
Hadoop and Map-Reduce

Swati Gore

Contents

� Why Hadoop?

� Hadoop Overview

� Hadoop Architecture

� Working Description

� Fault Tolerance

� Limitations

� Why Map-Reduce not MPI

� Distributed sort

Why Hadoop?

Existing Data Analysis
Architecture

Existing Data Analysis
Architecture

� Instrumentation and Collection layer: obtains

raw data from different sources like web server,
cache registers, mobile devices, system logs etc

and dumped on the storage grid.

� Storage grid: Store the raw data collected by

Instrumentation and Collection layer.

� ETL Computation: Performs Extract Transform

Load functions.

� Extract: Reading data from storage grid

� Transform: Converting extracted data to the

required form. In this case from unstructured

to structured form.

� Load: Writing the transformed data to the

target database.

� RDBMS: Like Oracle.

� Application Layer: Various applications that

act on the data stored on RDBMS and obtain

required information.

Existing Data Analysis
Architecture

Limitations!

Three limitations:

1. Moving stored data from storage grid to

computation grid.

2. Lost of original raw data. Can not use it for

any new information

3. Archiving leading to death of data

Hadoop Overview

� Hadoop in a nut shell is an operating system.

� Has two major components

� HDFS: Hadoop Distributed File System

� Map-Reduce: Application that works on the data

stored in HDFS and act as resources scheduler.

Hadoop Overview

Benefits of Hadoop over existing

architectures

� Existing architecture employs Schema-on-

Write (RDBMS) model

� Create Schema

� Transform data so as to fits it into this schema.

� Load data.

� Obtain required information.

� Efficient for compression, indexing,

partitioning but difficult to adapt to changes.

Example of Schema-on-Write

� Student database

� Percentage of students getting placed?

3.5ECEJOHN2

4.0CSTIM1

GPADEPARTMENTNAMEUIN

Steps needed to adapt to new
requirements

� Convince management to allow major

change in existing database.

� Change the schema.

� Get required data.

� Then get desired information.

Hadoop:
Schema-on-read model

� Data is simply copied to the file without any

transformation.

� Transformation done only when data is

queried.

� Thus adapting to changes becomes very

easy.

Schema-on-read vs Schema-
on-Write

� Thus both systems have their pros and cons.

� Even though SQL is good enough for solving

complex data mining problems it still can’t

help us with say, image processing.

� Similarly Hadoop’s Schema-on-read is not

suited for ACID transactions like bank

transactions

� Thus existing architecture is like you are

given all ingredients chopped and ready to

use for cooking. You need to make the dish.

� Whereas in Hadoop you have direct access

to the pantry so you can choose any type of

ingredients and make any dish you like.

� Schema-on-Write take less time but it

restricts ability while Schema-on-read does

not impose any restriction, allowing us to

make the best of raw objects.

Languages used in Hadoop

� Hadoop gives us the flexibility to use any

language to write our algorithms.

� We use Java Map-Reduce, Streaming Map-

Reduce (works with any programming

language like C++, Python), Crunch

(Google), Pig latin (Yahoo), Hive (Facebook),

Oozie (links all together).

� We don’t have to stick to SQL.

Hadoop Architecture

� This architecture consists of three major
components - the Client, the Master
node and the slave nodes.

� Client: can be any organization which has a
lot of unstructured data from different sources
like web server, cache registers, mobile
devices, system logs etc. and wants to
analyze this data.

Master node

Responsible for two functionalities:

1. Distributing data obtained form the client to

the HDFS

2. And assigning tasks to Map-Reduce layer.

Master Node

� These functions are handled by two different

nodes:

� Name Node: helps in coordinating HDFS

� Job Tracker: helps in coordinating parallel

execution of Map-Reduce.

Slave Node

Slave Node

� Slave node consists of Data Node and Task

Tracker.

� There are number slave nodes in a Hadoop

cluster.

