k] == 1 & reply[cl, k] == 1 -> lk[k] = 2;

lk[k] == 2 & reply[cl, k] == 1 ->
reply[cl, k] = 0, ALL(i: request[i, k] = 0),
buzy[cl] = 0 , lk[k] = 0;

}

Formula

∀i ∈ client ∀j ∈ client(i 6= j→ AG(lk[i] 6= 2 ∨ lk[j] 6= 2))

Evaluation

CHAPTER 4

MODEL CHECKING ALGORITHM

PSMC system which implements the model checking algorithm in (1) have various limitations.

The system only checked properties of the form E(p) where p is a linear temporal formula. It did not

implement the full CTL∗. It did not implement formula decomposition and sub-formula tracking. The

experiments given in (12) employed a high level formula decomposition that was manually carried out.

The model checking algorithm given in this chapter checks correctness specifications given in CCTL

which is an extension of CTL. It uses formula decomposition and sub-formula tracking naturally and

implicitly.

We consider the model checking problems for partially symmetric and asymmetric systems when the

correctness specifications are given in CCTL. We employ GQS for the model checking purpose. GQS

is constructed first by ignoring the priority specifications on transitions and constructing the AQS; it

then adds edge conditions to the AQS to reflect the priorities and obtains the GQS. We assume that

GQS has already been constructed from the concurrent program in the input before we apply the model

checking algorithm with it. The CCTL formula given in the input is then checked inductively in the

initial state employing the GQS.

Our model-checking algorithm employs lazy evaluation. That is, we invoke the algorithm on the

main formula, which invokes on its sub-formulas only if and when it is needed to evaluate their truth

values. For example, when invoked to check a formula of the form g ∧ h at a state s, the algorithm is

invoked on g ; the sub-formula h is checked at state s only if g is determined to be satisfied at s.

21

22

Our model-checking algorithm is top-down in its approach. The algorithm works inductively over

the structure of the CCTL formula to be checked and thus employs formula decomposition in a seamless

manner. With formula decomposition, the algorithm can minimize the unwinding of GQS. GQS is

unwound with respect to the process ids in sub-formulas instead of all those process ids in the main

formula; This increases the efficiency of the algorithm. Formula decomposition was introduced earlier

in (1) to check CTL∗ properties. Unlike in that paper, formula decomposition is naturally incorporated

into our algorithm.

This chapter is organized into 5 sections. Section 4.1 describes how GQS is employed during model

checking. Section 4.2 describe how to efficiently evaluate COUNT term. Section 4.3 describes the data

structures used in the model checking algorithm. Section 4.4 gives the model checking procedures.

Section 4.5 analyzes the complexity of the algorithm.

4.1 Model Checking Employing GQS

We assume that GQS(H,H, G) has already been constructed as given section 1.3 before a CCTL

formula is checked. Recall that the edges in GQS(H,H, G) are annotated with permutations and are

also associated with edge conditions which act as guards. To model check a CCTL formula employing

GQS, we change the evaluation of the process variables in the formula and track the process ids that

appear in edge condition in GQS instead of unwinding GQS directly.

Consider a path s0, s1, ..., sl in the guarded quotient structure. Let π1, ..., πl be the permutations

labeling the corresponding edges, and e1, ..., el be the edge conditions of the edges respectively. Let π ′
i

for i = 1, ..., l be the composition of the permutations π1, ..., πi from left to right in that order. Also

let t0, ..., tl be a sequence of states such that t0 = s0 and for i = 1, ..., l ti = π ′
i(si). From the

23

construction of the GQS(H,H, G), it is the case that t0, ..., tl is a path in H but may not be a path in

G. If the edge conditions e1, ..., el are satisfied by the edges (t0, t1), ..., (tl−1, tl) then the above path is

also a path in G. In order to evaluate if (s0, f) satisfies φ in G, we change the evaluation as we traverse

along a path instead of unwinding GQS directly. For example, suppose that we want to check AG(cr),

where cr is a subscripted binary variable, with respect to the evaluation f0 where f0(r) = 1 (here AG

is the derived CTL operator denoting invariance). We traverse along the path by checking cr at each

successive node si with respect to the evaluation fi where fi(r) = (π ′
i)

−1(r). Thus we change the

evaluation instead of unwinding GQS(H,H, G). It is to be noted that fi = (πi)
−1(fi−1) for i > 0.

