
Web Data Extraction Based on Partial Tree Alignment
Yanhong Zhai

Department of Computer Science
University of Illinois at Chicago

851 South Morgan Street,
Chicago, IL 60607-7053
yzhai@cs.uic.edu

Bing Liu
Department of Computer Science

University of Illinois at Chicago
851 South Morgan Street,
Chicago, IL 60607-7053

liub@cs.uic.edu

ABSTRACT
This paper studies the problem of extracting data from a Web
page that contains several structured data records. The objective is
to segment these data records, extract data items/fields from them
and put the data in a database table. This problem has been
studied by several researchers. However, existing methods still
have some serious limitations. The first class of methods is based
on machine learning, which requires human labeling of many
examples from each Web site that one is interested in extracting
data from. The process is time consuming due to the large number
of sites and pages on the Web. The second class of algorithms is
based on automatic pattern discovery. These methods are either
inaccurate or make many assumptions. This paper proposes a new
method to perform the task automatically. It consists of two steps,
(1) identifying individual data records in a page, and (2) aligning
and extracting data items from the identified data records. For
step 1, we propose a method based on visual information to
segment data records, which is more accurate than existing
methods. For step 2, we propose a novel partial alignment
technique based on tree matching. Partial alignment means that
we align only those data fields in a pair of data records that can be
aligned (or matched) with certainty, and make no commitment on
the rest of the data fields. This approach enables very accurate
alignment of multiple data records. Experimental results using a
large number of Web pages from diverse domains show that the
proposed two-step technique is able to segment data records, align
and extract data from them very accurately.
Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscellaneous − Data
Extraction, Wrapper Generation, Web

General Terms: Algorithms, Experimentation.

Keywords: Data extraction, wrapper, data record extraction.

1. INTRODUCTION
Structured data objects are a very important type of information
on the Web. Such data objects are often records from underlying
databases and displayed in Web pages with some fixed templates.
In this paper, we also call them data records. Mining data records
in Web pages is useful because they typically present their host
pages’ essential information, such as lists of products and
services. Extracting these structured data objects enables one to
integrate data/information from multiple Web pages to provide

value-added services, e.g., comparative shopping, meta-querying
and search. Figure 1 gives some example data records on the
Web. Figure 1(A) shows a Web page segment containing a list of
two products (books). The description of each book is a data
record. Figure 1(B) shows a page segment containing a data table,
where each data record is a table row. Our objective is twofold:
(1) automatically identify such data records in a page, and (2)
automatically align and extract data items from the data records.

Several approaches have been reported in the literature for mining
data records from Web pages. The first approach is the manual
approach. By observing a Web page and its source code, the
programmer finds some patterns from the page and then writes a
program to identify and extract all the data items/fields. This
approach is not scalable to a large number of pages. Other
approaches all have some degree of automation. There are two
main types of algorithms, wrapper induction and automatic
extraction. In wrapper induction [11, 19, 23, 25, 33], a set of
extraction rules are learnt from a set of manually labeled pages or
data records. These rules are then used to extract data items from
similar pages. This method still requires substantial manual
efforts. In automatic methods, [12][1] find patterns or grammars
from multiple pages containing similar data records. Requiring an
initial set of pages containing similar data records is, however, a
major limitation of this type of approaches because such pages

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

(A) A list of products

(B) A data table

Figure 1: Two example page segments with data records

have to be found manually or by another system. [20] proposes a
method that tries to explore the detailed information page behind
the current page to extract data records. The need for detailed
information pages behind is also a serious limitation because
many data records do not have such pages behind (e.g., Figure
1(B)). Furthermore, the method assumes that the detail pages are
given, which is not realistic in practice. Due to a large number of
links in a typical Web page, automatically identifying links that
point to detailed information pages is a non-trivial task. [8]
proposes a string matching method. However, its results are weak
as shown in [21]. Another assumption that most current systems
make is that the relevant information of a data record is contained
in a contiguous segment of the HTML code. However, in some
Web pages, the description of one object may intertwine with the
descriptions of some other objects. For example, the descriptions
of two objects in the HTML source may follow this sequence,
part1 of object1, part1 of object2, part2 of object1, part2 of
object2. Thus, the descriptions of both object1 and object2 are not
contiguous. However, when they are displayed on a browser, they
appear contiguous to human viewers. In Section 2, we discuss
these methods in detail and compare with our proposed approach.

This paper proposes a two-step strategy to solve the problem.

1. Given a page, the method first segments the page to identify
each data record without extracting its data items. We have
improved our previous technique MDR [21] for this purpose.
Specifically, the new method also uses visual cues to find data
records. Visual information helps the system in two ways:

(i) It enables the system to identify gaps that separate data
records, which helps to segment data records correctly
because the gap within a data record (if any) is typically
smaller than that in between data records.

(ii) The proposed system identifies data records by analyzing
HTML tag trees or DOM trees [7]. A straightforward way
to build a tag tree is to follow the nested tag structure in
the HTML code. However, sophisticated analysis has to
be incorporated to handle errors in the HTML code (e.g.,
missing or ill-formatted tags). Whereas the visual or
display information can be obtained after the HTML code
is rendered by a Web browser, it also contains information
about the hierarchical structure of the tags. In this work,
rather than analyzing the HTML code, visual information
(i.e., the locations on the screen at which tags are
rendered) is utilized to infer the structural relationship
among tags and to construct a tag tree. This method leads
to more robust tree construction due to the high error
tolerance of the rendering engines of Web browsers (e.g.,
Internet Explorer). As long as the browser is able to render
a page correctly, its tag tree can be built correctly.

2. A novel partial tree alignment method is proposed to align and
to extract corresponding data items from the discovered data
records and put the data items in a database table. Using tree
alignment is natural because of the nested (or tree structured)
organization of HTML code. This new method is very
accurate as our experiments show.

Specifically, after all data records have been identified, the
sub-trees of each data record are re-arranged into a single tree
as each data record may be contained in more than one sub-
tree in the original tag tree of the page, and each data record
may not be contiguous. The tag trees of all the data records
are then aligned using our partial alignment method. By

partial alignment, we mean that for each pair of trees (or data
records), we only align those data fields that can be aligned
with certainty and ignore those parts that cannot, i.e., making
no commitment on the locations of the unaligned data items.
Early uncertain commitments can result in undesirable effects
for later alignment involving other data records. This method
turns out to be very effective for multiple tree alignment.