� These nodes communicate and receive

instructions for the Master nodes and perform

the assigned tasks.

Working

Job

Tracker

Name Node

� Name Node is a critical component of

the HDFS.

� Responsible for the distribution of the
data throughout the Hadoop cluster.

� Obtains the data from client machine divides

it in to chunks.

� Distributes same data chunk to three different

data nodes leading to data redundancy.

Name Node’s Role

� Keeps track of What chucks belong to a file

and which Data Node holds its copy.

� cluster’s storage capacity.

� Making sure each chunk of file has the

minimum number of copies in the cluster as

required.

� Directs clients for write or read operation

� Schedule and execute Map Reduce jobs.

Job Tracker

� Client submitted Map-Reduce logic.

� Responsible for scheduling the task to the

slave nodes.

� Job Tracker consults the Name Node and

assigns the task to the nodes which has the

data on which this task would be performed.

Data Node

� One of the slave node part

� Responsible to store the chunk of that

assigned to it by the Name Node.

Task Tracker

� Other part of slave node.

� Has the actual logic to perform the task.

� Performs the task (Map and reduce

functions) on the data assigned to it by

Master Node.

Map-Reduce Function

� Map: Takes a single <key, value> pair, and

produces zero or more new <key, value> pairs that

may be of different type.

� Reduce: Works on the output of Map function and

produces desired result.

Fault Tolerance

� A system is said to be fault tolerant if can

continue to work properly and does not lose

any data when some component crashes.

� HDFS achieves this by data redundancy.

Failure of Slave Node

Data Node failure

� Data Node send a periodic heartbeat to

Name Node.

� Missing heartbeat helps detected Data Node

failure.

� In such a case Name Node removes the

crashed Data Node from the cluster and

redistributes its chunks to other surviving

Data Nodes.

Task Tracker Failure

� Just like Data Node, Task Tracker’s failure is

detected by the Job Tracker after missing its

heartbeat.

� Job Tracker then decides the next step:

� It may reschedule the job elsewhere or

� It may mark specific record to avoid or

� It may blacklist this Task Tracker as unreliable.

Failure of Master Node

Name Node failure

� Since Name Node contains all the important

information required for the data distribution

and computation, If it crashes, HDFS could

fail.

� To overcome this single point failure Hadoop

introduced the Backup Node.

Backup Node

� Backup Node regularly contacts Name Node

and maintains an up to date snapshots of

Name Node's directory information.

� When Name Node fails Backup helps to

revive the Name Node.

Job Tracker Failure

� Again a single point failure

� If it goes down, all running jobs fail.

� In the latest Hadoop architecture Job Tracker

is split into application logic such that there

can be a number of masters having different

logic.

� Thus the cluster is capable of supporting

different application logic.

Name Node’s rack-aware policy

� A large Hadoop clusters is arranged in racks.

� Name Node assigns data blocks that involves

minimum data flow across the racks.

� But it also keeps in mind that replicas need to

be spread out enough to improve fault

tolerance.

Drawbacks/ limitations

� Since Name Node is the single point for

storage and management of metadata, this

can be a bottleneck for supporting a huge

number of files, especially a large number of

small files.

� For a very robust system replica distribution

should be on totally separate racks.

� But would lead to high communication

overhead especially during write operation,

as all replicas must be updated.

� Thus HDFS write two of the replicas on

different nodes of the same rack and write

the other one on a totally separate rack.

Why Map-Reduce not MPI?

� Firstly Map-Reduce provides a transparent and
efficient mechanism to handle fault where as errors

in MPI are considered fatal and only way to handle
them is to abort the job.

� Secondly in order for MPI to support Map-Reduce
operations, it would need variable-sized reduction
function because Reducer in Map-Reduce can

return values that are of a different size than the
input values, e.g., string concatenations.

� The basic difference is that Map-Reduce and

MPI were developed by two different

communities that are traditionally disjoint and

were developed to cater different needs and

capabilities.

