
CS 587: Computer Systems Security
Systems

Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

October 3, 2011

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Part I

Trusted Computer Base and System

Layers

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Trusted Computer Base (TCB)

The Trusted Computer Base (TCB) is that part of the
computer system which, if it fails can impact security.

TCB issues:

The larger the TCB is, the more difficult it is to make it secure.
The TCB should be as simple as possible:

Minimize misuse
Enable better verification

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Trusted Computer Base (TCB)

The Trusted Computer Base (TCB) is that part of the
computer system which, if it fails can impact security.

TCB issues:

The larger the TCB is, the more difficult it is to make it secure.

The TCB should be as simple as possible:

Minimize misuse
Enable better verification

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Trusted Computer Base (TCB)

The Trusted Computer Base (TCB) is that part of the
computer system which, if it fails can impact security.

TCB issues:

The larger the TCB is, the more difficult it is to make it secure.
The TCB should be as simple as possible:

Minimize misuse
Enable better verification

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Trusted Computer Base (TCB)

The Trusted Computer Base (TCB) is that part of the
computer system which, if it fails can impact security.

TCB issues:

The larger the TCB is, the more difficult it is to make it secure.
The TCB should be as simple as possible:

Minimize misuse

Enable better verification

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Trusted Computer Base (TCB)

The Trusted Computer Base (TCB) is that part of the
computer system which, if it fails can impact security.

TCB issues:

The larger the TCB is, the more difficult it is to make it secure.
The TCB should be as simple as possible:

Minimize misuse
Enable better verification

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

What must the trusted computing base contain

It must contain the OS

It must contain any critical applications

It is the applications that actual determine what is to be
written (integrity)
Availability cannot be provided without regard to applications
who perform the critical tasks

Security is not a monolithic property

Security is not a property

In any event, the goal is really to limit loss, not prevent all
attacks

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered systems

Systems built in layers

Higher levels depend on lower levels, but lower levels do not
depend on higher levels.

Hence, if component C depends upon C ′ for its security and
C ′ is insecure, then C cannot be secure.

Since a component almost always depends upon its lower
levels for security, the TCB usually includes all lower levels.

The lower the level that protections can be added the smaller
the TCB.

The smaller the TCB, the easier it is to validate.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered systems

Systems built in layers

Higher levels depend on lower levels, but lower levels do not
depend on higher levels.

Hence, if component C depends upon C ′ for its security and
C ′ is insecure, then C cannot be secure.

Since a component almost always depends upon its lower
levels for security, the TCB usually includes all lower levels.

The lower the level that protections can be added the smaller
the TCB.

The smaller the TCB, the easier it is to validate.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered systems

Systems built in layers

Higher levels depend on lower levels, but lower levels do not
depend on higher levels.

Hence, if component C depends upon C ′ for its security and
C ′ is insecure, then C cannot be secure.

Since a component almost always depends upon its lower
levels for security, the TCB usually includes all lower levels.

The lower the level that protections can be added the smaller
the TCB.

The smaller the TCB, the easier it is to validate.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered systems

Systems built in layers

Higher levels depend on lower levels, but lower levels do not
depend on higher levels.

Hence, if component C depends upon C ′ for its security and
C ′ is insecure, then C cannot be secure.

Since a component almost always depends upon its lower
levels for security, the TCB usually includes all lower levels.

The lower the level that protections can be added the smaller
the TCB.

The smaller the TCB, the easier it is to validate.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered systems

Systems built in layers

Higher levels depend on lower levels, but lower levels do not
depend on higher levels.

Hence, if component C depends upon C ′ for its security and
C ′ is insecure, then C cannot be secure.

Since a component almost always depends upon its lower
levels for security, the TCB usually includes all lower levels.

The lower the level that protections can be added the smaller
the TCB.

The smaller the TCB, the easier it is to validate.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered systems

Systems built in layers

Higher levels depend on lower levels, but lower levels do not
depend on higher levels.

Hence, if component C depends upon C ′ for its security and
C ′ is insecure, then C cannot be secure.

Since a component almost always depends upon its lower
levels for security, the TCB usually includes all lower levels.

The lower the level that protections can be added the smaller
the TCB.

The smaller the TCB, the easier it is to validate.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware
Architecture
BIOS
Operating System
Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware
Architecture
BIOS
Operating System
Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware

Architecture
BIOS
Operating System
Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware
Architecture

BIOS
Operating System
Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware
Architecture
BIOS

Operating System
Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware
Architecture
BIOS
Operating System

Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware
Architecture
BIOS
Operating System
Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Layered protection

Protecting the system depends on the layering of the system

Layers from low to high:

Hardware
Architecture
BIOS
Operating System
Application

Attacks can come at any of these layers.