The resulting alignment enables us to extract data items from
all data records in the page. It can also serve as an extraction
pattern to be used to extract data items from other pages with
data records generated using the same template.

Our two-step approach called DEPTA (Data Extraction based
Partial Tree Alignment), which is very different from all existing
methods, does not make those assumptions made by existing
methods. As long as a page contains at least two data records, our
system will automatically find them (see Section 3.5 for more
discussion). Our experimental results using a large number of
pages show that the proposed technique is highly effective.

2. RELATED WORK
Related works to ours are in the area of wrapper generation. A
wrapper is a program that extracts data from a Web site or page
and put them in a database [1, 11, 12, 16, 18, 19, 22, 23, 25].
There are two main approaches to wrapper generation.

The first approach is wrapper induction, which uses supervised
learning to learn data extraction rules from a set of manually
labeled positive and negative examples. Manual labeling of data
is, however, labor intensive and time consuming. Additionally,
for different sites or even pages in the same site, the manual
labeling process needs to be repeated because they follow
different templates/patterns. Example wrapper induction systems
include WIEN [19], Softmealy [18], Stalker [23], WL2 [11], [25],
etc. Our technique requires no human labeling. It mines data
records in a page and extracts data from the records automatically.

The second approach is automatic extraction. In [14], a study is
made to automatically identify data record boundaries. The
method is based on a set of heuristic rules, e.g., highest-count tags,
repeating-tags and ontology-matching. [5] proposes a few more
heuristics to perform the task without using domain ontology.
However, [21] shows that these methods produce poor results. In
addition, these methods do not extract data from data records.

[8] proposes a method to find patterns from the HTML tag string
of a page, and then use the patterns to extract data items. The
method uses the Patricia tree and sequence alignment to find
inexact matches. However, [21] shows that its performance is also
weak. Our new method does not use tag strings for alignment but
trees, which exploits nested tree structures to perform much more
accurate data extraction. [13] also gives a set of heuristics to find
individual product information, e.g., price and others.

In [1, 12, 34], two more techniques are proposed. However, they
need to use multiple pages (which are assumed to be given) that
contain similar data records from the same site to find patterns or
grammars from the pages to extract data records. Assuming the
availability of multiple pages containing similar data records is a
serious limitation. Our method works on each single page.

[20] proposes another method for data extraction. Its main idea is
to utilize the detailed data in the page behind the current page to
identify data records. It is common that a page with multiple data
records does not contain the complete information of each data

record. Instead, a link is normally used to point to the page with
complete details. For example, a product record normally has a
link pointing to the page that contains the detailed description of
the product. The technique is thus applicable to the example in
Figure 1(A), but not to the one in Figure 1(B) because each data
record in Figure 1(B) has no link to a detail page. Furthermore,
the method in [20] assumes that detail pages are given (in their
experiments such pages are manually identified), which is not
realistic. Due to a large number of links in a typical Web page,
automatically identifying the correct links that point to detail
pages is not a trivial task. Our technique is applicable to both
types of pages in Figure 1 as it does not require any detail page.

Another problem with most existing approaches is that they
assume that the relevant information of a data record is contained
in a contiguous segment of the HTML code. This is not always
true. This issue has been discussed in the Introduction section.
The proposed method is able to handle this situation because our
record segmentation method is able to identify such data records.

In [21], we propose the MDR algorithm, which only identifies
data records but does not align or extract data items from the data
records. Thus, it only performs the first step of our task. Even for
the first step, it has two main shortcomings. (1) The algorithm
makes use of the HTML tag tree of the Web page to extract data
records from the page. However, erroneous tags in the HTML
source of some pages make it hard to build correct trees, which
make it impossible to find correct data records in these pages.
Using visual (rendering) information to build trees in our new
system solves this problem. (2) A single data record may be
composed of multiple sub-trees. Due to noisy information, MDR
may find wrong combinations of sub-trees. In our new system,
visual gaps between data records help to deal with this problem.
Note that visual cues have been used in other Web tasks, e.g.,
finding different semantics blocks [29, 28].

Finally, tree matching has been used for finding the main contents
in news pages in [27]. However, their task is different from ours.

3. DATA RECORD EXTRACTION
We now start to present our proposed technique. This section
focuses on the first step: segmenting the Web page to identify
individual data records. It does not align or extract data items in
the data records, which will be the topic of the next section.
Since this step is an improvement to our previous technique MDR
[21], below we give a brief overview of the MDR algorithm and
present the enhancements made to MDR in this work. We also
call the enhanced algorithm MDR-2 (version 2 of MDR).

3.1 The Basic Idea of MDR
The MDR algorithm is based on two observations about data
records in a Web page and an edit distance string matching
algorithm [2] to find data records. The two observations are:

1. A group of data records that contains descriptions of a set of
similar objects are typically presented in a contiguous region
of a page and are formatted using similar HTML tags. Such a
region is called a data record region (or data region in short).
For example, in Figure 1(A) two books are presented in one
contiguous region. They are also formatted using almost the
same sequence of HTML tags. If we regard the HTML tags of
a page as a long string, we can use string matching (e.g., edit
distance [2]) to compare different sub-strings to find those
similar ones, which may represent similar data records.

The problem with this approach is that the computation is
prohibitive because a data record can start from any tag and
end at any tag. A set of data records typically does not have
the same length in terms of its tag strings because it may not
contain exactly the same pieces of information (see Figure
1(A)). The next observation helps to deal with this problem.

2. The nested structure of HTML tags in a Web page naturally
forms a tag tree. For example, Figure 2 shows an example tag
tree. In this tree, each data record is wrapped in 3 TR nodes
with their sub-trees under the same parent TBODY. The two
data records are in the two dash-lined boxes. Our second
observation is that a set of similar data records are formed by
some child sub-trees of the same parent node.

It is unlikely that a data record starts in the middle of a child
sub-tree and ends in the middle of another child sub-tree.
Instead, it starts from the beginning of a child sub-tree and
ends at the end of the same or a later child sub-tree. For
example, it is unlikely that a data record starts from TD* and
ends at TD# (Figure 2). This observation makes it possible to
design a very efficient algorithm based on edit distance string
comparison to identify data records because it limits the tags
from which a data record may start and end in a tag tree. 1

Figure 2: An example tag tree of a page segment

Experiments show that these observations work very well. By no
means do we assume that a Web page has only one data region
that contains data records. In fact, a Web page may contain a few
data regions. Different regions may have different data records.