Thus successive evaluations can be obtained, from the evaluation at the previous node, by applying the

inverse of the permutation along the edge.

We check the edge conditions as we traverse along a path. We can traverse an edge only if the

corresponding edge condition is satisfied. This is straightforward if we use the graph H; simply evaluate

the edge condition on the edge and traverse it only if it is satisfied. With GQS(H,H, G), we accomplish

it by tracking the process ids that appear in all the edge conditions by changing it along the path. Suppose

in a given GQS all the edge conditions refer to only process 0. As we traverse along a path, we change

this process according to the permutations along the path. Let ki denote this process when we reach

node si. Initially, k0 is set to 0. When we reach node si, we set ki to be (π ′
i)

−1(0). To determine, if

edge (si, si+1) can be traversed, we replace process 0 with process ki in the edge condition ei+1 and

evaluate this new edge condition. Again note that ki = (πi)
−1(ki−1). Thus, successive values of k can

be obtained by applying the inverse of the permutation labeling the edge. We use ~k to denote the vector

24

of the process ids that appearing in all edge conditions. Each process id in ~k will change along the path

in the same way as explained.

4.2 Evaluate COUNT Term

To evaluate COUNT term COUNT(i,M,φ(i)) in a GQS state s, the naive method instantiates

φ(i) by replacing every occurrence of process variable i in φ(i) with each process id in M. For each

instantiation, φ(i) is evaluated. The value of COUNT term is the number of instantiations of φ(i) that

are evaluated to true in s. This naive method can be very inefficient when M contains a large number

of process ids. In the naive method, φ(i) need to be instantiated and evaluated as many as |M| times

where |M| denotes the cardinality of M.

Our model checking algorithm exploits state symmetries of the state to evaluate COUNT(i,M,φ(i)).

It first partitions the set of process ids M over which i ranges into equivalence classes. Instead of check-

ing φ(i) with every process id in M, we check φ(i) for those process ids that are representatives of

equivalence classes. The value of COUNT(i,M,φ(i)) is obtained by summing up the cardinalities of

the equivalence classes if φ(i) holds with i instantiated with its representative.

In the following text, we define the equivalence relation among process ids in M. We prove that

with the equivalence relation, the above method will give the same result as the naive method.

First, we need the following definition. Recall that an evaluation, for a CCTL formula or for a count-

term, is a partial function whose domain is the set of free variables in the formula or the count-term,

respectively. Recall that H is the reachability graph of the concurrent program ignoring the priority

specification and H is set of automorphisms of H. We make the assumption that the set of process ids

in every count term, appearing in the formula we want to check, is invariant under the permutations in

25

G. That is, for every count term of the form COUNT(i,M,φ(i)) and for every π ∈ G, π(M) = M.

Here let π(M) be the set {π(c) : c ∈ M}.

Definition 1 Let f, f
′

be evaluations, then f
′

is an extension of f if dom(f
′

) ⊇ dom(f) and ∀i ∈

dom(f) f
′

(i) = f(i).

First, we consider the problem of evaluating the value of a count term COUNT(i,M,φ(i)) in a

particular state s in which φ uses only process variables (no process id). As indicated before, we exploit

the state symmetries (see (4; 6)) in G to evaluate the count term efficiently. For a state s in H, let Aut(s)

denote the set of all π ∈ G such that π(s) = s. We call the permutations in Aut(s) as symmetries of

the state s.

Definition 2 Let u be a count term of the form COUNT(i,M,φ), s be a state in S and f be an evalu-

ation for u. We define an equivalence relation among process ids in M as follows:

c1 ≈s,f c2 iff ∃π ∈ Aut(s),∀v ∈ dom(f)

π(f(v)) = f(v), π(c1) = c2

.

Definition 3 Let u, s and f be as given in definition 2. For any process id c, let fc be an evaluation for

φ which is an extension of f such that fc(i) = c.

Now, we have the following theorem. It states that if c, d belong to the same equivalence class of

≈s,f then (s, fc) satisfies φ iff (s, fd) satisfies φ.