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Hardware attacks

Hardware attacks can be viewed from the security they deny:

Confidentiality electromagnetic waves

Integrity radiation

Denial of Service power failure

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Hardware attacks

Hardware attacks can be viewed from the security they deny:

Confidentiality electromagnetic waves

Integrity radiation

Denial of Service power failure

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Hardware attacks

Hardware attacks can be viewed from the security they deny:

Confidentiality electromagnetic waves

Integrity radiation

Denial of Service power failure

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Hardware attacks

Hardware attacks can be viewed from the security they deny:

Confidentiality electromagnetic waves

Integrity radiation

Denial of Service power failure

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls
Interrupts asynchronous hardware events

Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems

At least I don’t think they do.
Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls

Interrupts asynchronous hardware events
Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems

At least I don’t think they do.
Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls
Interrupts asynchronous hardware events

Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems

At least I don’t think they do.
Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls
Interrupts asynchronous hardware events

Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems

At least I don’t think they do.
Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls
Interrupts asynchronous hardware events

Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems

At least I don’t think they do.
Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls
Interrupts asynchronous hardware events

Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems

At least I don’t think they do.
Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls
Interrupts asynchronous hardware events

Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems
At least I don’t think they do.

Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

Architecture attacks

Architecture attacks are based on flaws in the computer
architecture design or implementation. These typically have
something to do with:

Trap instruction necessary to invoke OS system calls
Interrupts asynchronous hardware events

Memory hierarchy caches and TLBs

Processor errata typically has to do with some combinations
of unusual events.

Architectures tend not to have systemic problems
At least I don’t think they do.
Who would do that anyway?

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

BIOS attacks

The BIOS

Contains the boot loader

Boot loader loads the OS kernel

What happens if it loads the wrong OS kernel or modifies the
correct one?

BIOS need not be used once system boots, but probably is for
ACPI, . . .

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

BIOS attacks

The BIOS

Contains the boot loader

Boot loader loads the OS kernel

What happens if it loads the wrong OS kernel or modifies the
correct one?

BIOS need not be used once system boots, but probably is for
ACPI, . . .

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

BIOS attacks

The BIOS

Contains the boot loader

Boot loader loads the OS kernel

What happens if it loads the wrong OS kernel or modifies the
correct one?

BIOS need not be used once system boots, but probably is for
ACPI, . . .

Jon A. Solworth CS 587: Computer Systems Security Systems



Trusted Computer Base and System Layers
Trusted Computer Base
Layered Protection

BIOS attacks

The BIOS

Contains the boot loader

Boot loader loads the OS kernel

What happens if it loads the wrong OS kernel or modifies the
correct one?

BIOS need not be used once system boots, but probably is for
ACPI, . . .

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Part II

Operating System

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Operating system

The operating system consists of:

kernel through which all services are provided to
processes and

system processes which perform services not included in the kernel.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Operating system

The operating system consists of:

kernel through which all services are provided to
processes and

system processes which perform services not included in the kernel.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Operating System Kernel

The kernel is the program that:

executes privileged instructions and

implements the process abstraction.

traditionally the kernel tends to be fairly difficult to attack.

Because bugs in the kernel can destabilize the system (causing
crashes) the kernel is very conservatively maintained.
Kernel code is extensively read and reviewed by very skilled
people.

but this assumes that the kernel is not of enormous
complexity and goes through an appropriate assurance process

today, kernels are neither conservatively maintained or
carefully read, they change at too high a rate.

Kernels such as Linux/Window are over 10 million lines of
code

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel overview

Why kernels are important to security:

All operations of a process which effect the outside world
(files, networks, user interface, or other processes) are
mediated by the kernel.

The kernel must protect (isolate) processes from each other
(to implement the process abstraction) and hence must have
a protection mechanism.

The kernel enables the uniform control of protection since it
applies to every process.

All kernels provide protections beyond what is needed for
process abstraction.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel overview

Why kernels are important to security:

All operations of a process which effect the outside world
(files, networks, user interface, or other processes) are
mediated by the kernel.

The kernel must protect (isolate) processes from each other
(to implement the process abstraction) and hence must have
a protection mechanism.

The kernel enables the uniform control of protection since it
applies to every process.

All kernels provide protections beyond what is needed for
process abstraction.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel overview

Why kernels are important to security:

All operations of a process which effect the outside world
(files, networks, user interface, or other processes) are
mediated by the kernel.

The kernel must protect (isolate) processes from each other
(to implement the process abstraction) and hence must have
a protection mechanism.

The kernel enables the uniform control of protection since it
applies to every process.

All kernels provide protections beyond what is needed for
process abstraction.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel overview

Why kernels are important to security:

All operations of a process which effect the outside world
(files, networks, user interface, or other processes) are
mediated by the kernel.

The kernel must protect (isolate) processes from each other
(to implement the process abstraction) and hence must have
a protection mechanism.

The kernel enables the uniform control of protection since it
applies to every process.