Given a Web page, the algorithm works in three steps (we also
discuss the enhancements made to MDR in our current work):

Step 1: Building a HTML tag tree of the page. In the new system,
visual (rendering) information is used to build the tag tree.

Step 2: Mining data regions in the page using the tag tree. A data
region is an area in the page that contains a list of similar data
records. Instead of mining data records directly, which is hard,
MDR mines data regions first and then finds data records
within them. For example, in Figure 2, we first find the single
data region below node TBODY. In our new system, again
visual information is used in this step to produce better results.

Step 3: Identifying data records from each data region. For
example, in Figure 2, this step finds data record 1 and data
record 2 in the data region below node TBODY.

The main enhancement to the MDR algorithm is the use of visual

1 We may also use tree edit distance. However, since string edit distance

already works very well, we did not use tree edit distance for this step.

TABLE

TBODY

TR

 |

TR TR

TD

TR TR TR

TD* TD TD TD

data
record 1

data
record 2 TD TD# TD TD

information to help building more robust trees and also to find
more accurate data regions. We describe them below.

3.2 Building a HTML Tag Tree
In a Web browser, each HTML element (consisting of a start tag,
optional attributes, optional embedded HTML content, and an end
tag that may be omitted) is rendered as a rectangle. A tag tree can
be constructed based on the nested rectangles (resulted from
nested tags). The details are as follows:

1. Find the 4 boundaries of the rectangle of each HTML element
by calling the embedded parsing and rendering engine of a
browser, e.g., Internet explorer.

2. Detect the containment relationship among the rectangles, i.e.,
whether one rectangle is contained inside another rectangle. A
tree can be built based on the containment check.

Let us use an example to illustrate the process. Assume we have
the HTML code on the left of Figure 3, which is a table with two
rows (tr’s) and each row with two cells (td’s). The rendering
engine of the browser produces the boundary coordinates (in
pixels) for each HTML element shown on the right of Figure 3.

1 <table>
2 <tr>
3 <td> … </td>
4 <td> … </td>
5 </tr>
6 <tr>
7 <td> … </td>
8 <td> … </td>
9 </tr>
10 </table>

Figure 3: A HTML code segment and boundary coordinates

With the visual information, we can build the tree in Figure 4 by
following the sequence of opening tags and by containment
checks. The tree construction algorithm is fairly straightforward.
We will not discuss it further here.

3.3 Mining Data Regions
This step mines every data region in a page that contains similar
data records. Instead of mining data records directly, which is
hard, we first mine data regions. By comparing tag strings of
individual nodes (including their descendents) and combination of
multiple adjacent nodes, we can find each data region.

We use an artificial tag tree in Figure 5 to explain. We find that
nodes 5 and 6 are similar (based on edit distance) and form the
data region labeled 1, nodes 8, 9 and 10 are similar and form the
data region labeled 2, and the pairs of nodes (14, 15), (16, 17) and
(18, 19) are similar and form the data region labeled 3. To avoid
using both individual nodes and node combinations, we use the
concept of the generalized node to denote each similar individual
(tag) node and each (tag) node combination. Thus, a sequence of

adjacent generalized nodes forms a data region. Each shaded
individual node or node combination in Figure 5 is a generalized
node. The concept of generalized node captures the situations that
a data record may be contained in a few sibling tag nodes rather
than one and that data records may not be contiguous in the tag
tree, but generalized nodes are contiguous (see below).

Figure 5: An illustration of generalized nodes & data regions

Due to the observation in Section 3.1, the number of string
comparisons to find generalized nodes for identifying data regions
is not very large. We only need to perform comparisons among
the children nodes of a parent node. The process of identifying
data regions is involved; see [21] for more details.
In our new system, gaps between data records are used to
eliminate false node combinations. We utilize the following visual
observation about data records:

• The gap between two data records in a data region should be
no smaller than any gap within a data record. For example, in
Figure 1(A), a large gap exists between the two data records.

3.4 Identifying Data Records
After all data regions are identified, we identify data records from
generalized nodes. We note that each generalized node (a single
or a combination of tag nodes in the tag tree) may not represent a
single data record. The situations can be quite complex. Below,
we only highlight two interesting cases in which a data record is
not contained in a contiguous segment of the HTML code in order
to show some advanced capabilities of our system (see [21] for
more details and other simpler cases).

3.4.1 Non-contiguous Data Records: Case 1
In some Web pages, the description of an object (a data record) is
not in a contiguous segment of the HTML code. There are two
main cases. Figure 6 shows an example of the first case.

In this example, the data region contains two generalized nodes,
and each generalized node contains two tag nodes (two rows),
which indicates that these two tag nodes (rows) are not similar to
each other. But each tag node has the same number of children
nodes and the children nodes are similar to each other. One row
lists the names of the two objects in two cells, and the next row
lists the other pieces of information of the objects also in two
cells. This results in the HTML code: name 1, name 2, description
1, description 2, name 3, name 4, description 3, description 4.

For this kind of situation, the corresponding children nodes of
every tag node in a generalized node form a non-contiguous data
record. This is illustrated by the tag tree at the bottom of Figure 6,

5

Region 1

Region 3

1

3

10

2

7 8 9

Region 2

6

4

11 12

14 15 2016 17 19 18 13

Figure 4: Tag tree for the HTML code in Figure 3

table

tr tr

td td td td

left right top bottom
100 300 200 400
100 300 200 300
100 200 200 300
200 300 200 300

100 300 300 400
100 200 300 400
200 300 300 400

where r represents row, n represents name and d represents
description. G1 and G2 are generalized nodes. (n1, d1), (n2, d2),
(n3, d3), and (n4, d4) form four data records.

Figure 6: A multiple-record data region: each generalized
node contains more than one non-contiguous data record

3.4.2 Non-contiguous Data Records: Case 2
Figure 7 shows an example of the second case, where two or more
data regions form multiple data records. In this example, row 1
and row 2 are not similar to each other, but row 1 forms a data
region and row 2 forms another data region. Each data region
contains two (small) generalized nodes.

From the tag tree in Figure 7, we see that this case has the same
structure as the one in Figure 6. Therefore a similar strategy can
be applied here, i.e., the corresponding generalized nodes of each
data region are joined together to form non-contiguous data
records. This process is illustrated by the tag tree in Figure 7 (G1,
G2, g1 and g2 are generalized nodes).

