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ABSTRACT 
This paper studies the problem of extracting data from a Web 
page that contains several structured data records. The objective is 
to segment these data records, extract data items/fields from them 
and put the data in a database table. This problem has been 
studied by several researchers. However, existing methods still 
have some serious limitations. The first class of methods is based 
on machine learning, which requires human labeling of many 
examples from each Web site that one is interested in extracting 
data from. The process is time consuming due to the large number 
of sites and pages on the Web. The second class of algorithms is 
based on automatic pattern discovery. These methods are either 
inaccurate or make many assumptions. This paper proposes a new 
method to perform the task automatically. It consists of two steps, 
(1) identifying individual data records in a page, and (2) aligning 
and extracting data items from the identified data records. For 
step 1, we propose a method based on visual information to 
segment data records, which is more accurate than existing 
methods. For step 2, we propose a novel partial alignment 
technique based on tree matching. Partial alignment means that 
we align only those data fields in a pair of data records that can be 
aligned (or matched) with certainty, and make no commitment on 
the rest of the data fields. This approach enables very accurate 
alignment of multiple data records. Experimental results using a 
large number of Web pages from diverse domains show that the 
proposed two-step technique is able to segment data records, align 
and extract data from them very accurately.   
Categories and Subject Descriptors  
H.3.m [Information Storage and Retrieval]: Miscellaneous −  Data 
Extraction, Wrapper Generation, Web 

General Terms: Algorithms, Experimentation. 

Keywords: Data extraction, wrapper, data record extraction. 

1. INTRODUCTION 
Structured data objects are a very important type of information 
on the Web. Such data objects are often records from underlying 
databases and displayed in Web pages with some fixed templates. 
In this paper, we also call them data records. Mining data records 
in Web pages is useful because they typically present their host 
pages’ essential information, such as lists of products and 
services. Extracting these structured data objects enables one to 
integrate data/information from multiple Web pages to provide 

value-added services, e.g., comparative shopping, meta-querying 
and search. Figure 1 gives some example data records on the 
Web. Figure 1(A) shows a Web page segment containing a list of 
two products (books). The description of each book is a data 
record. Figure 1(B) shows a page segment containing a data table, 
where each data record is a table row. Our objective is twofold: 
(1) automatically identify such data records in a page, and (2) 
automatically align and extract data items from the data records. 

Several approaches have been reported in the literature for mining 
data records from Web pages. The first approach is the manual 
approach. By observing a Web page and its source code, the 
programmer finds some patterns from the page and then writes a 
program to identify and extract all the data items/fields. This 
approach is not scalable to a large number of pages. Other 
approaches all have some degree of automation. There are two 
main types of algorithms, wrapper induction and automatic 
extraction. In wrapper induction [11, 19, 23, 25, 33], a set of 
extraction rules are learnt from a set of manually labeled pages or 
data records. These rules are then used to extract data items from 
similar pages. This method still requires substantial manual 
efforts. In automatic methods, [12][1] find patterns or grammars 
from multiple pages containing similar data records. Requiring an 
initial set of pages containing similar data records is, however, a 
major limitation of this type of approaches because such pages 
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(A) A list of products 

 
(B) A data table 

Figure 1: Two example page segments with data records 



have to be found manually or by another system. [20] proposes a 
method that tries to explore the detailed information page behind 
the current page to extract data records. The need for detailed 
information pages behind is also a serious limitation because 
many data records do not have such pages behind (e.g., Figure 
1(B)). Furthermore, the method assumes that the detail pages are 
given, which is not realistic in practice. Due to a large number of 
links in a typical Web page, automatically identifying links that 
point to detailed information pages is a non-trivial task. [8] 
proposes a string matching method. However, its results are weak 
as shown in [21]. Another assumption that most current systems 
make is that the relevant information of a data record is contained 
in a contiguous segment of the HTML code. However, in some 
Web pages, the description of one object may intertwine with the 
descriptions of some other objects. For example, the descriptions 
of two objects in the HTML source may follow this sequence, 
part1 of object1, part1 of object2, part2 of object1, part2 of 
object2. Thus, the descriptions of both object1 and object2 are not 
contiguous. However, when they are displayed on a browser, they 
appear contiguous to human viewers. In Section 2, we discuss 
these methods in detail and compare with our proposed approach.  

This paper proposes a two-step strategy to solve the problem.  

1. Given a page, the method first segments the page to identify 
each data record without extracting its data items. We have 
improved our previous technique MDR [21] for this purpose. 
Specifically, the new method also uses visual cues to find data 
records. Visual information helps the system in two ways: 

(i) It enables the system to identify gaps that separate data 
records, which helps to segment data records correctly 
because the gap within a data record (if any) is typically 
smaller than that in between data records. 

(ii) The proposed system identifies data records by analyzing 
HTML tag trees or DOM trees [7]. A straightforward way 
to build a tag tree is to follow the nested tag structure in 
the HTML code. However, sophisticated analysis has to 
be incorporated to handle errors in the HTML code (e.g., 
missing or ill-formatted tags). Whereas the visual or 
display information can be obtained after the HTML code 
is rendered by a Web browser, it also contains information 
about the hierarchical structure of the tags. In this work, 
rather than analyzing the HTML code, visual information 
(i.e., the locations on the screen at which tags are 
rendered) is utilized to infer the structural relationship 
among tags and to construct a tag tree. This method leads 
to more robust tree construction due to the high error 
tolerance of the rendering engines of Web browsers (e.g., 
Internet Explorer). As long as the browser is able to render 
a page correctly, its tag tree can be built correctly. 