All kernels provide protections beyond what is needed for
process abstraction.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

OS vs. Interpreters

An interpreter like the JVM, reads each instruction (byte
code), checks its legality, and then executes it.

An interpreter is software which checks instructions

In an OS, instructions run on the hardware.

But in applications, privileged instructions are intercepted by
hardware

Thus the computer can run user code safely at full speed

While isolating that code from harming others

And perform a safe transition to OS kernel code.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process abstraction

To support the process abstraction, the architecture must
implement:

memory protection so that one process cannot access another’s
memory.

time interrupts so that a process does not hog the CPU.

privileged instructions so that processes not interfere with each
other.

trap instructions a controlled means of entering into privilege
mode (and the kernel).

The kernel alone deals with these privileged instructions while
processes operate using only unprivileged instructions.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process abstraction

To support the process abstraction, the architecture must
implement:

memory protection so that one process cannot access another’s
memory.

time interrupts so that a process does not hog the CPU.

privileged instructions so that processes not interfere with each
other.

trap instructions a controlled means of entering into privilege
mode (and the kernel).

The kernel alone deals with these privileged instructions while
processes operate using only unprivileged instructions.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process abstraction

To support the process abstraction, the architecture must
implement:

memory protection so that one process cannot access another’s
memory.

time interrupts so that a process does not hog the CPU.

privileged instructions so that processes not interfere with each
other.

trap instructions a controlled means of entering into privilege
mode (and the kernel).

The kernel alone deals with these privileged instructions while
processes operate using only unprivileged instructions.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process abstraction

To support the process abstraction, the architecture must
implement:

memory protection so that one process cannot access another’s
memory.

time interrupts so that a process does not hog the CPU.

privileged instructions so that processes not interfere with each
other.

trap instructions a controlled means of entering into privilege
mode (and the kernel).

The kernel alone deals with these privileged instructions while
processes operate using only unprivileged instructions.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process abstraction

To support the process abstraction, the architecture must
implement:

memory protection so that one process cannot access another’s
memory.

time interrupts so that a process does not hog the CPU.

privileged instructions so that processes not interfere with each
other.

trap instructions a controlled means of entering into privilege
mode (and the kernel).

The kernel alone deals with these privileged instructions while
processes operate using only unprivileged instructions.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Privileged instructions

Privileged instructions protect that which would break the process
abstraction:

interrupts prevents a process from seizing control of the
processor

I/O devices shared resources

virtual memory isolates processes from each other and from the
kernel

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Memory layout (Virtual memory)

text

stack

heap

kernel

Virtual memory is divided into
kernel and user space

User space contains a single
process with components

heap: contains dynamically
allocated storage
stack: contains local variables
and procedure linkage and
text: contains program code
plus constants

In privileged mode can read all
memory

In unprivileged mode can read
only user space memory

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel example: read system call

POSIX system call: read(fd, b, s)

fd is a file descriptor (an integer identifier for a file-like device)
buffer is a pointer into a character array
size is the number of bytes to be read into the process

It is a request to the OS kernel to read s bytes into buffer b of
a file identified by fd.

The OS kernel may either do it or refuse to do it (returning an
error)

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

User space invoking of read system call

The process pushes the parameters on the stack (three values)

the trap is invoked with the system call number
(corresponding to the read system call)

when execution returns to the process the result of the system
call is returned

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel processing of read system call

Control enters the kernel at a fixed location

The system call prologue is executed

The system call number is used to lookup the system call
address

The system call, syscallRead is invoked

It checks that the arguments are well formed
It checks that the process has permissions to do the read
It performs the read

The results are returned to user space

A return from interrupt instruction turns off privilege space

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Vulnerabilities

Read passes a pointer into the kernel. Kernel must check that
the pointer is in user space.

If it’s not, user space program could cause part of the Kernel
to be overwritten

Must ensure that every byte of the buffer is in user space

Must ensure that the process is authorized to read the value

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel structure

Kernel is a combination of:

Machine dependent components privilege instructions, layout of
hardware structures (eg. page tables), and
performance critical code.

Machine independent components The vast majority of code.
There is an abstract machine assumed by the
machine independent components implemented with
the architecture plus machine dependent
components.

The porting to a new architecture then involves the writing of a
new machine dependent component.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel structure

Kernel is a combination of:

Machine dependent components privilege instructions, layout of
hardware structures (eg. page tables), and
performance critical code.

Machine independent components The vast majority of code.
There is an abstract machine assumed by the
machine independent components implemented with
the architecture plus machine dependent
components.

The porting to a new architecture then involves the writing of a
new machine dependent component.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel structure

Kernel is a combination of:

Machine dependent components privilege instructions, layout of
hardware structures (eg. page tables), and
performance critical code.

Machine independent components The vast majority of code.
There is an abstract machine assumed by the
machine independent components implemented with
the architecture plus machine dependent
components.