26

Theorem 1 Let u be the count-term COUNT(i,M,φ) and f be an evaluation for u. Let c and d be

process ids in M such that c ≈s,f d. Then

s, fc |= φ iff s, fd |= φ

Proof: By a simple straightforward induction on the structure of φ, it is easy to see that for any

π ∈ G, π(φ) = φ (recall that π(φ) is obtained from φ by replacing the range M of every count term

by π(M); since we assumed that for every such M, π(M) = M, it follows that π(φ) = φ). Since

c ≈s,f d, there exists a π ∈ Aut(s) such that π(c) = d and for v ∈ dom(f), π(f(v)) = f(v). It is not

difficult to see that π(fc) = fd. Since π ∈ G, it follows that s, fc |= φ iff π(s), π(fc) |= π(φ). Since

π(s) = s, π(φ) = φ and π(fc) = fd, it follows that s, fc |= φ iff s, fd |= φ. 2

We take the following approach, called quantifier elimination, for evaluating u in the state s with

respect to f. From theorem 1, it is easy to see that for each equivalence class of ≈s,f, it is enough if we

pick one representative c, and check if s, fc |= φ. Let C1, ..., Ck be the equivalence classes of ≈s,f.

Let jr, for 1 ≤ r ≤ k, be a representative from the class Cr. We compute the value of the term u in s

with respect to f (i.e., the value val(u, s, f)) to be the sum of the cardinalities of the sets Cr such that

s, fjr |= φ. Thus we need to make only k different checks for computing the value of u, instead of n

checks in the naive approach.

This method can be illustrated using a slightly different resource controller protocol as the one given

in Table II where no priority is specified in controller module of this protocol. To check the properties

given in Table II, check procedure is invoked in the initial state s0 of GQS constructed on CCTL

27

formula ∀i ∈ client∀j ∈ client(i 6= j→ AG(lk[i] 6= 2∨ lk[j] 6= 2)). Since no client requests for the

resource at s0, Aut(s0) consists of all the permutations over process ids of the clients. According to the

definition 2, all client process ids form an equivalence class. Instead of checking ∀j ∈ client(i 6= j→

AG(lk[i] 6= 2 ∨ lk[j] 6= 2)) with i instantiated to every client process id, we choose an arbitrary client

process id k as representative for all clients and check ∀j ∈ client(i 6= j→ AG(lk[i] 6= 2∨lk[j] 6= 2))

with an evaluation which instantiates i with k.

4.3 Data Structures

The model checking algorithm associates two data structures, L(s) and marked(s), with each state

s in GQS. L(s) is a set of labels organized as a hash table. Each label in L(s) is a triple of the form

(φ, f,~k) such that s, f |= φ using the process ids in ~k in the edge conditions. A checksum is computed

for each label in L(s) and used as the hash key for the hash table. marked(s) contains the set of triples

of the form (φ, f,~k) which are generated when EUCheck, EGCheck, EfairGCheck and efpCheck

procedure are invoked for the first time with φ, f, ~k, s as parameters. marked(s) is also organized as a

hash table to speed up the searching for an existing mark. Similarly, another checksum is computed for

each mark and used as the hash key for this hash table.

4.4 Model Checking Procedures

In order to check with fairness, CCTL formulas need to be transformed before they are checked.

We introduce a new atomic formula Exists fair path for this purpose. For a state s and an empty

evaluation f, G, s, f |= Exists fair path iff there exists a fair path in G starting from the state s.

Note that a fair path is defined as in chapter 2. Now it is easy to see that EfairX(φ1) is equivalent to

EX(φ1 ∧ Exists fair path) and Efair(φ1Uφ2) is equivalent to E(φ1U(φ2 ∧ Exists fair path)).

28

We replace the sub-formulas of the above forms by the corresponding equivalent formulas and model

check for them.

This section presents all the model checking procedures. Subsection 4.4.1 gives the main procedure

which invokes other procedures for some types of sub-formulas. Subsection 4.4.2 gives the procedure to

check sub-formulas of the form E(φ1Uφ2). Subsection 4.4.3 gives the procedure to check sub-formulas

of the form EG(φ). Subsection 4.4.4 gives the procedure to check Exists fair path atomic formula.