3.5 An Important Note on Data Records
Finally, it is important to note that MDR or MDR-2 does not
know what regular data records are useful to a user. It simply
finds all of them. However, in a particular application, the user is
usually interested in only a specific type of data records, e.g., a
list of products, or data tables. Simple heuristics can be designed
to output only the required type of data records. For example, in

MDR (or MDR-2), as an option it can output only product data
records based on some indicators, e.g., image, price and others.

4. DATA EXTRACTION
We now present the partial tree alignment technique for data
extraction. The key task is how to match corresponding data items
or fields from all data records. There are two sub-steps:

1. Produce one rooted tag tree for each data record: After all data
records are identified, the sub-trees of each data record are re-
arranged into a single tree. As shown above, each data record
may be contained in more than one sub-tree of the original tag
tree of the page, and each data record may not be contiguous.
Thus, this sub-step is needed to compose a single tree for each
data record (an artificial root node may also need to be
added). We will not discuss this further as it is fairly simple.

2. Partial tree alignment: The tag trees of all data records in each
data region are aligned using our partial alignment method
which is based on tree matching. It should be noted that in the
matching process, we only use tags. No data item is involved.

Below, we first give a brief introduction to tree edit distance or
tree matching and then present a restricted tree matching method
that we use in this work. After that we will discuss multiple
alignments and present the partial tree alignment method for
aligning multiple data records based on their tag trees.

We note here that string edit distance is not suitable for this step
as a string does not consider the tree structure, which is very
useful in determining the correct alignment of data items. Due to
the fact that more than one alignment of two strings may result in
the same edit distance, string alignment can result in many errors.
The matter is made worse by the fact that most tags used to form
data records are tr’s and td’s. After string matching, it is hard to
decide which alignment is the correct one as there are many
possible alignments. However, tree matching significantly
reduces the number of possible alignments because of the tree
structure constraint. In our algorithm, we only use one simple rule
to resolve conflicts when there is more than one possible tree
alignment. We simply choose the possible sub-tree alignment that
appears the earliest in the tree. This method works quite well in
our experiments. Thus, we did not design more sophisticated
conflict resolution strategies.

4.1 Tree Edit Distance
Similar to string edit distance, tree edit distance [31, 30] between
two trees A and B (we are only interested in labeled ordered
rooted trees) is the cost associated with the minimum set of
operations needed to transform A into B. In the classic
formulation, the set of operations used to define tree edit distance
includes three operations: node removal, node insertion, and node
replacement. A cost is usually assigned to each of the operations.
Solving the tree edit distance problem is often assisted by finding
a minimum-cost mapping between two trees [30]. The concept of
mapping [30] is formally defined as:
Let X be a tree and let X[i] be the ith node of tree X in a preorder
walk of the tree. A mapping M between a tree A of size n1 and a
tree B of size n2 is a set of ordered pairs (i, j), one from each tree,
satisfying the following conditions for all (i1, j1), (i2, j2) ∈ M:

(1) i1 = i2 iff j1 = j2;
(2) A[i1] is on the left of A[i2] iff B[j1] is on the left B[j2];
(3) A[i1] is an ancestor of A[i2] iff B[j1] is an ancestor of B[j2].

name1 name2

description1

Row1

Row2 description2

Figure 7: Adjacent data regions form more than one
non-contiguous data records

P

r1

n1 n2

r2

d1 d2
G1 G2 g1 g2

Data region 1

Data region 2

name1 name2

description1 description2

row1

row2

row3

row4

name3 name4

description3 description4

r1

n1 n2

G1 G2
r2

d1 d2

r3

n3 n4

r4

d3 d4

P

Intuitively, the definition requires that each node can appear no
more than once in a mapping and the order between sibling nodes
and the hierarchical relation between nodes are both preserved.
Figure 8 shows a mapping example.

Figure 8: A general tree mapping example

Several algorithms have been proposed to address the problem of
finding the minimum set of operations (i.e., the one with the
minimum cost) to transform one tree into another. All the
formulations have complexities above quadratic [10]. It has also
been shown that if the trees are not ordered, the problem is NP-
complete [36]. In [30], a solution based on dynamic programming
is presented. The algorithm has a complexity of O(n1n2h1h2),
where n1 and n2 are the sizes of the trees and h1 and h2 are heights
of the trees. In [32][10], two other algorithms are also presented
with similar complexities.

4.2 Simple Tree Matching
In the above general setting, mapping can cross levels, e.g., node
a in tree A and node a in tree B. There is also replacement, e.g.,
node b in A and node h in B. In this work, we use a restricted
matching algorithm [35], which was first proposed to compare
two computer programs in software engineering. It was called
simple tree matching (STM). STM evaluates the similarity of two
trees by producing the maximum matching through dynamic
programming with complexity O(n1n2), where n1 and n2 are the
sizes of trees A and B respectively. No node replacement and no
level crossing are allowed.

Let A and B be two trees and i ∈ A, j ∈ B are two nodes in A and
B respectively. A matching between two trees is defined to be a
mapping M such that for every pair (i, j) ∈ M where i and j are
non-root nodes, (parent(i), parent(j)) ∈ M. A maximum matching
is a matching with the maximum number of pairs.
Let A = <RA, A1, A2,…, Am> and B=<RB, B1, B2,…, Bn> be two
trees, where RA and RB are the roots of A and B, and Ai, Bj are the
ith and jth first-level sub-trees of A and B respectively. When RA
and RB contain identical symbols, the maximum matching
between A and B is MA,B+1, where MA,B is the maximum matching
between <A1, A2,…, Am> and <B1, B2,…, Bn>. MA,B can be
obtained by the following dynamic programming scheme:
1. If the maximum matching between Am and Bn, is larger than

any maximum matching between Am and Bi (1≤i<n), then MA,B
is the maximum matching between <A1, A2,…, Am-1> and <B1,
B2,…, Bn-1> plus the maximum matching between Am and Bn.

2. Otherwise, MA,B is the same as the maximum matching
between <A1, A2,…, Am> and <B1, B2,…, Bn-1>, or between
<A1, A2,…, Am-1> and <B1, B2,…, Bn>.

In the Simple_Tree_Matching algorithm in Figure 9, the roots of
A and B are compared first (line 1). If the roots contain distinct
symbols, then the two trees do not match at all. If the roots

contain identical symbols, then the algorithm recursively finds the
maximum matching between first-level sub-trees of A and B and
save it in W matrix (line 8). Based on the W matrix, a dynamic
programming scheme is applied to find the number of pairs in a
maximum matching between two trees A and B.