The porting to a new architecture then involves the writing of a
new machine dependent component.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Device drivers

Most of the code in an OS (over 2/3rds) is for device drivers.

These device drivers are not architecture independent in that
the same device controller can be used by different
architectures.

These are a disproportionate source of bugs (since they are
often designed by device manufacturers or even third parties)

The devices themselves often behave erratically

They are hard to test, because access to appropriate hardware
is required

e.g., Microsoft said 27% of blue-screen-of-death due to
NVidia drivers

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel layering

Hardware

abstract
machine

services

Services Networking, filesystem, IPC, sub-page memory
allocation.

Abstract machine paging, system calls/interrupts, synchronization,
device drivers.

Hardware there is a great latitude to the architecture.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel layering

Hardware

abstract
machine

services

Services Networking, filesystem, IPC, sub-page memory
allocation.

Abstract machine paging, system calls/interrupts, synchronization,
device drivers.

Hardware there is a great latitude to the architecture.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel layering

Hardware

abstract
machine

services

Services Networking, filesystem, IPC, sub-page memory
allocation.

Abstract machine paging, system calls/interrupts, synchronization,
device drivers.

Hardware there is a great latitude to the architecture.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel layering

Hardware

abstract
machine

services

Services Networking, filesystem, IPC, sub-page memory
allocation.

Abstract machine paging, system calls/interrupts, synchronization,
device drivers.

Hardware there is a great latitude to the architecture.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The role of the compiler

Almost all of the the kernel is written in C

There is about 8,600 lines of assembler to support i386 (most
in math emulator), and there is some in-line assembly code.

The compiler cannot emit privilege instructions since this is
outside its model. Privilege instructions are coded in assembly
(.S files) or with in-line assembly code (using asm directives).

Also synchronization (eg. Test-and-Set) and trap must be
done with assembler.

Linux runs on multiple different architectures, these must
support at least the abstract machine in terms of the process
level abstractions and protections.

C is problematic for writing secure code (many bugs possible)

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The role of the compiler

Almost all of the the kernel is written in C

There is about 8,600 lines of assembler to support i386 (most
in math emulator), and there is some in-line assembly code.

The compiler cannot emit privilege instructions since this is
outside its model. Privilege instructions are coded in assembly
(.S files) or with in-line assembly code (using asm directives).

Also synchronization (eg. Test-and-Set) and trap must be
done with assembler.

Linux runs on multiple different architectures, these must
support at least the abstract machine in terms of the process
level abstractions and protections.

C is problematic for writing secure code (many bugs possible)

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The role of the compiler

Almost all of the the kernel is written in C

There is about 8,600 lines of assembler to support i386 (most
in math emulator), and there is some in-line assembly code.

The compiler cannot emit privilege instructions since this is
outside its model. Privilege instructions are coded in assembly
(.S files) or with in-line assembly code (using asm directives).

Also synchronization (eg. Test-and-Set) and trap must be
done with assembler.

Linux runs on multiple different architectures, these must
support at least the abstract machine in terms of the process
level abstractions and protections.

C is problematic for writing secure code (many bugs possible)

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The role of the compiler

Almost all of the the kernel is written in C

There is about 8,600 lines of assembler to support i386 (most
in math emulator), and there is some in-line assembly code.

The compiler cannot emit privilege instructions since this is
outside its model. Privilege instructions are coded in assembly
(.S files) or with in-line assembly code (using asm directives).

Also synchronization (eg. Test-and-Set) and trap must be
done with assembler.

Linux runs on multiple different architectures, these must
support at least the abstract machine in terms of the process
level abstractions and protections.

C is problematic for writing secure code (many bugs possible)

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The role of the compiler

Almost all of the the kernel is written in C

There is about 8,600 lines of assembler to support i386 (most
in math emulator), and there is some in-line assembly code.

The compiler cannot emit privilege instructions since this is
outside its model. Privilege instructions are coded in assembly
(.S files) or with in-line assembly code (using asm directives).

Also synchronization (eg. Test-and-Set) and trap must be
done with assembler.

Linux runs on multiple different architectures, these must
support at least the abstract machine in terms of the process
level abstractions and protections.

C is problematic for writing secure code (many bugs possible)

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The role of the compiler

Almost all of the the kernel is written in C

There is about 8,600 lines of assembler to support i386 (most
in math emulator), and there is some in-line assembly code.

The compiler cannot emit privilege instructions since this is
outside its model. Privilege instructions are coded in assembly
(.S files) or with in-line assembly code (using asm directives).

Also synchronization (eg. Test-and-Set) and trap must be
done with assembler.

Linux runs on multiple different architectures, these must
support at least the abstract machine in terms of the process
level abstractions and protections.

C is problematic for writing secure code (many bugs possible)

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Logical model of the kernel

Semantically, the kernel is a monitor:

Class-like definition with only methods as public members

Processes invoke monitor

At most one process can be actively executing in the monitor

Other processes in the monitor are sleeping—waiting for an
event

Non-preemptive scheduling

Note that the kernel is inherently concurrent

This is another source for bugs

(This is the model of the original Unix system).