2. A novel partial tree alignment method is proposed to align and 
to extract corresponding data items from the discovered data 
records and put the data items in a database table. Using tree 
alignment is natural because of the nested (or tree structured) 
organization of HTML code. This new method is very 
accurate as our experiments show.  

Specifically, after all data records have been identified, the 
sub-trees of each data record are re-arranged into a single tree 
as each data record may be contained in more than one sub-
tree in the original tag tree of the page, and each data record 
may not be contiguous. The tag trees of all the data records 
are then aligned using our partial alignment method. By 

partial alignment, we mean that for each pair of trees (or data 
records), we only align those data fields that can be aligned 
with certainty and ignore those parts that cannot, i.e., making 
no commitment on the locations of the unaligned data items. 
Early uncertain commitments can result in undesirable effects 
for later alignment involving other data records. This method 
turns out to be very effective for multiple tree alignment.  

The resulting alignment enables us to extract data items from 
all data records in the page. It can also serve as an extraction 
pattern to be used to extract data items from other pages with 
data records generated using the same template.   

Our two-step approach called DEPTA (Data Extraction based 
Partial Tree Alignment), which is very different from all existing 
methods, does not make those assumptions made by existing 
methods. As long as a page contains at least two data records, our 
system will automatically find them (see Section 3.5 for more 
discussion). Our experimental results using a large number of 
pages show that the proposed technique is highly effective.  

2. RELATED WORK 
Related works to ours are in the area of wrapper generation. A 
wrapper is a program that extracts data from a Web site or page 
and put them in a database [1, 11, 12, 16, 18, 19, 22, 23, 25]. 
There are two main approaches to wrapper generation.  

The first approach is wrapper induction, which uses supervised 
learning to learn data extraction rules from a set of manually 
labeled positive and negative examples. Manual labeling of data 
is, however, labor intensive and time consuming. Additionally, 
for different sites or even pages in the same site, the manual 
labeling process needs to be repeated because they follow 
different templates/patterns. Example wrapper induction systems 
include WIEN [19], Softmealy [18], Stalker [23], WL2 [11], [25], 
etc. Our technique requires no human labeling. It mines data 
records in a page and extracts data from the records automatically.  

The second approach is automatic extraction. In [14], a study is 
made to automatically identify data record boundaries. The 
method is based on a set of heuristic rules, e.g., highest-count tags, 
repeating-tags and ontology-matching. [5] proposes a few more 
heuristics to perform the task without using domain ontology. 
However, [21] shows that these methods produce poor results. In 
addition, these methods do not extract data from data records.  

[8] proposes a method to find patterns from the HTML tag string 
of a page, and then use the patterns to extract data items. The 
method uses the Patricia tree and sequence alignment to find 
inexact matches. However, [21] shows that its performance is also 
weak. Our new method does not use tag strings for alignment but 
trees, which exploits nested tree structures to perform much more 
accurate data extraction. [13] also gives a set of heuristics to find 
individual product information, e.g., price and others.  

In [1, 12, 34], two more techniques are proposed. However, they 
need to use multiple pages (which are assumed to be given) that 
contain similar data records from the same site to find patterns or 
grammars from the pages to extract data records. Assuming the 
availability of multiple pages containing similar data records is a 
serious limitation. Our method works on each single page.  

[20] proposes another method for data extraction.  Its main idea is 
to utilize the detailed data in the page behind the current page to 
identify data records. It is common that a page with multiple data 
records does not contain the complete information of each data 



record. Instead, a link is normally used to point to the page with 
complete details. For example, a product record normally has a 
link pointing to the page that contains the detailed description of 
the product. The technique is thus applicable to the example in 
Figure 1(A), but not to the one in Figure 1(B) because each data 
record in Figure 1(B) has no link to a detail page. Furthermore, 
the method in [20] assumes that detail pages are given (in their 
experiments such pages are manually identified), which is not 
realistic. Due to a large number of links in a typical Web page, 
automatically identifying the correct links that point to detail 
pages is not a trivial task. Our technique is applicable to both 
types of pages in Figure 1 as it does not require any detail page.  

Another problem with most existing approaches is that they 
assume that the relevant information of a data record is contained 
in a contiguous segment of the HTML code. This is not always 
true. This issue has been discussed in the Introduction section. 
The proposed method is able to handle this situation because our 
record segmentation method is able to identify such data records.  

In [21], we propose the MDR algorithm, which only identifies 
data records but does not align or extract data items from the data 
records. Thus, it only performs the first step of our task. Even for 
the first step, it has two main shortcomings. (1) The algorithm 
makes use of the HTML tag tree of the Web page to extract data 
records from the page. However, erroneous tags in the HTML 
source of some pages make it hard to build correct trees, which 
make it impossible to find correct data records in these pages. 
Using visual (rendering) information to build trees in our new 
system solves this problem. (2) A single data record may be 
composed of multiple sub-trees. Due to noisy information, MDR 
may find wrong combinations of sub-trees. In our new system, 
visual gaps between data records help to deal with this problem. 
Note that visual cues have been used in other Web tasks, e.g., 
finding different semantics blocks [29, 28].  

Finally, tree matching has been used for finding the main contents 
in news pages in [27]. However, their task is different from ours.  

3. DATA RECORD EXTRACTION  
We now start to present our proposed technique. This section 
focuses on the first step: segmenting the Web page to identify 
individual data records. It does not align or extract data items in 
the data records, which will be the topic of the next section.  
Since this step is an improvement to our previous technique MDR 
[21], below we give a brief overview of the MDR algorithm and 
present the enhancements made to MDR in this work. We also 
call the enhanced algorithm MDR-2 (version 2 of MDR). 