Subsection 4.4.5 gives the procedure to check sub-formulas of the form EfairG(φ).

4.4.1 check Procedure

As indicated earlier, our model-checking algorithm uses lazy evaluation and works in top-down

fashion. Initially check procedure is invoked on formula φ in the initial state with an evaluation of φ.

The initial values of the parameter ~k are the process ids that appear in the edge conditions.

The check procedure is given in Table III. Given a GQS and a CTL formula φ, the procedure

checks if s |= φ. The check procedure first verifies if the state s has already been labeled with (φ, f, ~k)

or (¬φ, f,~k) where φ, f, ~k are the parameters for this invocation of check procedure. If either of them

is labeled in s, this procedure will return with appropriate true value. If none of them is labeled, check

works inductively on the structure of φ. If φ is an atomic formula other than Exist fair path, it

is evaluated directly in s. If φ = Exist fair path, φ is evaluated by procedure efpCheck. If φ

is φ1 ∧ φ2 then check is invoked on φ1 first and, if φ1 holds, on φ2 using the evaluations f ′, f ′′

respectively; here f ′, f ′′ are restrictions of f to the free variables of φ1 and φ2 respectively. The cases

when φ = EG(φ1), φ = E(φ1Uφ2) and φ = EfairG(φ1) are evaluated by procedure EGCheck,

EUCheck and EfairGCheck respectively. The case when φ = (COUNT(i,M,φ1) = c) is handled

29

TABLE III

CHECK PROCEDURE
Procedure check (φ, f,~k, s)

1. If (φ, f,~k) ∈ L(s), then return true
2. If (¬φ, f,~k) ∈ L(s), then return false
3. Switch(φ)

case φ is an atomic formula:

if s satisfies φ[f] then return true, else return false;

case φ = ¬φ1 :

flag← ¬check(φ1, f,~k, s);

case φ = (φ1 ∧ φ2) :

flag← check(φ1, f
′,~k, s) ∧ check(φ2, f

′′,~k, s);

case φ = EXφ1 :

if there is at least one edge from s (s
π,e(~c)
−→ t) such that (s, π(t)) |= e(~k/~c) and

check(π−1(φ1), π
−1(f), π−1(~k), t)

then flag← true

else flag← false

case φ = EG(φ1) :

flag← EGCheck(s, EG(φ1), f,~k);

case φ = EfairG(φ1) :

flag← EfairGCheck(s, EG(φ1), f,~k);

case φ = E(φ1Uφ2) :

flag← EUCheck(s, E(φ1Uφ2), f,~k);

case φ is (COUNT(i, φ1) = c) :

sum ← 0;

for every equivalence class x of ≈s,f

if ∃j ∈ x such that (¬φ1, fj,~k) ∈ L(s) then continue;

if ∃j ∈ x such that (φ1, fj,~k) ∈ L(s),

then sum← sum + |x|,

continue;

choose some j ∈ x; if Check(φ1, fj,~k, s) then sum← sum + |x|;

if sum = c then flag← True;

else flag← False;

4. If flag, then add (φ, f,~k) to L(s), return true
5. If ¬flag, then add (¬φ, f,~k) to L(s), return false

30

as explained in section 4.2. Formulas, such as (COUNT(i,M,φ1) = COUNT(i,M,φ2)), can be

handled similarly with evaluation f restricted to f ′ and f ′′ accordingly as in the case of φ1 ∧ φ2. At the

end of this procedure, a new label is created and stored in L(s) according to the checking result indicated

by flag.

4.4.2 EUCheck Procedure

EUCheck procedure is invoked from check procedure if the sub-formula to be checked is of

the form E(φ1Uφ2). In the EUCheck procedure given in Table IV, the GQS(H,H, G) is traversed

appropriately. In the beginning of EUCheck procedure, a new mark is created and stored with s

to indicate that EUCheck is being invoked on s with the invocation parameters for the first time.