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The process-kernel interface

The process and kernel share same address space.

The kernel does not trust the process

The process needs some safe way of invoking the kernel

The process must trust the kernel

The kernel can access the processes address space

The availability of a process depends on the OS

Kernel can prevent availability to process but cannot provide
availability

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The process-kernel interface

The process and kernel share same address space.

The kernel does not trust the process

The process needs some safe way of invoking the kernel

The process must trust the kernel

The kernel can access the processes address space

The availability of a process depends on the OS

Kernel can prevent availability to process but cannot provide
availability

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The process-kernel interface

The process and kernel share same address space.

The kernel does not trust the process
The process needs some safe way of invoking the kernel

The process must trust the kernel

The kernel can access the processes address space

The availability of a process depends on the OS

Kernel can prevent availability to process but cannot provide
availability

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The process-kernel interface

The process and kernel share same address space.

The kernel does not trust the process
The process needs some safe way of invoking the kernel

The process must trust the kernel

The kernel can access the processes address space

The availability of a process depends on the OS

Kernel can prevent availability to process but cannot provide
availability

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The process-kernel interface

The process and kernel share same address space.

The kernel does not trust the process
The process needs some safe way of invoking the kernel

The process must trust the kernel
The kernel can access the processes address space

The availability of a process depends on the OS

Kernel can prevent availability to process but cannot provide
availability

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The process-kernel interface

The process and kernel share same address space.

The kernel does not trust the process
The process needs some safe way of invoking the kernel

The process must trust the kernel
The kernel can access the processes address space

The availability of a process depends on the OS

Kernel can prevent availability to process but cannot provide
availability

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

The process-kernel interface

The process and kernel share same address space.

The kernel does not trust the process
The process needs some safe way of invoking the kernel

The process must trust the kernel
The kernel can access the processes address space

The availability of a process depends on the OS
Kernel can prevent availability to process but cannot provide
availability

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process-kernel communication

The kernel acts as a server, it is always ready to accept
communication from the process (synchronous mechanism is
sufficient)

The process acts as a client, it may not be ready to accept
communications from the kernel (need asynchronous
mechanism)

Mechanisms for kernel-process communication

System calls procedure call-like mechanism to enter the kernel

Signals asynchronous notification to processes from kernel

Proc filesystem filesystem representation of various system state

Netlink Kernel communication for specialized
communication

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process-kernel communication

The kernel acts as a server, it is always ready to accept
communication from the process (synchronous mechanism is
sufficient)

The process acts as a client, it may not be ready to accept
communications from the kernel (need asynchronous
mechanism)

Mechanisms for kernel-process communication

System calls procedure call-like mechanism to enter the kernel

Signals asynchronous notification to processes from kernel

Proc filesystem filesystem representation of various system state

Netlink Kernel communication for specialized
communication

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process-kernel communication

The kernel acts as a server, it is always ready to accept
communication from the process (synchronous mechanism is
sufficient)

The process acts as a client, it may not be ready to accept
communications from the kernel (need asynchronous
mechanism)

Mechanisms for kernel-process communication

System calls procedure call-like mechanism to enter the kernel

Signals asynchronous notification to processes from kernel

Proc filesystem filesystem representation of various system state

Netlink Kernel communication for specialized
communication

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Kernel interface has widened over time

More information available to user space: affecting
confidentiality

More ways of changing state from user space: affecting
integrity

Things should be going in the opposite direction

Narrowing interfaces

Thus improving confidentiality and integrity

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

User space access issues

When copying structures to user space, care must be taken to
ensure that the kernel does not leak information to the process:

1 The padding areas of structures must be zeroed or

2 the whole structure must be zeroed before copying over
members.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Process structures

In Unix, the process credentials (as well as file descriptors and
other resources) are:

inherited from the parent.

changed by system calls

Hence the initial login process for a user sets the UID on whose
behalf the process executes and then spawns other processes with
the UID inherited from parent.

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

Authorization

Need to limit what processes can do

And thus narrow ability to perform attacks

Need sophisticated authorization to implement various trust
models

But more sophisticated authorization results in higher
complexity

How do you build authorization which is both usable and
provides sufficient protections?