� As the interests of both converge they can

benefit by taking advantage of these

respective technologies.

Benefits of using Hadoop
� Firstly since both map and reduce functions can run in parallel,

allow the runtime to be reduces to several optimizations.

� Secondly Map-Reduce is fault resiliency which allows the
application developer to focus on the important algorithmic
aspects of his problem while ignoring issues like data distribution,
synchronization, parallel execution, fault tolerance, and
monitoring.

� Lastly be using Apache Hadoop, we avoid paying expensive
software licenses; get flexibility to modify source code to meet
our evolving needs; and avail themselves of leading-edge
innovations coming from the worldwide Hadoop community.

The Communication Protocols
� All HDFS communication protocols are built

on top of the TCP protocol.

� A client establishes a TCP connection with
the Name Node machine.

� Once the connection is set they talk using the
Client Protocol.

� Similarly the Data Nodes talk to the Name
Node using the Data Node Protocol.

� Both the Client Protocol and the Data Node
Protocol use Remote Procedure Call (RPC)
abstraction.

The Communication Protocols

Companies using Hadoop

� Netflix’s movie recommendation algorithm
uses Hive (underneath using Hadoop, HDFS
& Map-Reduce) for query processing and

Business Intelligence.

� The Yahoo! Search Webmap is a
Hadoop application that runs on a more than
10,000 core Linux cluster and produces data
that is now used in every Yahoo! Web search
query.

� Facebook uses largest Hadoop cluster in
the world with 21 PB of storage.

Applications of Map-Reduce

� distributed grep

� distributed sort

� web link-graph reversal

� term-vector per host

� web access log stats

� inverted index construction

� document clustering

� machine learning

� statistical machine translation

Distributed Sort

� Suppose we want to sort 1 million entries in a

student database based on their age (Age-

Name).

� We want to sort using Age.

Flow Chart

Slave Node

Reducer Stage

Slave Node merges resultant lists obtained from the Map stage.

Sorted list of million students

� Now we can ask a question that if there is

only one reducer where the results are

combined, how does it that advantage of the

distributed framework?

� Won’t merging 1 million entries at one node

cause processes to slow down?

� The answer is yes!

� But it turns out that it is more efficient to

merge partially sorted listed to produce a

sorted list then to sort complete list.

� The reducers work is very simple it just looks

at the smallest elements from the all the lists

it obtained as input and pick the one that is

the smallest.

� We can parallelize reducers work but dividing

the resultant list in batches of two between a

number of reducers.

� Each of them would merge two lists.

� Thus the final reducer would be responsible

to merge only two lists.

� In any other architecture this parallel execution
would be restricted due to the topology which has to

be defined before the execution starts.

� Where as in Hadoop cluster we are not bound by
this restriction, the data distribution and execution is

not the programmer’s responsibility, its taken care
by HDFS.

� Programmer just has to make sure the mapper and
reducer functions are written in accordance with the

Map-Reduce paradigm.

CDH: Cloudera’s Distribution
Including Apache Hadoop

� Hadoop is only the kernel.

� Just like in Linux. We can get the kernel from
kernel.org but there is Red Hat which is the
distribution which has the kernel, libs, apache web
server, xwindows which make it a complete product.

� Cloudera does the same for Hadoop.

� It adds HBase, Apache Flume, Hive, Oozie, installer
which is not open source but is free, we just need
to submit the IP addresses of different system and it
takes care of the rest of the installation.

Conclusion

� Hadoop is an operating system that spans over a
grid of computers providing an economically
scalable solution for storing and processing large
amount of structured and unstructured data over
long period of time.

� Hadoop architecture provides a lot of flexibility which
traditional systems didn’t. It is very easy to add
information, adapt to changing needs. It can
answers queries which are very difficult to solve
using RDBMS.

� Hadoop is inexpensive as compared to the other
data store solution available in the market making it
very attractive. It also uses commodity hardware,
open-source software.

Questions?

Thank You