Algorithm: Simple_Tree_Matching(A, B)
1. if the roots of the two trees A and B contain distinct symbols
2. then return (0);
3. else m:= the number of first-level sub-trees of A;
4. n:= the number of first-level sub-trees of B;
5. Initialization: M[i, 0]:= 0 for i = 0, …, m;
 M[0, j] := 0 for j = 0, …, n;
6. for i = 1 to m do
7. for j = 1 to n do
8. M[i,j]:=max(M[i,j-1], M[i-1, j], M[i-1, j-1]+W[i, j]);
 where W[i,j] = Simple_Tree_Matching(Ai, Bj)
9. endfor;
10. endfor;
11. return (M[m, n]+1)
12. endif

Figure 9. The simple tree matching algorithm

Figure 10. (A) Tree A; (B) Tree B; (C) M matrix for the first

level sub-trees of N1 and N15; (D) W matrix for the first level
sub-trees of N1 and N15; (E)-(H) M matrixes and W matrixes

for the lower level sub-trees.

We use an example from [35] to explain the algorithm (Figure
10). To find the maximum matching between trees A and B, their
roots, N1 and N15, are compared first. Since N1 and N15 contain

e d d e

j

b b c

f

p

c

g

h i

b

p

c

g

x h

d e

 0 1 (N16) 2 (N16-N17)
0 0 0 0

1 (N2) 0 3 3
2 (N2-N3) 0 3 5
3 (N2-N4) 0 3 5
4 (N2-N5) 0 3 6

 1 (N16) 2 (N17)
1 (N2) 3 0
2 (N3) 0 2
3 (N4) 2 0
4 (N5) 0 3

 0 1 (N20) 2 (N20-N21)
0 0 0 0

1 (N11) 0 2 2

 1(N20) 2(N21)
1 (N11) 2 0

 1 (N22)
1 (N12) 1
2 (N13) 0
3 (N14) 0

(C) M1-15 (D) W1-15

(E) M5-17

(G) M11-20 (H) W11-20

(F) W5-17

(A) (B)
N1 N15

N2 N3 N4 N5

 N6 N7 N8 N9 N10

N11

N12 N13 N14

 N18 N19 N20 N21

N22

N16 N17

c

b a

p

c

h e

p

d a d

A B

f

 0 1 (N22)
0 0 0

1 (N12) 0 1
2 (N12-N13) 0 1
3 (N12-N14) 0 1

identical symbols, M1-15[4,2]+1 is returned as the maximum
matching value between trees A and B (line 11). M1-15 matrix is
computed based on the W1-15 matrix, and each entry in W1-15, say
W1-15[i, j], is the maximum matching between the ith and jth first-
level sub-trees of A and B, which is computed recursively based
on its M matrix. For example, W1-15[4, 2] is computed recursively
by building the matrices (E)-(H). All the relevant cells are shaded.
The zero column and row in M matrices are initializations. Note
that we use subscripts for both M and W matrices to indicate the
nodes that they are working on.
During the matching (or after the matching), we can trace back in
the M matrices to find the matched/aligned nodes from the two
trees. When there is more than one match for a node that gives the
maximum result, we choose the one that appear the earliest in the
tree. For example, in Figure 11, node c in tree A can match either
the first or the last node c in tree B. We choose the first node c in
B. This heuristics is used because for visual effectiveness in a
Web page, if an earlier node x in tree A is to match a later node y
in tree B, there is usually some indication (tags) before x. This
heuristic works well according to our experiments.

Figure 11. Two trees with more than one possible match

4.3 Multiple Alignment
Since each data region in a page contains multiple data records,
we need to align multiple tag trees in order to produce a single
database table with all the corresponding data items/fields in the
same column of the table. In this data table, each row represents a
tree (data record), and each column represents a data field in each
data record. Several existing algorithms can perform assignment
of multiple sequences/trees. In [6], a multiple alignment method is
proposed using multidimensional dynamic programming. The
method is optimal but its time complexity is exponential, and thus
not suitable for practical use. Many heuristic methods are also
proposed [24, 17, 3]. Center string method, which is used in [8], is
a particular heuristic method for multiple sequence alignments,
which can also be used for trees. In this method, a sequence xc
that minimizes (D(xi, xc) is the distance of two strings)

0
(,)

k

i c
i

D x x
=
∑

is selected as the center. Then a pair-wise alignment is performed
for each pair (xi, xc), where i ≠ c. Assuming there are k sequences
and all sequences have length n, finding the center takes O(k2n2)
time and each step of the iterative pair-wise alignment takes O(n2)
time. Therefore the overall time cost is O(k2n2). Similarly, we can
find a center tree Tc and align all the other trees with Tc. There are
two main drawbacks with this technique: Firstly, although the
algorithm has a polynomial time complexity, it runs slowly for
pages containing many data records or data records containing
many attributes. Secondly, if the center tree does not have a
particular data item, other data records that contain the same data
item will not be aligned. We implemented the method and the
results were poor. Other popular multiple alignment methods

include progressive alignment [17] and iterative alignment [3].
They work like hierarchical clustering, and all require upfront
O(k2) pair-wise matching. For our task, we can do better because
we know that data records follow some predefined template.

4.4 Partial Tree Alignment
Our proposed approach aligns multiple tag trees by progressively
growing a seed (tag) tree. The seed tree, denoted by Ts, is initially
picked to be the tree with the maximum number of data fields.
Note that the seed tree is similar to the center tree but without the
O(k2) pair-wise tree matching to choose it. The reason for
choosing this seed tree is clear as it is more likely for this tree to
have a good alignment with data fields in other data records. Then
for each Ti (i ≠ s), the algorithm tries to find for each node in Ti a
matching node in Ts. When a match is found for node ni, a link is
created from ni to ns to indicate its match in the seed tree. If no
match can be found for node ni, then the algorithm attempts to
expand the seed tree by inserting ni into Ts. The expanded seed
tree Ts is then used in subsequent matching. Note that data items
in the tag tree nodes are not used during matching or alignment.