3.1 The Basic Idea of MDR 
The MDR algorithm is based on two observations about data 
records in a Web page and an edit distance string matching 
algorithm [2] to find data records. The two observations are:  

1. A group of data records that contains descriptions of a set of 
similar objects are typically presented in a contiguous region 
of a page and are formatted using similar HTML tags. Such a 
region is called a data record region (or data region in short). 
For example, in Figure 1(A) two books are presented in one 
contiguous region. They are also formatted using almost the 
same sequence of HTML tags. If we regard the HTML tags of 
a page as a long string, we can use string matching (e.g., edit 
distance [2]) to compare different sub-strings to find those 
similar ones, which may represent similar data records.  

The problem with this approach is that the computation is 
prohibitive because a data record can start from any tag and 
end at any tag. A set of data records typically does not have 
the same length in terms of its tag strings because it may not 
contain exactly the same pieces of information (see Figure 
1(A)). The next observation helps to deal with this problem. 

2. The nested structure of HTML tags in a Web page naturally 
forms a tag tree. For example, Figure 2 shows an example tag 
tree. In this tree, each data record is wrapped in 3 TR nodes 
with their sub-trees under the same parent TBODY. The two 
data records are in the two dash-lined boxes. Our second 
observation is that a set of similar data records are formed by 
some child sub-trees of the same parent node.  

It is unlikely that a data record starts in the middle of a child 
sub-tree and ends in the middle of another child sub-tree. 
Instead, it starts from the beginning of a child sub-tree and 
ends at the end of the same or a later child sub-tree. For 
example, it is unlikely that a data record starts from TD* and 
ends at TD# (Figure 2). This observation makes it possible to 
design a very efficient algorithm based on edit distance string 
comparison to identify data records because it limits the tags 
from which a data record may start and end in a tag tree. 1 

 
Figure 2: An example tag tree of a page segment 

Experiments show that these observations work very well. By no 
means do we assume that a Web page has only one data region 
that contains data records. In fact, a Web page may contain a few 
data regions. Different regions may have different data records.   

Given a Web page, the algorithm works in three steps (we also 
discuss the enhancements made to MDR in our current work): 

Step 1: Building a HTML tag tree of the page. In the new system, 
visual (rendering) information is used to build the tag tree.  

Step 2: Mining data regions in the page using the tag tree. A data 
region is an area in the page that contains a list of similar data 
records. Instead of mining data records directly, which is hard, 
MDR mines data regions first and then finds data records 
within them. For example, in Figure 2, we first find the single 
data region below node TBODY. In our new system, again 
visual information is used in this step to produce better results.  

Step 3: Identifying data records from each data region. For 
example, in Figure 2, this step finds data record 1 and data 
record 2 in the data region below node TBODY.  

The main enhancement to the MDR algorithm is the use of visual 

                                                                 
1 We may also use tree edit distance. However, since string edit distance 

already works very well, we did not use tree edit distance for this step.   
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information to help building more robust trees and also to find 
more accurate data regions. We describe them below.  

3.2 Building a HTML Tag Tree 
In a Web browser, each HTML element (consisting of a start tag, 
optional attributes, optional embedded HTML content, and an end 
tag that may be omitted) is rendered as a rectangle. A tag tree can 
be constructed based on the nested rectangles (resulted from 
nested tags). The details are as follows:  

1.  Find the 4 boundaries of the rectangle of each HTML element 
by calling the embedded parsing and rendering engine of a 
browser, e.g., Internet explorer.  

2.  Detect the containment relationship among the rectangles, i.e., 
whether one rectangle is contained inside another rectangle. A 
tree can be built based on the containment check.  

Let us use an example to illustrate the process. Assume we have 
the HTML code on the left of Figure 3, which is a table with two 
rows (tr’s) and each row with two cells (td’s). The rendering 
engine of the browser produces the boundary coordinates (in 
pixels) for each HTML element shown on the right of Figure 3. 

 

1  <table> 
2  <tr> 
3   <td> … </td> 
4   <td> … </td> 
5  </tr> 
6  <tr> 
7   <td> … </td> 
8   <td> … </td> 
9  </tr> 
10 </table> 

Figure 3: A HTML code segment and boundary coordinates 

With the visual information, we can build the tree in Figure 4 by 
following the sequence of opening tags and by containment 
checks. The tree construction algorithm is fairly straightforward. 
We will not discuss it further here.   

 

3.3 Mining Data Regions 
This step mines every data region in a page that contains similar 
data records. Instead of mining data records directly, which is 
hard, we first mine data regions. By comparing tag strings of 
individual nodes (including their descendents) and combination of 
multiple adjacent nodes, we can find each data region.  

We use an artificial tag tree in Figure 5 to explain. We find that 
nodes 5 and 6 are similar (based on edit distance) and form the 
data region labeled 1, nodes 8, 9 and 10 are similar and form the 
data region labeled 2, and the pairs of nodes (14, 15), (16, 17) and 
(18, 19) are similar and form the data region labeled 3. To avoid 
using both individual nodes and node combinations, we use the 
concept of the generalized node to denote each similar individual 
(tag) node and each (tag) node combination. Thus, a sequence of 

adjacent generalized nodes forms a data region. Each shaded 
individual node or node combination in Figure 5 is a generalized 
node. The concept of generalized node captures the situations that 
a data record may be contained in a few sibling tag nodes rather 
than one and that data records may not be contiguous in the tag 
tree, but generalized nodes are contiguous (see below). 