Jon A. Solworth CS 587: Computer Systems Security Systems



Operating System
OS Kernel
Compilers
Process-Kernel Interaction

OS problems

Failure to check input parameters (they come from user space
and therefore are untrusted)

Failure to initialize values copied to user space (confidentiality)

Loadable modules

Race conditions

Device drivers

Complexity

Authorization limitations

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Part III

Virtual Machines (VMs)

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Virtual Machines (VMs)

There is one more system layer, an optional one, that needs to
be talked about because it is increasingly important

A virtual machine is a software implementation of a machine.

the most interesting machine is a computer, containing
processor and I/O devices

In the ideal case, the VM is indistinguishable from the
hardware

An OS runs within a VM

A VM Monitor (VMM) implements one or more VMs

There are two types of VMMs

Bare metal a VMM that runs directly on the hardware
Hosted a VMM that runs on top of an OS

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Bare metal VMM

Bare metal VMM implementing 2 VMs

VMM is also called a Hypervisor

Hardware

Virtual Machine Monitor (VMM)

OS0OS1

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Bare Metal VMM

The OS runs in unprivileged mode, VMM in privileged mode.

In a fully virtualized system, the hardware intercepts privileged
instructions/interrupts.

And transfers control to a Virtual Machine Monitor (VMM)

The virtual machine simulates what the hardware would do

Safely multiplexing the operations from different OSs

An alternative is to use paravitualization

Which uses VMM hypercalls to request privileged operations

Examples: Xen, Vmware VMX

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Bare Metal VMs–device drivers

Bare metal VMs have the device driver problem.

How to support all those devices?

Use an OS which supports many devices—Linux.

Now we have two operating systems,

Dom0: the privileged OS with device drivers
DomU: a guest OS which uses only virtual devices

This enables the VMM to be very small, about 100K lines of
code

But the DomU’s depend upon Dom0

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Xen

Hardware

Virtual Machine Monitor (VMM)

DomU0 DomU1 Dom0

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Hosted VMs

Hardware

(Host) Operating System

VMM

(Guest) OS

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Hosted VMs

Hosted VMs are implemented on top of an OS

Cannot rely on the architecture to intercept privilege
instruction

So it could use software, but that is slow

To speed things up, use binary rewriting to translate
instruction streams on the fly

Binary rewriting reads a sequence of instructions and replaces
them with an equivalent sequence (in this case, without
privileged instructions)

Translation occurs once, gets reuse many times

Examples: VMware

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Intel architecture

The original Intel architecture could not support full
virtualization

So VMware used binary rewriting

Which was pioneered by an earlier company, Transmeta which
built an Intel compatible architecture

Xen use paravituralization

Then Intel and AMD introduced self virtualizing extensions to
x86

And now this is widely used to support OSs such as Windows
which are proprietary and hence cannot be ported to
paravirtualizing VMs

Jon A. Solworth CS 587: Computer Systems Security Systems



Virtual Machines (VMs)

Security Implications of VMs

Hosted VMs are vulnerable to the OSs they run on top of

It does not help to run a super secure OS on top of a
vulnerable OS

Bare metal OSs are vulnerable to their VMMs

But the VMMs are relatively small and easy to secure

The DomU OSs are also vulnerable to the Dom0 OSs

But with care we can make these only sensitive to device
drivers

But if DomU encrypts I/O, device drivers only effect
availability.

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Part IV

The programming toolchain

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Application programming dependencies

Application programs depend not only on the OS but on the
user space software

These effect the correctness of application programs and thus
impact every aspect of their security

The primary effects are due to

programming language and thus the ability to express correct
programs
user space software which produces binary executable

Note that after an executable is produced, the OS is the
entity with which the process interacts.

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Programming language effect

Programming language semantics have an important role on
vulnerabilities

Type safety prevents buffer overflow

Automatic garbage collection prevents double free, use after
free, and other insidious memory errors

Threads enable memory race conditions

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Application program tool chain

What happens when you compile a C program?

1 The compiler runs your program through the C preprocessor
including system and application headers.

2 The program is converted to an intermediary form and syntax
and semantic checks are made.

3 The program is optimized

4 Assembly language is produced

5 Assembly language is converted into binary code (e.g., ELF
format)

6 The binary code is linked with system and application libraries

7 An executable is produced

8 At run time, dynamic runtime libraries are loaded with the
executable, and executed.

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Incorporating attack code in applications

Include files contain code

Only what is needed to complete linking is pulled in from
library

Thus an attacker’s printf can replace library printf

Compilation/Assembly can insert malware or vulnerabilities

Dynamic libraries mean that library code can be substituted
after compilation

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Other dependencies

The environment variable LD LIBRARY PATH specifies where
libraries may be found.

PATH specifies where executables can be found if pathname
not fully specified

Setting environment variables is a non-privileged operation

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Trusting trust

Ken Thompson, the inventor of Unix, gave a paper entitled
On Trusting Trust for his Turing Award lecture.

Back in the early days, a tape of Unix was ordered by the
National Security Agency.

Thompson ponder how he could put in a trap door

He encoded a username/password in the login program

But that could be easily removed

So he put code in the compiler which would

Detect if it was compiling the login program
Detect if the trap door was removed from the login program
And if so reinsert the trap door

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Trusting trust (cont’d)

Now the trap door could be removed from the login program

But it was still visible in the compiler

Thompson wrote code to detect if the compiler was being
compiled and whether the trap door code was removed from
the compiler; if so reinsert the trap door code.