4.4.1 Partial alignment of two trees
Before presenting the full algorithm for aligning multiple trees, let
us first discuss the idea of partial alignment of two trees. As
indicated above, after Ts and Ti are matched, some nodes in Ti can
be aligned with their corresponding nodes of Ts because they
match one another. For those nodes in Ti that are not matched, we
want to insert them into Ts as they may contain optional data
items. There are two possible situations when inserting a new
node ni from Ti into the seed tree Ts, depending on whether a
location in Ts can be uniquely determined to insert ni. In fact,
instead of considering a single node ni, we can consider each set
of unmatched consecutive sibling nodes nj…nm from Ti together.
Without loss of generality, we assume that the parent node of
nj…nm has a match in Ts and we want to insert nj…nm into Ts
under the same parent node. We only insert nj…nm into Ts if a
position for inserting nj…nm can be uniquely determined in Ts.
Otherwise, they will not be inserted into Ts and left unaligned.
The alignment is thus partial. The location for insertion of nj…nm
can be uniquely decided:
1. if nj…nm have two neighboring siblings in Ti, one on the right

and one on the left, that are matched with two consecutive
siblings in Ts. Figure 12(A) shows such a situation, which
gives one part of Ts and one part of Ti. We can see that node c
and node d (which are consecutive sibling nodes) in Ti can be
inserted into Ts between node b and node e in Ts because node
b and node e in Ts and Ti match. The new (extended) Ts is also
shown in Figure 12(A). It should be noted that nodes a, b, c, d
and e may also have their own children. We did not draw
them to save space. This applied to all the cases below.

2. if nj…nm has only one left neighboring sibling x in Ti and x
matches the right most node x in Ts, then nj…nm can be
inserted after node x in Ts. Figure 12(B) illustrates this case.

3. if nj…nm has only one right neighboring sibling x in Ti and it
matches the left most node x in Ts, then nj…nm can be inserted
before node x in Ts. This case is similar to above.

Otherwise, we cannot uniquely decide a location for unmatched
nodes in Ti to be inserted into Ts. This is illustrated in Figure
12(C). In this case, the unmatched node x in Ti could be inserted
into Ts in two positions, between nodes a and b, or between node
b and e in Ts. In this situation, we will not insert it into Ts.

g c

b a

p

c

b a

p

c

A B

Figure 12. Expanding the seed tree: (A) and (B) Unique

expansion; (C) Insertion ambiguity.

4.4.2 Full algorithm
Figure 13 gives the full algorithm for multiple tree alignment
based on partial alignment of two tag trees.

Algorithm PartialTreeAlignment(S)
1. Sort trees in S in descending order according to the number of

data items that are not aligned;
2. Ts = the first tree (which is the largest) and delete it from S;
3. flag = false; R = ∅; I = false;
4. while (S ≠ ∅)
5. Ti = select and delete next tree from S;
6. Simple_Tree_Matching(Ts, Ti);
7. L = alignTrees(Ts, Ti); // based on the result from line 6
8. if Ti is not completely aligned with Ts then
9. I = InsertIntoSeed(Ts, Ti);
10. if not all unaligned items in Ti are inserted into Ts then
11. Insert Ti into R;
12. endif;
13. endif;
14. if (L has new alignment) or (I is true) then
15. flag = true
16. endif;
17. if S = ∅ and flag = true then
18. S = R; R = ∅;
19. flag = false; I = false
20. endif;
21. endwhile;
22. Output data fields from each Ti to the data table based on the

alignment results.

Figure 13. The partial tree alignment Algorithm.

We use a simple example in Figure 14 to explain the algorithm.
We have three example trees, all of which have only two levels.
Lines 1 and 2 (Figure 13) basically find the tree with the most
data items. This is the seed tree. In Figure 14, the seed tree is the
first tree (we omitted many nodes on the left of T1). Line 3 does
some initializations. Line 4 starts the while loop to align each of
the rest trees against Ts. Line 5 picks the next unaligned tree, and
line 6 does the tree matching. Line 7 finds all the matched pairs
by tracing the matrix results of line 6. This procedure is similar to
align two strings using edit distance. We will not discuss this
further. Note that line 5 and line 6 can be integrated. We present
them separately for simplicity. In Figure 14, Ts and T2 produce
one match, node b. Nodes n, c, k and g are not matched to Ts. Line
8 checks that. Line 9 attempts to insert them into Ts. This is the
partial tree alignment discussed above. In Figure 14, none of the
nodes n, c, k and g in T2 can be inserted into Ts because no unique
location can be found. Line 14 inserts T2 into R, which is a list of
trees that may need to be further processed. In Figure 14, when
matching T3 with Ts, all unmatched nodes c, h and k can be
inserted into Ts. Thus, T3 will not be inserted into R. Lines 14-16
set “flag = true” to indicate that some new alignments/matches are
found or some unmatched nodes are inserted into Ts.

Lines 17-21 check for stopping conditions. “S = ∅ and flag =
true” means that we have processed all the trees in S, and some
new alignments are found or insertions are done. Then trees in R
should be processed again. In Figure 14, T2 is the only tree in R,
which will be matched to the new Ts in the next round. Now every
node in T2 can be matched or inserted. The process completes.
Line 23 outputs the data items from each tree according to the
alignment produced. Note that if there are still un-matched nodes
with data after the algorithm completes, each un-matched data
will occupy a single column by itself. Table 1 shows the data
table for the trees in Figure 14. We use “1” to indicate a data item.

Figure 14. Iterative tree alignment with two iterations.

d x … b

p

c k g n

p

b d h k c

p

b

d x … b

p

k c x … b

p

d h

c k g n

p

b

n x … b

p

c d h k

S = R, and R
contains only T2

No node inserted

c, h, and k inserted

Ts = T1 T2 T3

T2

g

Ts

New Ts

Initial Set S

p Part of Ts Part of Ti

(C)

p

a b e

(A)

d c e b

d c e

p

b

New part of Ts

a

a

(B)

b e f e g

p p Part of Ts Part of Ti

f e g

p

b

Part new of Ts

a

e a b x

p p Part of Ts Part of Ti

a e

Table 1: Final data table (“1” indicates a data item)

 … x b n c d h k g
T1 … 1 1 1
T2 1 1 1 1 1
T3 1 1 1 1 1

The complexity of the algorithm is O(k2) without considering tree
matching, where k is the number of trees. However, in practice,
almost always we only need to go though S once (i.e., R = ∅).

It should be noted that the resulting alignment Ts can also be used
as an extraction pattern for extracting data items from other pages
generated using the same template.