 
Figure 5: An illustration of generalized nodes & data regions 

Due to the observation in Section 3.1, the number of string 
comparisons to find generalized nodes for identifying data regions 
is not very large. We only need to perform comparisons among 
the children nodes of a parent node. The process of identifying 
data regions is involved; see [21] for more details.  
In our new system, gaps between data records are used to 
eliminate false node combinations. We utilize the following visual 
observation about data records: 

• The gap between two data records in a data region should be 
no smaller than any gap within a data record. For example, in 
Figure 1(A), a large gap exists between the two data records.  

3.4 Identifying Data Records 
After all data regions are identified, we identify data records from 
generalized nodes. We note that each generalized node (a single 
or a combination of tag nodes in the tag tree) may not represent a 
single data record. The situations can be quite complex. Below, 
we only highlight two interesting cases in which a data record is 
not contained in a contiguous segment of the HTML code in order 
to show some advanced capabilities of our system (see [21] for 
more details and other simpler cases).  

3.4.1 Non-contiguous Data Records: Case 1 
In some Web pages, the description of an object (a data record) is 
not in a contiguous segment of the HTML code. There are two 
main cases. Figure 6 shows an example of the first case.  

In this example, the data region contains two generalized nodes, 
and each generalized node contains two tag nodes (two rows), 
which indicates that these two tag nodes (rows) are not similar to 
each other. But each tag node has the same number of children 
nodes and the children nodes are similar to each other. One row 
lists the names of the two objects in two cells, and the next row 
lists the other pieces of information of the objects also in two 
cells. This results in the HTML code: name 1, name 2, description 
1, description 2, name 3, name 4, description 3, description 4.  

For this kind of situation, the corresponding children nodes of 
every tag node in a generalized node form a non-contiguous data 
record. This is illustrated by the tag tree at the bottom of Figure 6, 
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Figure 4: Tag tree for the HTML code in Figure 3 

table 

tr tr 

td td td td 

left  right top bottom
100 300 200 400
100 300 200 300 
100 200 200 300 
200 300 200 300 
 
100 300 300 400 
100 200 300 400 
200 300 300 400 



where r represents row, n represents name and d represents 
description. G1 and G2 are generalized nodes. (n1, d1), (n2, d2), 
(n3, d3), and (n4, d4) form four data records.  

 
Figure 6:  A multiple-record data region: each generalized 
node contains more than one non-contiguous data record 

3.4.2 Non-contiguous Data Records: Case 2 
Figure 7 shows an example of the second case, where two or more 
data regions form multiple data records. In this example, row 1 
and row 2 are not similar to each other, but row 1 forms a data 
region and row 2 forms another data region. Each data region 
contains two (small) generalized nodes.  

 
From the tag tree in Figure 7, we see that this case has the same 
structure as the one in Figure 6. Therefore a similar strategy can 
be applied here, i.e., the corresponding generalized nodes of each 
data region are joined together to form non-contiguous data 
records. This process is illustrated by the tag tree in Figure 7 (G1, 
G2, g1 and g2 are generalized nodes).  

3.5 An Important Note on Data Records 
Finally, it is important to note that MDR or MDR-2 does not 
know what regular data records are useful to a user. It simply 
finds all of them. However, in a particular application, the user is 
usually interested in only a specific type of data records, e.g., a 
list of products, or data tables. Simple heuristics can be designed 
to output only the required type of data records. For example, in 

MDR (or MDR-2), as an option it can output only product data 
records based on some indicators, e.g., image, price and others. 

4. DATA EXTRACTION 
We now present the partial tree alignment technique for data 
extraction. The key task is how to match corresponding data items 
or fields from all data records. There are two sub-steps: 

1. Produce one rooted tag tree for each data record: After all data 
records are identified, the sub-trees of each data record are re-
arranged into a single tree. As shown above, each data record 
may be contained in more than one sub-tree of the original tag 
tree of the page, and each data record may not be contiguous. 
Thus, this sub-step is needed to compose a single tree for each 
data record (an artificial root node may also need to be 
added). We will not discuss this further as it is fairly simple. 

2. Partial tree alignment: The tag trees of all data records in each 
data region are aligned using our partial alignment method 
which is based on tree matching. It should be noted that in the 
matching process, we only use tags. No data item is involved.  

Below, we first give a brief introduction to tree edit distance or 
tree matching and then present a restricted tree matching method 
that we use in this work. After that we will discuss multiple 
alignments and present the partial tree alignment method for 
aligning multiple data records based on their tag trees.   

We note here that string edit distance is not suitable for this step 
as a string does not consider the tree structure, which is very 
useful in determining the correct alignment of data items. Due to 
the fact that more than one alignment of two strings may result in 
the same edit distance, string alignment can result in many errors. 
The matter is made worse by the fact that most tags used to form 
data records are tr’s and td’s. After string matching, it is hard to 
decide which alignment is the correct one as there are many 
possible alignments. However, tree matching significantly 
reduces the number of possible alignments because of the tree 
structure constraint. In our algorithm, we only use one simple rule 
to resolve conflicts when there is more than one possible tree 
alignment. We simply choose the possible sub-tree alignment that 
appears the earliest in the tree. This method works quite well in 
our experiments. Thus, we did not design more sophisticated 
conflict resolution strategies.  