The compiler binary was created

The code was removed from the compiler.

Now no source code evidences any back door.

It is done all at the binary level.

Jon A. Solworth CS 587: Computer Systems Security Systems



The programming toolchain

Trusting trust conclusions

Transitory code can be used to compromise systems

The lower the level of transitory code, the easier it is to hide

In Thompson’s case, binary instead of source code

But it is possible to hide it even lower, in the BIOS

Or the hardware

Where it would be very difficult to find.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Part V

Application-level security services

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application security dependencies

Inherently, Integrity and Availability depend on applications

But what about security services?

e.g., authentication, authorization, encryption

Where should these be located?

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application-level security services

If it cannot be handled at the operating system level, then it must
be handled at the application level. The disadvantages are:

1 Increases the size of the TCB,

2 Each application must be individually configured,

3 Individually secure application may together be insecure
(composition),

4 Bugs in the application may cause protections to be bypassed,

5 Applications may be insufficiently protected, and

6 Not possible to analyze the protection configuration.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application-level security services

If it cannot be handled at the operating system level, then it must
be handled at the application level. The disadvantages are:

1 Increases the size of the TCB,

2 Each application must be individually configured,

3 Individually secure application may together be insecure
(composition),

4 Bugs in the application may cause protections to be bypassed,

5 Applications may be insufficiently protected, and

6 Not possible to analyze the protection configuration.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application-level security services

If it cannot be handled at the operating system level, then it must
be handled at the application level. The disadvantages are:

1 Increases the size of the TCB,

2 Each application must be individually configured,

3 Individually secure application may together be insecure
(composition),

4 Bugs in the application may cause protections to be bypassed,

5 Applications may be insufficiently protected, and

6 Not possible to analyze the protection configuration.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application-level security services

If it cannot be handled at the operating system level, then it must
be handled at the application level. The disadvantages are:

1 Increases the size of the TCB,

2 Each application must be individually configured,

3 Individually secure application may together be insecure
(composition),

4 Bugs in the application may cause protections to be bypassed,

5 Applications may be insufficiently protected, and

6 Not possible to analyze the protection configuration.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application-level security services

If it cannot be handled at the operating system level, then it must
be handled at the application level. The disadvantages are:

1 Increases the size of the TCB,

2 Each application must be individually configured,

3 Individually secure application may together be insecure
(composition),

4 Bugs in the application may cause protections to be bypassed,

5 Applications may be insufficiently protected, and

6 Not possible to analyze the protection configuration.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application-level security services

If it cannot be handled at the operating system level, then it must
be handled at the application level. The disadvantages are:

1 Increases the size of the TCB,

2 Each application must be individually configured,

3 Individually secure application may together be insecure
(composition),

4 Bugs in the application may cause protections to be bypassed,

5 Applications may be insufficiently protected, and

6 Not possible to analyze the protection configuration.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application-level security services

If it cannot be handled at the operating system level, then it must
be handled at the application level. The disadvantages are:

1 Increases the size of the TCB,

2 Each application must be individually configured,

3 Individually secure application may together be insecure
(composition),

4 Bugs in the application may cause protections to be bypassed,

5 Applications may be insufficiently protected, and

6 Not possible to analyze the protection configuration.

Jon A. Solworth CS 587: Computer Systems Security Systems



Application-level security services

Application level (cont’d)

It is not feasible to study protections unless they are
abstracted away from their implementations.

Application level protections make that more difficult to do.

Although integrity depends on the correctness of the
executable, decoupling of correctness and security should be
maximized.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Part VI

OS principles and ratings

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

OS protection principles

Several principles were espoused by Salzer and Schroeder ’75 and
are still valuable today:

Least provide the minimum privilege
privilege required to perform a function.

Economy of The protection system design should be
mechanism small, simple, and straightforward.

Open design security should not depend on
ignorance of attackers.

Complete mediation Every access must be checked

Permission based The default is to deny access.

Separation of Use multiple mechanisms to protect important
privilege items, including separation of duties.

Least common Share as little as possible
mechanism

Ease of use So that the mechanism is not avoided.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Additional OS features

Trusted Path Ensure that user is entering information (such as
passwords) only to the appropriate program.

Object reuse ensure reused objects don’t contain leftover info.

Auditing after the fact “forensics”:

Accountability and audit log have a record of what
users did.

Reduce the size audit logs can be very large, so there
needs to be an effective way of
searching it

Intrusion detection find in real time suspicious events
so that they can be examined.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Additional OS features

Trusted Path Ensure that user is entering information (such as
passwords) only to the appropriate program.

Object reuse ensure reused objects don’t contain leftover info.

Auditing after the fact “forensics”:

Accountability and audit log have a record of what
users did.