5. EMPIRICAL EVALUTIONS
This section evaluates our system, DEPTA (Data Extraction based
on Partial Tree Alignment), which implements the proposed
techniques. The evaluation consists of two parts:

1. Data record extraction (step 1): We compare the first step of
DEPTA (also called MDR-2), with our existing system MDR
for identifying data records. We do not compare it with the
method in [5] and the method in [8] here as it is shown in [21]
that MDR is already more effective than them.

2. Data items/fields alignment and extraction (step 2): This is the
second step of DEPTA. [8] is able to perform the same task.
However, as shown in [21], it performs poorly in finding right
data records, and thus could not extract data items well. We
do not compare with the systems in [1][12] as they require
multiple pages and all of them contain similar data records to
find patterns from the pages to extract data items. The
technique in [20] requires the detail page behind the page (to
be extracted), and in their experiments, such detail pages are
manually identified and downloaded, which is unrealistic in
practice. DEPTA is more general. Given a single page, it is
able to extract data records and data items from it.

Our experimental results are given in Table 2.

Column 1: It lists the URL of each site. In some sites more than
one page are tried (which have different data record formats).
The number of sites that we have used in our experiments is 49.
The total number of pages used is 72. All our experimental
Web pages are collected randomly. Due to the long URLs of
most pages, we could not list them here. We will post all the
URLs of the test pages on our Web site.

Columns 2 and 4: They give the numbers of correct (Cor.) records
extracted by MDR and MDR-2 (step 1 of DEPTA) from the
pages of each site respectively. These data records are those
obvious ones of the pages (e.g., product lists). They do not
include navigation areas, which may also have regular patterns.

Note that although the MDR-2 framework is able to handle
nested data records (records in records) due to its nested
similarity comparison, we did not explicitly handle such data
records in this work as they are relatively rare in record lists.
We will add this in the future. The proposed partial tree
alignment method is able to align data items in nested records.

Columns 3 and 5: They give the numbers of data records
extracted wrongly (Wr.) by MDR and MDR-2 (step 1 of
DEPTA) from the pages of each site respectively. x/y means
that x is the number of extracted results that are incorrect, and y
is the number of results that are not extracted.

Table 2: Experimental results

DEPTA
MDR MDR-2: Step 1 Step 2

URL Cor. Wr. Cor. Wr. Cor. Wr.
accessories.gateway.co 6 0/0 6 0/0 12 0/0
advanced.search.shopp 15 0/0 15 0/0 195 0/0
crafts.listings.ebay.co 50 0/0 50 0/0 350 0/0
froogle.google.com/... 0 0/10 10 0/0 79 1/0
google1-cnet.com/... 32 0/6 32 0/6 224 0/42
google-zdnet.com/... 23 0/0 23 0/0 207 0/0
list.auctions.shopping. 25 0/0 25 0/0 225 0/0
photography.listings.e 27 0/23 50 0/0 300 0/0
reviews.cnet.com/... 7 0/0 7 0/0 42 0/0
search.ebay.com/... 100 0/0 100 0/0 576 0/0
sensualexpression.com 6 0/0 6 0/0 12 0/0
shopping.yahoo.com/... 10 0/0 10 0/0 30 0/0
store.babycenter.com/.. 10 0/0 9 0/1 43 0/4
store.yahoo.com/... 7 0/0 7 0/0 35 0/0
video.shopping.yahoo. 15 0/0 15 0/0 150 0/0
www.abtelectronics.co 38 0/4 39 0/3 134 0/12
www.acehardware.co 9 0/0 9 0/0 54 0/0
www.adesso.us/... 10 7/8 16 0/2 62 0/8
www.alibris.com/... 14 1/4 18 1/0 163 15/0
www.amazon.com/... 4 2/9 12 0/1 132 0/11
www.ashford.com/... 7 0/12 19 0/0 57 0/0
www.bargainoutfitters. 22 0/0 22 0/0 132 0/0
www.bestbuy.com/... 18 0/3 21 0/0 273 0/0
www.bobsdiscountmar 16 0/0 16 0/0 64 0/0
www.buy.com/... 10 0/5 15 0/0 148 2/0
www.cameraworld.co 28 1/4 31 0/1 131 1/7
kwww.circuitmicro.co 15 0/0 15 0/0 63 0/0
www.compusa.com/... 8 0/0 8 0/0 80 0/0
www.cooking.com/... 22 15/15 35 0/2 173 0/28
www.dealtime.com/... 5 0/15 19 0/1 114 0/6
www.drugstore.com/... 11 3/3 11 0/3 67 0/16
www.essentialapparel. 8 0/0 8 0/0 32 0/0
www.magazinesofame 6 0/0 6 0/0 42 0/0
www.nextag.com/... 15 0/0 15 0/0 178 0/0
www.nothingbutsoftw 65 1/0 65 1/0 260 4/0
www.npg.org/states/... 104 0/0 104 0/0 416 0/0
www.officedepot.com/ 19 0/0 19 0/0 228 0/0
www.overstock.com/... 39 0/0 39 0/0 264 0/0
www.pricegrabber.co 62 0/0 62 0/0 459 0/0
www.radioshack.com/. 3 0/0 3 0/0 24 0/0
www.randomhouse.co 25 0/0 25 0/0 258 0/0
www.refurbdepot.com/ 12 0/6 18 0/0 158 0/0
www.rochesterclothing 20 0/0 20 0/0 40 0/0
www.shoebuy.com/... 10 0/0 10 0/0 60 0/0
www.shopping.com/... 25 0/0 25 0/0 205 0/0
www.sitistore.com/... 0 0/20 20 0/0 206 0/0
www.smartbargains.co 8 0/0 8 0/0 16 0/0
www.target.com/... 0 0/8 8 0/0 40 0/0
www.tigerdirect.com/.. 14 0/0 14 0/0 43 0/0

Total 1005 30/155 1140 2/20 7256 23/134
Recall 86.64% 98.27% 98.18%

Precision 97.10% 99.82% 99.68%

Columns 6 and 7: They give the numbers of correct data items
and wrong data items extracted by step 2 of DEPTA from the
data records of each site respectively. An extracted data item
with a wrong alignment is also considered an error.