4.1 Tree Edit Distance 
Similar to string edit distance, tree edit distance [31, 30] between 
two trees A and B (we are only interested in labeled ordered 
rooted trees) is the cost associated with the minimum set of 
operations needed to transform A into B. In the classic 
formulation, the set of operations used to define tree edit distance 
includes three operations: node removal, node insertion, and node 
replacement. A cost is usually assigned to each of the operations. 
Solving the tree edit distance problem is often assisted by finding 
a minimum-cost mapping between two trees [30].  The concept of 
mapping [30] is formally defined as: 
Let X be a tree and let X[i] be the ith node of tree X in a preorder 
walk of the tree. A mapping M between a tree A of size n1 and a 
tree B of size n2 is a set of ordered pairs (i, j), one from each tree, 
satisfying the following conditions for all (i1, j1), (i2, j2) ∈ M:  

(1) i1 = i2 iff j1 = j2; 
(2) A[i1] is on the left of A[i2] iff B[j1] is on the left B[j2]; 
(3) A[i1] is an ancestor of A[i2] iff B[j1] is an ancestor of B[j2]. 

name1 name2 

description1 

Row1 

Row2 description2 

Figure 7: Adjacent data regions form more than one 
non-contiguous data records 
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Intuitively, the definition requires that each node can appear no 
more than once in a mapping and the order between sibling nodes 
and the hierarchical relation between nodes are both preserved. 
Figure 8 shows a mapping example.  

 
Figure 8: A general tree mapping example 

Several algorithms have been proposed to address the problem of 
finding the minimum set of operations (i.e., the one with the 
minimum cost) to transform one tree into another. All the 
formulations have complexities above quadratic [10]. It has also 
been shown that if the trees are not ordered, the problem is NP-
complete [36]. In [30], a solution based on dynamic programming 
is presented. The algorithm has a complexity of O(n1n2h1h2), 
where n1 and n2 are the sizes of the trees and h1 and h2 are heights 
of the trees. In [32][10], two other algorithms are also presented 
with similar complexities. 

4.2 Simple Tree Matching 
In the above general setting, mapping can cross levels, e.g., node 
a in tree A and node a in tree B. There is also replacement, e.g., 
node b in A and node h in B. In this work, we use a restricted 
matching algorithm [35], which was first proposed to compare 
two computer programs in software engineering. It was called 
simple tree matching (STM). STM evaluates the similarity of two 
trees by producing the maximum matching through dynamic 
programming with complexity O(n1n2), where n1 and n2 are the 
sizes of trees A and B respectively. No node replacement and no 
level crossing are allowed.  

Let A and B be two trees and i ∈ A, j ∈ B are two nodes in A and 
B respectively. A matching between two trees is defined to be a 
mapping M such that for every pair (i, j) ∈ M where i and j are 
non-root nodes, (parent(i), parent(j)) ∈ M. A maximum matching 
is a matching with the maximum number of pairs.  
Let A = <RA, A1, A2,…, Am> and B=<RB, B1, B2,…, Bn> be two 
trees, where RA and RB are the roots of A and B, and Ai, Bj are the 
ith and jth first-level sub-trees of A and B respectively. When RA 
and RB contain identical symbols, the maximum matching 
between A and B is MA,B+1, where MA,B is the maximum matching 
between <A1, A2,…, Am> and <B1, B2,…, Bn>. MA,B can be 
obtained by the following dynamic programming scheme: 
1. If the maximum matching between Am and Bn, is larger than 

any maximum matching between Am and Bi (1≤i<n), then MA,B 
is the maximum matching between <A1, A2,…, Am-1> and <B1, 
B2,…, Bn-1> plus the maximum matching between Am and Bn. 

2. Otherwise, MA,B is the same as the maximum matching 
between <A1, A2,…, Am> and <B1, B2,…, Bn-1>, or between 
<A1, A2,…, Am-1> and <B1, B2,…, Bn>.  

In the Simple_Tree_Matching algorithm in Figure 9, the roots of 
A and B are compared first (line 1). If the roots contain distinct 
symbols, then the two trees do not match at all. If the roots 

contain identical symbols, then the algorithm recursively finds the 
maximum matching between first-level sub-trees of A and B and 
save it in W matrix (line 8). Based on the W matrix, a dynamic 
programming scheme is applied to find the number of pairs in a 
maximum matching between two trees A and B.  

Algorithm: Simple_Tree_Matching(A, B) 
1. if the roots of the two trees A and B contain distinct symbols 
2. then return (0); 
3. else  m:= the number of first-level sub-trees of A; 
4. n:= the number of first-level sub-trees of B; 
5. Initialization:  M[i, 0]:= 0 for i = 0, …, m; 
  M[0, j] := 0 for j = 0, …, n; 
6. for i = 1 to m do 
7. for j = 1 to n do 
8. M[i,j]:=max(M[i,j-1], M[i-1, j], M[i-1, j-1]+W[i, j]); 
 where W[i,j] = Simple_Tree_Matching(Ai, Bj) 
9. endfor; 
10. endfor; 
11. return (M[m, n]+1) 
12. endif 

Figure 9. The simple tree matching algorithm 

 
Figure 10. (A) Tree A; (B) Tree B; (C) M matrix for the first 

level sub-trees of  N1 and N15; (D) W matrix for the first level 
sub-trees of N1 and N15; (E)-(H) M matrixes and W matrixes 

for the lower level sub-trees. 

We use an example from [35] to explain the algorithm (Figure 
10). To find the maximum matching between trees A and B, their 
roots, N1 and N15, are compared first. Since N1 and N15 contain 
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identical symbols, M1-15[4,2]+1 is returned as the maximum 
matching value between trees A and B (line 11). M1-15 matrix is 
computed based on the W1-15 matrix, and each entry in W1-15, say 
W1-15[i, j], is the maximum matching between the ith and jth first-
level sub-trees of A and B, which is computed recursively based 
on its M matrix. For example, W1-15[4, 2] is computed recursively 
by building the matrices (E)-(H). All the relevant cells are shaded. 
The zero column and row in M matrices are initializations. Note 
that we use subscripts for both M and W matrices to indicate the 
nodes that they are working on.  
During the matching (or after the matching), we can trace back in 
the M matrices to find the matched/aligned nodes from the two 
trees. When there is more than one match for a node that gives the 
maximum result, we choose the one that appear the earliest in the 
tree. For example, in Figure 11, node c in tree A can match either 
the first or the last node c in tree B. We choose the first node c in 
B. This heuristics is used because for visual effectiveness in a 
Web page, if an earlier node x in tree A is to match a later node y 
in tree B, there is usually some indication (tags) before x. This 
heuristic works well according to our experiments.  

