
Secure Johnny’s Applications With Ethos
Jon A. Solworth

http://www.ethos-os.org

Johnny wants to build robust applications

Ideally, he could
I Focus on application semantics
I Secure application with ease effort by the aid of strong system

semantics
I Be able to reason about his application

In reality

Johnny carries the burden of secure his own software. This is hard
in that he

I Does not have the right “mind-set” to write secure code
I Is left with no guarantee by the system, which provides low levels of

abstraction
I Feels difficult to reason about security. He has to worry about

vulnerabilities at different layers, backward compatibility, complex
administration, and etc.

Ethos overview

I An operating system designed to ease writing and
configuring robust (attack resistant) applications

I Forgoes backwards compatibility to provide only
best-in-class protections

I Maximizes guaranteed protections while retaining
flexibility needed for modern applications

I Currently supports applications written in Go

Ethos principles

I Security protections built in
I Simplification through providing right abstractions

Principle 1: Strong mechanism

I Network communication encrypted and authenticated
I Only authorized users and hosts are seen by servers

Principle 2: Simplification

Ethos re-designed system layer abstraction

serviceFd←ipc (service, remoteHost)

I Makes an encrypted connection to a service
I serviceName, service to connect to; host, remote host name
I OS resolves host to IP address and public key; NULL for localhost

netFd, user←import (serviceFd)

I Accept an incoming connection
I Returns a file descriptor and user
I Return implies user authenticated and authorized by OS

fdSend (fd, user, program)

I Ethos’ answer to setuid; send a file descriptor to a virtual process
I fd[], tuple of file descriptors; u, user; program, executable

fd←fdReceive ()

I Receive a file descriptor
contents←readVar (dirFd, filename) / read (streamFd)
writeVar (dirFd, filename, contents) / write (streamFd, contents)

I Read or write a file in its entirety or the next object from a stream

POSIX C/S Program Ethos C/S Program

Example: Client and server application on Ethos
Client makes a request

1 netFd ← i pc (serviceFd , " someService " ,
" t e s t . example . com ")

2 w r i t e (netFd , " request ")
3 response ← read (netFd)

Distributor distributes connections to virtual processes
4 l i s t e n F d ← adve r t i se (" someService ")
5 do fo reve r
6 netFd , user ← impor t (l i s t e n F d)
7 fdSend (netFd , user , " serverVP ")

Per-user server virtual process executes server logic
8 do fo reve r
9 fd ← fdReceive ()

10 request ← read (fd)
11 / / Perform serv ice−s p e c i f i c work .
12 w r i t e (fd , response)

Johnny is happy

Johnny writes less code (zero lines of network authentication code),
spends agreater fraction of his time on application semantics, can
better reason about his application, and need not be concerned
about many classes of security holes which in Ethos are eliminated
by design.

