
Transactional Memory for
Multithreaded Environments

Fall 2012
Parallel Computing

Jamar Drue
Brian Mykietka

Overview

● Jamar
○ What is Transactional Memory?
○ TM Basics
○ Hardware TM
○ Software TM

● Brian
○ Hardware Implementation
○ Software Implementation
○ Code examples
○ Conclusion

● Questions

WHAT IS TRANSACTIONAL MEMORY?

Introduction

● Shared-memory multicore microprocessors offers immense
potential to exploit thread-level parallelism (TLP).

● TM was created to ease the transition from sequential
algorithms to parallel algorithms for programmers.

○ Difficulties of synchronization tradeoffs, deadlock
avoidance, etc.

● Simplifies concurrency programming by allowing a group of
load and store instructions to execute atomically.

Previous Methods

● Parallel thread execution requires synchronization or
ordering mechanisms for multiple accesses to shared data.

● Previous Multithreaded programming models
○ Use a set of low-level primitives (i.e. locks) on critical sections.

■ Guarantees mutual exclusion.

■ Ownership of one or more locks protects access to shared data.

○ Locks are complex to use and error prone.

○ With mutual exclusion locks, only one thread can hold a lock at a
time.

Functionality

● Transactions replace locking with atomic execution units.
○ The programmer can focus on determining where atomicity is

needed, rather than how to implement it.

○ Example atomic region in a simple kernel that computes the
histogram of an array:

atomic {

 hist[array[i][j]]++;

}

○ The TM implementation determines how to run that critical
section in isolation from other threads.

Functionality

● Most TM implementations assume that the transactions do not conflict, so the
transactions are run in parallel.

○ If two transactions access the same memory item and at least one of them
writes, then the conflict.

○ RAW dependencies are most typical.

○ If the transactions don’t conflict...
■ The transactions did not have to compete lock to update the shared

data.

○ If the transactions do conflict...
■ The TM must abandon (roll back) the work of one of the conflicting

transactions.

■ Any attempted work must not be visible to other threads.
■ The abandoned transactions are then re-executed after the conflicts

are handled.

Advantages

● TM uses mechanisms for simplifying this problem by abstracting some of
these difficulties associated with concurrent access .

○ The programmer can concentrate on the algorithm instead of complex
mechanisms such as locks

● With TM, multiple threads access memory simultaneously in an atomic way.
○ So either all the accesses within an atomic transaction succeed or none

of the accesses succeed.

○ Shared data structures are guaranteed to be kept in consistency even in
the event of a failure.

● Because actual conflicts are rare in many programs, TM takes an optimistic
approach to assume that a conflict will not happen.

○ Compared to TM, locks are pessimistic.

Advantages

● Like database transaction, TM has atomicity, consistency, and isolation
(ACI) properties:

○ Atomicity to guarantee transactions either commit or abort.
○ Consistency to guarantee transactions use the same total order

during the whole process.

○ Isolation to guarantee that each transaction's operations are isolated
to other transactions.

● TM provides a better trade-off between scaling and implementation
effort.

○ Fine-grained locking scales well, but are difficult to design.

● TM is inherently deadlock free.

Disadvantages

● Disadvantages Important to Note
○ Livelock can be a problem, but it is easier to deal with

than deadlock.

○ Like many high-level programming abstractions, a
carefully designed algorithm using lower-level primitives
can outperform an algorithm using TM.

○ Difficulty with what kind of abstractions to provide and
what kind of performance tuning and debugging tools to
develop for programmers.

TM BASICS

Transactions

● Transaction – a sequence of instructions that either executes completely (commits) or has
no effect (aborts).

○ On a successful commit, the global state is updated and all writes become visible
where other transactions can use those values .

○ On an abort, the system discards all its speculative writes.

● A TM system needs a data-versioning mechanism to record the speculative writes.
○ With an Undo Log, a transaction applies updates directly to memory locations, while

logging the necessary information to undo the updates in case of an abort.

○ Buffered Updates keep the speculative state in a private transaction buffer until
commit time.

■ If the commit succeeds, the buffer drops the original values before the store
instructions and commits the transaction’s speculative stores to memory.

Transactions

● A transaction’s instruction sequence can be explicitly or implicitly delimited.
○ Explicit

■ Some high-level programming languages include constructs that
explicitly define the extent of transactions like the ‘‘atomic’’ statement
shown earlier.