 
Figure 11.  Two trees with more than one possible match 

4.3 Multiple Alignment 
Since each data region in a page contains multiple data records, 
we need to align multiple tag trees in order to produce a single 
database table with all the corresponding data items/fields in the 
same column of the table. In this data table, each row represents a 
tree (data record), and each column represents a data field in each 
data record. Several existing algorithms can perform assignment 
of multiple sequences/trees. In [6], a multiple alignment method is 
proposed using multidimensional dynamic programming. The 
method is optimal but its time complexity is exponential, and thus 
not suitable for practical use. Many heuristic methods are also 
proposed [24, 17, 3]. Center string method, which is used in [8], is 
a particular heuristic method for multiple sequence alignments, 
which can also be used for trees. In this method, a sequence xc 
that minimizes (D(xi, xc) is the distance of two strings) 
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is selected as the center. Then a pair-wise alignment is performed 
for each pair (xi, xc), where i ≠ c. Assuming there are k sequences 
and all sequences have length n, finding the center takes O(k2n2) 
time and each step of the iterative pair-wise alignment takes O(n2) 
time. Therefore the overall time cost is O(k2n2). Similarly, we can 
find a center tree Tc and align all the other trees with Tc. There are 
two main drawbacks with this technique: Firstly, although the 
algorithm has a polynomial time complexity, it runs slowly for 
pages containing many data records or data records containing 
many attributes. Secondly, if the center tree does not have a 
particular data item, other data records that contain the same data 
item will not be aligned. We implemented the method and the 
results were poor. Other popular multiple alignment methods 

include progressive alignment [17] and iterative alignment [3]. 
They work like hierarchical clustering, and all require upfront 
O(k2) pair-wise matching. For our task, we can do better because 
we know that data records follow some predefined template.  

4.4 Partial Tree Alignment 
Our proposed approach aligns multiple tag trees by progressively 
growing a seed (tag) tree. The seed tree, denoted by Ts, is initially 
picked to be the tree with the maximum number of data fields. 
Note that the seed tree is similar to the center tree but without the 
O(k2) pair-wise tree matching to choose it. The reason for 
choosing this seed tree is clear as it is more likely for this tree to 
have a good alignment with data fields in other data records. Then 
for each Ti (i ≠ s), the algorithm tries to find for each node in Ti a 
matching node in Ts. When a match is found for node ni, a link is 
created from ni to ns to indicate its match in the seed tree. If no 
match can be found for node ni, then the algorithm attempts to 
expand the seed tree by inserting ni into Ts. The expanded seed 
tree Ts is then used in subsequent matching. Note that data items 
in the tag tree nodes are not used during matching or alignment.  

4.4.1 Partial alignment of two trees 
Before presenting the full algorithm for aligning multiple trees, let 
us first discuss the idea of partial alignment of two trees. As 
indicated above, after Ts and Ti are matched, some nodes in Ti can 
be aligned with their corresponding nodes of Ts because they 
match one another. For those nodes in Ti that are not matched, we 
want to insert them into Ts as they may contain optional data 
items. There are two possible situations when inserting a new 
node ni from Ti into the seed tree Ts, depending on whether a 
location in Ts can be uniquely determined to insert ni. In fact, 
instead of considering a single node ni, we can consider each set 
of unmatched consecutive sibling nodes nj…nm from Ti together. 
Without loss of generality, we assume that the parent node of 
nj…nm has a match in Ts and we want to insert nj…nm into Ts 
under the same parent node. We only insert nj…nm into Ts if a 
position for inserting nj…nm can be uniquely determined in Ts. 
Otherwise, they will not be inserted into Ts and left unaligned. 
The alignment is thus partial. The location for insertion of nj…nm 
can be uniquely decided: 
1. if nj…nm have two neighboring siblings in Ti, one on the right 

and one on the left, that are matched with two consecutive 
siblings in Ts. Figure 12(A) shows such a situation, which 
gives one part of Ts and one part of Ti. We can see that node c 
and node d (which are consecutive sibling nodes) in Ti can be 
inserted into Ts between node b and node e in Ts because node 
b and node e in Ts and Ti match. The new (extended) Ts is also 
shown in Figure 12(A). It should be noted that nodes a, b, c, d 
and e may also have their own children. We did not draw 
them to save space. This applied to all the cases below. 

2. if nj…nm has only one left neighboring sibling x in Ti and x 
matches the right most node x in Ts, then nj…nm can be 
inserted after node x in Ts. Figure 12(B) illustrates this case. 

3. if nj…nm has only one right neighboring sibling x in Ti and it 
matches the left most node x in Ts, then nj…nm can be inserted 
before node x in Ts. This case is similar to above. 

Otherwise, we cannot uniquely decide a location for unmatched 
nodes in Ti to be inserted into Ts. This is illustrated in Figure 
12(C). In this case, the unmatched node x in Ti could be inserted 
into Ts in two positions, between nodes a and b, or between node 
b and e in Ts. In this situation, we will not insert it into Ts. 
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Figure 12. Expanding the seed tree: (A) and (B) Unique 

expansion; (C) Insertion ambiguity. 

4.4.2 Full algorithm 
Figure 13 gives the full algorithm for multiple tree alignment 
based on partial alignment of two tag trees.  