EUCheck will not be invoked on a state s which has already been marked with the invocation pa-

rameters. In the for loop of EUCheck procedure, if (π−1(φ), π−1(f), π−1(~k)) ∈ marked(t) but

(π−1(φ), π−1(f), π−1(~k)) /∈ L(t), it implies that either there is a cycle and the eventuality is not ful-

filled, or its sub-formula has been checked and has been found to be not satisfied.

31

TABLE IV

EUCHECK PROCEDURE

Procedure EUCheck(s, E(φ1Uφ2), f,~k)

φ← E(φ1Uφ2);

add (φ, f,~k) to marked(s);

if check(φ2, f,~k, s), then return true;

if ¬check(φ1, f,~k, s), then return false;

for each edge from s (s
π,e(~c)
−→ t) where (s, π(t)) |= e(~k/~c)

if (φ,π−1(f), π−1(~k)) ∈ marked(t) and (φ,π−1(f), π−1(~k)) ∈ L(t) then

return true;

if (φ,π−1(f), π−1(~k)) /∈ marked(t) then

flag← check(φ,π−1(f), π−1(~k), t);

if flag then

add (E(φ1Uφ2), f,~k) to L(s) and return true

add (¬φ, f,~k) to L(s) and return false

32

4.4.3 EGCheck Procedure

EGCheck procedure is invoked from check procedure if the sub-formula to be checked is of the

form EG(φ1). The EGCheck procedure given Table V is similar as EUCheck procedure and thus can

be easily understood.

TABLE V

EGCHECK PROCEDURE

Procedure EGCheck(s, EG(φ1), f,~k)

φ← EG(φ1);

add (φ, f,~k) to marked(s) ;

if ¬check(φ1, f,~k, s), then add (EG(φ1), f,~k) to L(s), return false;

for each edge from s (s
π,e(~c)
−→ t) where (s, π(t)) |= e(~k/~c)

if (φ,π−1(f), π−1(~k)) ∈ marked(t) and (φ,π−1(f), π−1(~k)) ∈ L(t) then

return true;

if (φ,π−1(f), π−1(~k)) /∈ marked(t) then

flag← check(φ,π−1(f), π−1(~k), t);

if flag then

add (EG(φ1), f,~k) to L(s) and return true

add (¬EG(φ1), f,~k) to L(s) and return false

33

4.4.4 efpCheck Procedure

efpCheck procedure is invoked by check procedure when atomic formula Exist fair path is to

be checked in s. efpCheck procedure is given in Table VI. It is based on the standard algorithm which

finds out the maximum strongly connected components in a directed graph. Starting from state s where

Exist fair path is to be checked, efpCheck explores the GQS using depth first search. The depth first

search uses two stacks. One stack is used to store the part of the path that has been explored. This stack

is implemented implicitly as the calling stack in efpCheck procedure which recursively calls itself. The

other stack, the maximum strongly connected component stack, is explicit in the efpCheck procedure.

It is used to store the explored part of the maximum strongly connected component containing s. When

the depth first search starting from s is finished, all states of the maximum strongly connected component

containing s are on the stack. It is assumed by this procedure that the maximum strongly connected

component stack is created by check procedure before efpCheck is invoked.

Like EUCheck procedure, a new mark is created and stored with s when efpCheck is invoked on

s for the first time with the parameters. For each state s on which efpCheck is invoked, it is associated

with a partition array. This array is initialized when the mark is created such that s.partition[i].enabled

equals to True only if process i has a transition enabled in s. For all processes i, s.partition[i].executed

is initialized to False. They are updated to true later if an enabled transition in process i from s is part of

the maximum strongly connected component containing s. State s, along with the associated partition

array, is then pushed onto the maximum strongly connected component stack.