Reduce the size audit logs can be very large, so there
needs to be an effective way of
searching it

Intrusion detection find in real time suspicious events
so that they can be examined.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Additional OS features

Trusted Path Ensure that user is entering information (such as
passwords) only to the appropriate program.

Object reuse ensure reused objects don’t contain leftover info.

Auditing after the fact “forensics”:

Accountability and audit log have a record of what
users did.

Reduce the size audit logs can be very large, so there
needs to be an effective way of
searching it

Intrusion detection find in real time suspicious events
so that they can be examined.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Advantages of kernel-level protections

But what are the advantages of kernel level protections?

Layered Design: Segregates application level correctness from
kernel level protections.

Kernel level protections are small and general
purpose and hence likely to be extensively
verified.
Failures of application correctness does not
effect kernel protection. (This is not the case
w/application level protection).
It is possible to answer the question: What
happens if the application is incorrect but the
kernel protections are correctly implemented?

Better abstractions: since kernel-based protections must be general
purpose they lead to thinking about better
abstractions.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Advantages of kernel-level protections

But what are the advantages of kernel level protections?

Layered Design: Segregates application level correctness from
kernel level protections.

Kernel level protections are small and general
purpose and hence likely to be extensively
verified.
Failures of application correctness does not
effect kernel protection. (This is not the case
w/application level protection).
It is possible to answer the question: What
happens if the application is incorrect but the
kernel protections are correctly implemented?

Better abstractions: since kernel-based protections must be general
purpose they lead to thinking about better
abstractions.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Control of security policy: by externalizing protection, the
organization owning the system controls the security
rather than application developer/packager.

Determining sensitive programs: The protection configuration
enables identification of the most sensitive programs,

Least privilege: Provides application with the minimum privilege to
do their function (this is a safety concern).

System level protections: Kernel protections apply to all
applications on a system—they cannot be bypassed.

Analysis: automatically can determine properties arising from
system protection.

Simplified application code: since it need not have protection code.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Control of security policy: by externalizing protection, the
organization owning the system controls the security
rather than application developer/packager.

Determining sensitive programs: The protection configuration
enables identification of the most sensitive programs,

Least privilege: Provides application with the minimum privilege to
do their function (this is a safety concern).

System level protections: Kernel protections apply to all
applications on a system—they cannot be bypassed.

Analysis: automatically can determine properties arising from
system protection.

Simplified application code: since it need not have protection code.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Control of security policy: by externalizing protection, the
organization owning the system controls the security
rather than application developer/packager.

Determining sensitive programs: The protection configuration
enables identification of the most sensitive programs,

Least privilege: Provides application with the minimum privilege to
do their function (this is a safety concern).

System level protections: Kernel protections apply to all
applications on a system—they cannot be bypassed.

Analysis: automatically can determine properties arising from
system protection.

Simplified application code: since it need not have protection code.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Control of security policy: by externalizing protection, the
organization owning the system controls the security
rather than application developer/packager.

Determining sensitive programs: The protection configuration
enables identification of the most sensitive programs,

Least privilege: Provides application with the minimum privilege to
do their function (this is a safety concern).

System level protections: Kernel protections apply to all
applications on a system—they cannot be bypassed.

Analysis: automatically can determine properties arising from
system protection.

Simplified application code: since it need not have protection code.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Control of security policy: by externalizing protection, the
organization owning the system controls the security
rather than application developer/packager.

Determining sensitive programs: The protection configuration
enables identification of the most sensitive programs,

Least privilege: Provides application with the minimum privilege to
do their function (this is a safety concern).

System level protections: Kernel protections apply to all
applications on a system—they cannot be bypassed.

Analysis: automatically can determine properties arising from
system protection.

Simplified application code: since it need not have protection code.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Control of security policy: by externalizing protection, the
organization owning the system controls the security
rather than application developer/packager.

Determining sensitive programs: The protection configuration
enables identification of the most sensitive programs,

Least privilege: Provides application with the minimum privilege to
do their function (this is a safety concern).

System level protections: Kernel protections apply to all
applications on a system—they cannot be bypassed.

Analysis: automatically can determine properties arising from
system protection.

Simplified application code: since it need not have protection code.

Jon A. Solworth CS 587: Computer Systems Security Systems



OS principles and ratings
The case for kernel level protections
Conclusions

Conclusions

Systems are layered for security

Upper layers depend on lower layers and are therefore
vulnerable to them

And the layers all the way to the top (applications) are
necessary for some security property

Each layer can be attacked, often by breaking the abstractions
that their designers relied upon.

And that provides a large number of paths to attack.

Jon A. Solworth CS 587: Computer Systems Security Systems


	Trusted Computer Base and System Layers
	Trusted Computer Base and System Layers

	Operating System
	Operating System

	Virtual Machines (VMs)
	Virtual Machines (VMs)

	The programming toolchain
	The programming toolchain

	Application-level security services
	Application-level security services

	OS principles and ratings
	OS principles and ratings