Algorithm PartialTreeAlignment(S) 
1. Sort trees in S in descending order according to the number of 

data items that are not aligned; 
2. Ts = the first tree (which is the largest) and delete it from S; 
3. flag = false; R = ∅; I = false;  
4. while (S ≠ ∅) 
5.  Ti = select and delete next tree from S;  
6.      Simple_Tree_Matching(Ts, Ti); 
7.  L = alignTrees(Ts, Ti);     // based on the result from line 6 
8.  if Ti is not completely aligned with Ts then 
9.  I = InsertIntoSeed(Ts, Ti); 
10.  if not all unaligned items in Ti are inserted into Ts then 
11.  Insert Ti into R;  
12.  endif; 
13.  endif; 
14.  if (L has new alignment) or (I is true) then 
15.  flag = true 
16.  endif; 
17.  if S = ∅ and flag = true then 
18.  S = R;  R = ∅; 
19.  flag = false; I = false 
20.  endif; 
21. endwhile; 
22. Output data fields from each Ti to the data table based on the 

alignment results.  

Figure 13. The partial tree alignment Algorithm. 

We use a simple example in Figure 14 to explain the algorithm. 
We have three example trees, all of which have only two levels. 
Lines 1 and 2 (Figure 13) basically find the tree with the most 
data items. This is the seed tree. In Figure 14, the seed tree is the 
first tree (we omitted many nodes on the left of T1). Line 3 does 
some initializations. Line 4 starts the while loop to align each of 
the rest trees against Ts. Line 5 picks the next unaligned tree, and 
line 6 does the tree matching. Line 7 finds all the matched pairs 
by tracing the matrix results of line 6. This procedure is similar to 
align two strings using edit distance. We will not discuss this 
further. Note that line 5 and line 6 can be integrated. We present 
them separately for simplicity. In Figure 14, Ts and T2 produce 
one match, node b. Nodes n, c, k and g are not matched to Ts. Line 
8 checks that. Line 9 attempts to insert them into Ts. This is the 
partial tree alignment discussed above. In Figure 14, none of the 
nodes n, c, k and g in T2 can be inserted into Ts because no unique 
location can be found. Line 14 inserts T2 into R, which is a list of 
trees that may need to be further processed. In Figure 14, when 
matching T3 with Ts, all unmatched nodes c, h and k can be 
inserted into Ts. Thus, T3 will not be inserted into R. Lines 14-16 
set “flag = true” to indicate that some new alignments/matches are 
found or some unmatched nodes are inserted into Ts. 

Lines 17-21 check for stopping conditions. “S = ∅ and flag = 
true” means that we have processed all the trees in S, and some 
new alignments are found or insertions are done. Then trees in R 
should be processed again. In Figure 14, T2 is the only tree in R, 
which will be matched to the new Ts in the next round. Now every 
node in T2 can be matched or inserted. The process completes. 
Line 23 outputs the data items from each tree according to the 
alignment produced. Note that if there are still un-matched nodes 
with data after the algorithm completes, each un-matched data 
will occupy a single column by itself. Table 1 shows the data 
table for the trees in Figure 14. We use “1” to indicate a data item.  

 
Figure 14. Iterative tree alignment with two iterations. 
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Table 1: Final data table (“1” indicates a data item) 

 … x b n c d h k g 
T1 … 1 1   1    
T2   1 1 1   1 1 
T3   1  1 1 1 1  

The complexity of the algorithm is O(k2) without considering tree 
matching, where k is the number of trees. However, in practice, 
almost always we only need to go though S once (i.e., R = ∅). 

It should be noted that the resulting alignment Ts can also be used 
as an extraction pattern for extracting data items from other pages 
generated using the same template. 

5. EMPIRICAL EVALUTIONS 
This section evaluates our system, DEPTA (Data Extraction based 
on Partial Tree Alignment), which implements the proposed 
techniques. The evaluation consists of two parts: 

1. Data record extraction (step 1): We compare the first step of 
DEPTA (also called MDR-2), with our existing system MDR 
for identifying data records. We do not compare it with the 
method in [5] and the method in [8] here as it is shown in [21] 
that MDR is already more effective than them.  

2. Data items/fields alignment and extraction (step 2): This is the 
second step of DEPTA. [8] is able to perform the same task. 
However, as shown in [21], it performs poorly in finding right 
data records, and thus could not extract data items well. We 
do not compare with the systems in [1][12] as they require 
multiple pages and all of them contain similar data records to 
find patterns from the pages to extract data items. The 
technique in [20] requires the detail page behind the page (to 
be extracted), and in their experiments, such detail pages are 
manually identified and downloaded, which is unrealistic in 
practice. DEPTA is more general. Given a single page, it is 
able to extract data records and data items from it.  

Our experimental results are given in Table 2.  

Column 1: It lists the URL of each site. In some sites more than 
one page are tried (which have different data record formats). 
The number of sites that we have used in our experiments is 49. 
The total number of pages used is 72. All our experimental 
Web pages are collected randomly. Due to the long URLs of 
most pages, we could not list them here. We will post all the 
URLs of the test pages on our Web site.  

Columns 2 and 4: They give the numbers of correct (Cor.) records 
extracted by MDR and MDR-2 (step 1 of DEPTA) from the 
pages of each site respectively. These data records are those 
obvious ones of the pages (e.g., product lists). They do not 
include navigation areas, which may also have regular patterns.  

Note that although the MDR-2 framework is able to handle 
nested data records (records in records) due to its nested 
similarity comparison, we did not explicitly handle such data 
records in this work as they are relatively rare in record lists. 
We will add this in the future. The proposed partial tree 
alignment method is able to align data items in nested records.  