34

TABLE VI

EFPCHECK PROCEDURE

Procedure efpCheck(s, Exist Fair Path, f, ~k)

add (Exist Fair Path, f,~k) to marked(s);

Initialize s.partition and Push s onto maximum strongly connected component stack

for each edge from s (s
π,e(~c)
−→ t) where (s, π(t)) |= e(~k/~c)

if (Exist Fair Path, π−1(f), π−1(~k)) ∈ marked(t) and

(Exist Fair Path, π−1(f), π−1(~k)) ∈ L(t)

then add (Exist Fair Path, f,~k) to L(s) and return true;

if (Exist Fair Path, π−1(f), π−1(~k)) /∈ marked(t) and s
π,e(~c)
−→ t is non-tree-edge

Construct partitione for this edge and Combine s.partition with partitione;

Update s.partition’s execution bits;

if (Exist Fair Path, π−1(f), π−1(~k)) /∈ marked(t) and s
π,e(~c)
−→ t is tree-edge

if (efpCheck(Exist Fair Path, π−1(f), π−1(~k), t))

add (Exist Fair Path, f,~k) to L(s) and return true;

else

Combine t.partition with s.partition;

Update s.partition’s execution bits;

if s.partition indicates there is a fair path from s

add (Exist Fair Path, f,~k) to L(s) and return true;

else

Pop out those states from s in the maximum strongly component stack

add (¬Exist Fair Path, f,~k) to L(s) and return false;

35

For each edge s
π,e(~c)
−→ t from s, it is classified either as a non-tree-edge or a tree-edge according to

(6). A tree-edge goes from a reachable state from s to another state which has not been explored before.

A non-tree-edge forms a loop by connecting a reachable state from s to a upper-level reachable state

which is on the maximum strongly connected component stack. If s
π,e(~c)
−→ t is a tree-edge, efpCheck

is invoked on t and s.partition is updated accordingly after the invocation. If s
π,e(~c)
−→ t is a non-tree-

edge, efpCheck will not be invoked on t. s.partition is updated according to the loop formed when

this non-tree-edge is taken. After all edges s
π,e(~c)
−→ t from s have been checked and if there is no fair

path found from t, s.partition is examined to determine if there is a fair path from s. If there is, the

procedure returns true; otherwise, all those states explored from s (including s) that are on the maximum

strongly connected component stack are popped out from the stack and the procedure returns false.

4.4.5 EfairGCheck Procedure

EfairGCheck procedure is invoked by check procedure when the sub-formula to be checked is of

the form EfairG. Procedure EfairGCheck(s, EfairG(φ1), f,~k) is adopted from efpCheck with some

minor changes. It can be looked as applying efpCheck over a reduced graph of G where each state

satisfies φ1. This reduced graph need not to be constructed explicitly. Instead, it can be constructed

implicitly by avoiding those states that do not satisfy φ1. This procedure is given in Table VII. It

is assumed by this procedure that s, f |= φ1 using the process ids in ~k in the edge conditions when

EfairGCheck is invoked from check procedure; Otherwise, s, f 6|= EfairG(φ1) according to the se-

mantics of EfairG(φ1).

36

TABLE VII

EFAIRGCHECK PROCEDURE

Procedure EfairGCheck(s, EfairG(φ1), f,~k)

add (EfairG(φ1), f,~k) to marked(s) true;

Initialize s.partition and Push s onto maximum strongly connected component stack

for each edge from s (s
π,e(~c)
−→ t) where (s, π(t)) |= e(~k/~c) and check(φ1, π

−1(f), π−1(~k), t)

if (EfairG(φ1), π
−1(f), π−1(~k)) ∈ marked(t) and

(EfairG(φ1)), π
−1(f), π−1(~k)) ∈ L(t)

then add (EfairG(φ1), f,~k) to L(s) and return true;

if (EfairG(φ1), π
−1(f), π−1(~k)) /∈ marked(t) and s

π,e(~c)
−→ t is non-tree-edge

Construct partitione for this edge and Combine s.partition with partition e;

Update s.partition’s execution bits;

if (EfairG(φ1), π
−1(f), π−1(~k)) /∈ marked(t) and s

π,e(~c)
−→ t is tree-edge

if (EfairGCheck(EfairG(φ1)), π
−1(f), π−1(~k), t))

add (EfairG(φ1), f,~k) to L(s) and return true;

else

Combine t.partition with s.partition;

Update s.partition’s execution bits;

if s.partition indicates there is a fair path from s

add (EfairG(φ1), f,~k) to L(s) and return true;

else

Pop out those states from s in the maximum strongly component stack

add (¬EfairG(φ1), f,~k) to L(s) and return false;

37

4.5 Complexity Analysis

The worst case complexity of the algorithm can be shown to be O(N · |f| ·cn) where N is the number

of nodes plus edges in GQS(H,H, G), n is the number of processes and c is the depth of nesting of

process quantifiers plus number of distinct proceed ids appearing in the edge conditions. This worst case

complexity assumes that there is no state symmetry at all. If there is state symmetry then this would

perform much better.