The last three rows of Table 2 give the total of each column, the
recall and precision of each system. For MDR and MDR-2 (step 1
of DEPTA), the recall and precision are computed based on the
total number of correct data records found in all pages and the
actual number of data records in these pages. For data item
extraction of DEPTA, the precision and recall computation has
considered the 20 lost data records because of step 1 of DEPTA.
We can see that the data extraction is highly effective. Almost all
the errors are due to data record extraction. We also observe that
MDR-2 performs significantly better than MDR.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new approach to extract structured
data from Web pages. Although the problem has been studied by
several researchers, existing techniques are either inaccurate or
make many strong assumptions. Our method does not make these
assumptions. It only requires that the page contains more than one
data record, which is almost always true for pages with data
records. Our technique consists of two steps: (1) identifying data
records without extracting each data field in the data records, and
(2) aligning corresponding data fields from multiple data records
to extract data from them to put in a database table. We proposed
an enhanced method based on visual information for step (1),
which significantly improves the accuracy of our previous
algorithm. For step 2, we proposed a novel partial tree alignment
technique to align corresponding data fields of multiple data
records. Empirical results using a large number of Web pages
show that the new two-step technique can segment data records
and extract data from them very accurately.

7. ACKNOWLEDGMENTS
This work was supported by NSF (IIS-0307239).

8. REFERENCES
[1]. Arasu, A. and Garcia-Molina, H. Extracting Structured Data

from Web Pages. SIGMOD-03, 2003.
[2]. Baeza-Yates, R. Algorithms for string matching: A survey.

ACM SIGIR Forum, 23(3-4):34-58, 1989.
[3]. Barton, G., Sternberg, M. A strategy for the rapid multiple

alignment of protein sequences: confidence levels from
tertiary structure comparisons. J. Mol. Biol. 1987, 327-337.

[4]. Bar-Yossef, Z. and Rajagopalan, S. Template Detection via
Data Mining and its Applications, WWW 2002, 2002.

[5]. Buttler, D., Liu, L., Pu, C. A fully automated extraction
system for the World Wide Web. IEEE ICDCS-21, 2001.

[6]. Carrillo, H., Lipman, D. The multiple sequence alignment
problem in biology. SIAM J. Applied Math., 1988;48(5).

[7]. Chakrabarti, S. Mining the Web: Discovering Knowledge
from Hypertext Data. Morgan Kaufmann Publishers, 2002.

[8]. Chang, C. and Lui, S-L. IEPAD: Information extraction
based on pattern discovery. WWW-10, 2001.

[9]. Chen, H.-H., Tsai, S.-C., and Tsai, J.-H. Mining tables from
large scale html texts. COLING-00, 2000.

[10]. Chen, W. New algorithm for ordered tree-to-tree correction
problem. Journal of Algorithms, 40:135–158, 2001.

[11]. Cohen, W., Hurst, M., and Jensen, L. A flexible learning

system for wrapping tables and lists in HTML documents.
WWW-2002, 2002.

[12]. Crescenzi, V., Mecca, G. and Merialdo, P. Roadrunner:
Towards automatic data extraction from large web sites.
VLDB-01, 2001.

[13]. Doorenbos, R., Etzioni, O., Weld, D. A scalable comparison
shopping agent for the World Wide Web. Agents-97, 1997.

[14]. Embley, D., Jiang, Y and Ng, Y. “Record-boundary
discovery in Web documents.” SIGMOD-99, 1999.

[15]. Gusfield, D. Algorithms on strings, tree, and sequence,
Cambridge. 1997.

[16]. Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R., and
Crespo, A. Extracting semi-structured information from the
Web. Workshop on Manag. of Semi-structured Data, 1997.

[17]. Hogeweg, P., Hesper, B. The alignment of sets of sequences
and the construction of phylogenetic trees: An integrated
method. J. Mol. Evol., 20, 175-186 (1984).

[18]. Hsu, C.-N. and Dung, M.-T. Generating finite-state
transducers for semi-structured data extraction from the
Web. Information Systems. 23(8): 521-538, 1998.

[19]. Kushmerick, N. Wrapper induction: efficiency and
expressiveness. Artificial Intelligence, 118:15-68, 2000.

[20]. Lerman, K., Getoor L., Minton, S. and Knoblock, C. “Using
the Structure of Web Sites for Automatic Segmentation of
Tables.” SIGMOD-04, 2004.

[21]. Liu, B., Grossman, R. and Zhai, Y. “Mining data records
from Web pages.” KDD-03, 2003.

[22]. Meng, X., Lu, H., Wang, H., and Gu, M. Schema-Guided
Wrapper Generator. ICDE-02, 2002.

[23]. Muslea, I., Minton, S. and Knoblock, C. “A hierarchical
approach to wrapper induction.” Agents-99, 1999.

[24]. Notredame, C. Recent progresses in multiple sequence
alignment: a survey. Technical Report. 2002.

[25]. Pinto, D., McCallum, A., Wei, X. and Bruce, W. Table
Extraction Using Conditional Random Fields. SIGIR-03.

[26]. Ramaswamy, L., Ivengar, A., Liu, L., and Douglis, F.
Automatic detection of fragments in dynamically generated
Web pages. WWW-04, 2004.

[27]. Reis, D. Golgher, P., Silva, A., Laender, A. Automatic Web
news extraction using tree edit distance, WWW-04, 2004.

[28]. Rosenfeld, B., Feldman, R., Aumann, Y. Structural
extraction from visual layout of documents. CIKM-02, 2002.

[29]. Song, R., Liu, H., Wen, J.-R., Ma, W.-Y. Learning block
importance models for Web pages. WWW-04, 2004.

[30]. Tai, K. The tree-to-tree correction problem. J. ACM,
26(3):422–433, 1979

[31]. Valiente, G. Tree edit distance and common subtrees.
Research Report LSI-02-20-R, Universitat Politecnica de
Catalunya, Barcelona, Spain, 2002.

[32]. Wang, J., Shapiro, J., Shasha, D., Zhang, K., Currey, K. An
algorithm for finding the largest approximately common
substructures of two trees. IEEE PAMI, 20(8), 1998.

[33]. Wang, Y., Hu, J. A machine learning based approach for
table detection on the Web. WWW-2002.

[34]. Wang, J.-Y., and Lochovsky, F. Data extraction and label
assignment for Web databases. WWW-03, 2003.

[35]. Yang, W. Identifying syntactic differences between two
programs. Softw. Pract. Exper., 21(7):739–755, 1991.

[36]. Zhang, K., Statman, R., Shasha, D. On the editing distance
between unordered labeled trees. Information Processing
Letters, 42(3):133–139, 1992.