Columns 3 and 5: They give the numbers of data records 
extracted wrongly (Wr.) by MDR and MDR-2 (step 1 of 
DEPTA) from the pages of each site respectively. x/y means 
that x is the number of extracted results that are incorrect, and y 
is the number of results that are not extracted.  

Table 2: Experimental results 

DEPTA 
MDR MDR-2: Step 1 Step 2

URL Cor. Wr. Cor. Wr. Cor. Wr.
accessories.gateway.co 6 0/0 6 0/0 12 0/0
advanced.search.shopp 15 0/0 15 0/0 195 0/0
crafts.listings.ebay.co 50 0/0 50 0/0 350 0/0
froogle.google.com/... 0 0/10 10 0/0 79 1/0
google1-cnet.com/... 32 0/6 32 0/6 224 0/42
google-zdnet.com/... 23 0/0 23 0/0 207 0/0
list.auctions.shopping. 25 0/0 25 0/0 225 0/0
photography.listings.e 27 0/23 50 0/0 300 0/0
reviews.cnet.com/... 7 0/0 7 0/0 42 0/0
search.ebay.com/... 100 0/0 100 0/0 576 0/0
sensualexpression.com 6 0/0 6 0/0 12 0/0
shopping.yahoo.com/... 10 0/0 10 0/0 30 0/0
store.babycenter.com/.. 10 0/0 9 0/1 43 0/4
store.yahoo.com/... 7 0/0 7 0/0 35 0/0
video.shopping.yahoo. 15 0/0 15 0/0 150 0/0
www.abtelectronics.co 38 0/4 39 0/3 134 0/12
www.acehardware.co 9 0/0 9 0/0 54 0/0
www.adesso.us/... 10 7/8 16 0/2 62 0/8
www.alibris.com/... 14 1/4 18 1/0 163 15/0
www.amazon.com/... 4 2/9 12 0/1 132 0/11
www.ashford.com/... 7 0/12 19 0/0 57 0/0
www.bargainoutfitters. 22 0/0 22 0/0 132 0/0
www.bestbuy.com/... 18 0/3 21 0/0 273 0/0
www.bobsdiscountmar 16 0/0 16 0/0 64 0/0
www.buy.com/... 10 0/5 15 0/0 148 2/0
www.cameraworld.co 28 1/4 31 0/1 131 1/7
kwww.circuitmicro.co 15 0/0 15 0/0 63 0/0
www.compusa.com/... 8 0/0 8 0/0 80 0/0
www.cooking.com/... 22 15/15 35 0/2 173 0/28
www.dealtime.com/... 5 0/15 19 0/1 114 0/6
www.drugstore.com/... 11 3/3 11 0/3 67 0/16
www.essentialapparel. 8 0/0 8 0/0 32 0/0
www.magazinesofame 6 0/0 6 0/0 42 0/0
www.nextag.com/... 15 0/0 15 0/0 178 0/0
www.nothingbutsoftw 65 1/0 65 1/0 260 4/0
www.npg.org/states/... 104 0/0 104 0/0 416 0/0
www.officedepot.com/ 19 0/0 19 0/0 228 0/0
www.overstock.com/... 39 0/0 39 0/0 264 0/0
www.pricegrabber.co 62 0/0 62 0/0 459 0/0
www.radioshack.com/. 3 0/0 3 0/0 24 0/0
www.randomhouse.co 25 0/0 25 0/0 258 0/0
www.refurbdepot.com/ 12 0/6 18 0/0 158 0/0
www.rochesterclothing 20 0/0 20 0/0 40 0/0
www.shoebuy.com/... 10 0/0 10 0/0 60 0/0
www.shopping.com/... 25 0/0 25 0/0 205 0/0
www.sitistore.com/... 0 0/20 20 0/0 206 0/0
www.smartbargains.co 8 0/0 8 0/0 16 0/0
www.target.com/... 0 0/8 8 0/0 40 0/0
www.tigerdirect.com/.. 14 0/0 14 0/0 43 0/0

Total 1005 30/155 1140 2/20 7256 23/134
Recall 86.64% 98.27% 98.18% 

Precision 97.10% 99.82% 99.68% 
 



Columns 6 and 7: They give the numbers of correct data items 
and wrong data items extracted by step 2 of DEPTA from the 
data records of each site respectively. An extracted data item 
with a wrong alignment is also considered an error.  

The last three rows of Table 2 give the total of each column, the 
recall and precision of each system. For MDR and MDR-2 (step 1 
of DEPTA), the recall and precision are computed based on the 
total number of correct data records found in all pages and the 
actual number of data records in these pages. For data item 
extraction of DEPTA, the precision and recall computation has 
considered the 20 lost data records because of step 1 of DEPTA. 
We can see that the data extraction is highly effective. Almost all 
the errors are due to data record extraction. We also observe that 
MDR-2 performs significantly better than MDR.  

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed a new approach to extract structured 
data from Web pages. Although the problem has been studied by 
several researchers, existing techniques are either inaccurate or 
make many strong assumptions. Our method does not make these 
assumptions. It only requires that the page contains more than one 
data record, which is almost always true for pages with data 
records. Our technique consists of two steps: (1) identifying data 
records without extracting each data field in the data records, and 
(2) aligning corresponding data fields from multiple data records 
to extract data from them to put in a database table. We proposed 
an enhanced method based on visual information for step (1), 
which significantly improves the accuracy of our previous 
algorithm. For step 2, we proposed a novel partial tree alignment 
technique to align corresponding data fields of multiple data 
records. Empirical results using a large number of Web pages 
show that the new two-step technique can segment data records 
and extract data from them very accurately. 
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