CHAPTER 5

IMPLEMENTATION AND EXPERIMENTAL RESULTS

5.1 Implementation

We have implemented the model-checking algorithm as an extension of the SMC model-checker

(7). The tool first constructs GQS from the input concurrent program. Then the input CCTL formula is

checked inductively by invoking the check procedure on the formula in the initial state of GQS with

the input evaluation.

Even though formula decomposition and sub-formula tracking are used in our model checking algo-

rithm to minimize the unwinding of GQS (indirectly), the states explored during unwinding can still be

a very large number for a real industry level protocol. For example, to check the mutual exclusion prop-

erty of the cache coherence protocol of 4 clients, the algorithm will explore more than 100,000 states.

Recall that in chapter 4, when EUCheck procedure, EGCheck procedure, EfairGCheck procedure

and efpCheck procedure are invoked for the first time with the invocation parameters on a state, a mark

(of the form (φ, f,~k)) will be generated and stored with the state. After a formula has been evaluated

in a state, a new label (of the form (φ, f, ~k)) will be generated and stored to record the evaluation result.

The labels and marks may use up a lot of memory if they are stored with a large number of states. To

reduce the memory used by the labels and marks, we replace the f component and ~k component in the

mark or label with a permutation π such that π(f0) = f and π(~k0) = ~k. Here f0 denotes the evaluation

given in the input and ~k0 denotes the vector of the process ids that appearing in all edge conditions of

38

39

the GQS. This permutation can be computed easily by composing the inverse of those permutations

along the path from initial state to the state against which the formula is check.

As shown in the procedures in chapter 4, we often need to determine if a state in GQS has already

been associated with a given label or mark. Given above representation of the label and mark, we need

to reconstruct the set of labels or marks associated with the state before we can search among them. The

reconstruction can be time-consuming, especially when the same label or mark needs to be reconstructed

again and again. To speed up this searching process, we compute and store a checksum for each label

and mark when they are generated. The checksum is computed from the f component and ~k component

of a label or mark. The set of labels or marks associated with a state are organized as hash table using the

checksum as the hash key. Before the label or mark is reconstructed, the checksum is compared. Only

if the checksum matches, the labels or marks will be reconstructed and compared. This substantially

speeds up the searching process while minimizing the memory consumption.

5.2 Experimental Results

This tool has been applied to the resource controller protocol as well as industry level protocol such

as cache coherency protocol. We observed significant performance improvement when checking some

useful properties over these protocols.

We checked the mutual exclusion property ∀i ∈ client ∀j ∈ client(i 6= j → AG(lk[i] 6= 2 ∨

lk[j] 6= 2)) with resource controller protocol. Here lk[j] 6= 2 denotes that client j is not in critical

section. For cache coherence protocol, we checked the property ∀i ∈ client ∀j ∈ client(i 6= j →

AG(cache[i] 6= exclusive ∨ cache[j] 6= exclusive)) asserting that no two clients can hold the cache

40

line in exclusive mode simultaneously. Here cache[i] 6= exclusive denotes that client i does not hold

the cache line exclusively. The experimental results are presented in Table VIII.

TABLE VIII

EXPERIMENTAL RESULTS

protocol client# quant elim mark# time(s)

10 yes 208 0.02

Resource 10 no 3780 1.6

Controller 20 yes 448 0.12

20 no * *

Cache 4 yes 96712 5.7

Coherence 4 no 115344 6.9

The column quant elim indicates if our approach of quantifier elimination through state symme-

try is employed. Without using quantifier elimination, the protocols are checked in the naive approach.

mark# gives the number of marks generated in the experiments. Recall that a mark is generated when

41

EUCheck, EGCheck, EfairGCheck or efpCheck procedure is invoked for the first time on a state.

The running time in column time(s) is given by running the experiments on a Intel Pentium M 1.3G

PC. In some experiments where some path is too long to be held in the calling stack, we encountered

stack overflow. This is indicated with * in the table. Our tool showed performance improvement for

both protocols. While with cache coherence protocol of 4 clients, our tool ran 20-30 percentage faster

by utilizing quantifier elimination, we got much more performance improvement with resource con-

troller protocol of more than 10 clients. This confirms that this tool is especially useful when verifying

properties with quantifiers over a large set of processes.

CHAPTER 6

CONCLUSION

This thesis introduce CCTL which is an extension of CTL. It also presents a model check algorithm

which can efficiently check CCTL formula employing GQS without unwinding it completely. The

algorithm exploits state symmetries. Here, for the first time, we use them to model-check for complex

properties, using the COUNT functions and process quantifiers, efficiently. The algorithm uses formula

decomposition and sub-formula tracking naturally and implicitly. The formula decomposition is used in

the sense that when we invoke the check procedure on a sub-formula φ we only track the process ids

required for it. Similarly sub-formula tracking is used implicitly.

42

43

CITED LITERATURE

1. Sistla, A. P. and Godefroid, P.: Symmetry and reduced symmetry in model checking. In CAV,
pages 91–103, 2001.

2. Clarke, E. M., Jha, S., Enders, R., and Filkorn, T.: Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design, 9(1/2):77–104, 1996.

3. C.N. Ip and D.L. Dill: Better verification through symmetry. In Computer Hardware Description
Languages and their Applications, eds. D. Agnew, L. Claesen, and R. Camposano, pages

87–100, Ottawa, Canada, 1993. Elsevier Science Publishers B.V., Amsterdam, Netherland.

4. Emerson, E. A. and Sistla, A. P.: Symmetry and model checking. Formal Methods in System
Design, 9(1/2):105–131, 1996.

5. Emerson, E. A. and Sistla, A. P.: Utilizing symmetry when model checking under fairness assump-
tions: An automata-theoretic approach. In CAV, pages 309–324, 1995.

6. Gyuris, V. and Sistla, A. P.: On-the-fly model checking under fairness that exploits symme-
try. Formal Methods in System Design: An International Journal, 15(3):217–238, Novem-
ber 1999.

7. Sistla, A. P., Gyuris, V., and Emerson, E.: SMC: a symmetry-based model checker for verifi-
cation of safety and liveness properties. ACM Transactions on Software Engineering and
Methodology, 9(2):133–166, April 2000.

8. Emerson, E. A. and Trefler, R. J.: From asymmetry to full symmetry: New techniques for symmetry
reduction in model checking, August 08 1999.

9. Emerson, E., Havlicek, J., and Trefler, R.: Virtual symmetry reduction. In 15th Symposium on
Logic in Computer Science (LICS’ 00), pages 121–131, Washington - Brussels - Tokyo,

June 2000. IEEE.

10. Emerson, E. A. and Lei, C.-L.: Temporal reasoning under generalized fairness constraints. In
STACS, pages 21–36, 1986.

44

11. Clarke, E. M., Grumberg, O., and Browne, M. C.: Reasoning about networks with many identical
finite-state processes. In PODC ’86: Proceedings of the fifth annual ACM symposium on
Principles of distributed computing, pages 240–248. ACM Press, 1986.

12. Sistla, A. P. and Godefroid, P.: Symmetry and reduced symmetry in model checking. ACM
Transactions on Programming Languages and Systems, 26(4):702–734, July 2004.

VITA

NAME: Xiaodong Wang

EDUCATION: Bachelor of Science in Computer Science,

Wuhan University, China, 1997.

Master of Engineering in Computer Science,

Institute of Software, Chinese Academy of Science, China, 2000

Master of Science in Computer Science,

University of Illinois at Chicago (UIC), Chicago, Illinois, 2004.

EXPERIENCE: UIC Research Assistant, Computer Science Department, 01/2003 to 12/2004.

Research focus on model checking concurrent system

Software Engineer, Wireless Department, Bell-labs China, 07/2000 to 11/2002.

Software Development in GSM and CDMA Base Station Controller project.

HONORS: Member of Bell-labs Golden Award Winner Team, 2001.

Lucent Technology Excellence Award winner, 2002

45