■ Others provide lower-level operations to explicitly start and end
transactions.

■ A TM system can abort transactions explicitly by executing an abort
instruction.

○ Implicit
■ In other cases, transactions start implicitly after execution of a

transactional read or write operation or immediately after the commit
of another transaction in the instruction stream.

■ A TM system can abort transactions implicitly because of data conflicts
with concurrent transactions.

Conflict Handling

● Two issues are related to conflicts: detection and resolution.
○ Each running transaction is associated with a read set and a write set.

■ For transactional load instruction

● memory address → read set.

■ For transactional store instruction

● memory address + value → write set.

○ Conflict detection can be either eager or lazy.

■ Eager conflict detection checks every individual read and write for a conflict with
another transaction.

■ In lazy conflict detection, a transaction checks its read and write sets for a
conflict only on a commit.

Conflict Handling

Conflict Handling

● Conflict Resolution
○ Usually, a system resolves a conflict

by aborting one of the transactions

○ The resolution policy has three
choices

■ Committer Wins
■ Requester Wins
■ Requester stall with

conservative deadlock
avoidance.

TM Implementations

● Software Transactional Memory (STM)
○ Easy to implement and require no changes to existing hardware.
○ But for most STMs, poor performance and weak atomicity are two serious

disadvantages.

● Hardware Transactional Memory (HTM)
○ Has the advantages of high performance and strong atomicity.
○ System architecture must support HTM.

● Combined Approach
○ Hybrid transactional memory (HyTM)

■ Supports HTM execution, but when HW resources are exceeded, falls back on
STM.

○ Hardware-assisted STM (HaSTM)
■ Combines STM with new architectural support to provide STM speedup.

○ HyTM provides near-HTM performance for short transactions, while HaSTM provides
performance somewhere between HTM and STM.

HARDWARE TRANSACTIONAL MEMORY

Hardware TM

● The first HTM designs were minimalist
○ Modifying the cache consistency protocols
○ Complementing the ISA with new instructions.
○ Speculative state stored in extended or partitioned cache a commit or abort.

● Process
○ As a transaction starts, it checkpoints registers to save old values.
○ In order to detect read-write or write-write conflicts, memory references are tracked.
○ If a transaction completes without conflicts, its results are committed to shared

memory.

○ If a conflict appears between two transactions, one of them rolls back according to
register checkpoint.

● Benefits
○ HTM systems cut down the overhead of fine-grained locks.
○ They can automatically check every memory references of all the active transactions

under the help of the cache coherence protocols.

HTM - Conflict Detection

● HTM systems keep a transaction’s speculative state in the data
cache or in a hardware buffer area.

○ STM systems have conflict detection at object level.
○ HTM systems work at the word or cache line level.

● The systems keep transactional loads and stores in a separate
transactional cache or in conventional data caches augmented
with transactional support.

● Transactional support relies on extending existing cache
coherence protocols (i.e. MESI - modified, exclusive, shared,
invalid), to detect conflicts and enforce atomicity.

HTM ISA Support

● ISA level transaction instructions
○ Transaction delimiters

■ start transaction (STR) .
■ end transaction (ETR).

○ Transactional Read and Writes
■ load (TLD)
■ store (TST)

○ Implicit transactions
■ When a transaction executes its first TLD or TST operation, a flag is set at the

core indicating that the core is engaged in a transaction.

● Adding special instructions for abort (ABR) and validation (VLD) of a transaction makes
several optimizations possible.

○ VLD allows for early conflict detection so the transaction can roll back without wasting
energy.

HTM - Version Management

● The transaction’s read set and write set are stored in the data cache and keeps an
extra version of the transaction’s tentative updates.

○ Two extra bits per cache line indicate whether the line is to be discarded on
commit (for lines holding unmodified data) or on abort (for speculatively
modified lines).

● A conflict means that a load has read invalid data and the transaction must abort.
○ The write set of the aborting transaction is dropped.

● When there is no conflict
○ The version of the original values before the store instructions are dropped.
○ The transaction’s speculative stores are committed to memory.

SOFTWARE TRANSACTIONAL MEMORY

Software TM – API Design

● Software Transactional Memory (STM) has the advantages of flexibility
and easy implementation.

● An STM implementation must create its own mechanism for concurrent
transactions to maintain their own views of heap memory.

○ This mechanism allows a transaction to see its own writes as it runs
and allows memory updates to be discarded if the transaction
ultimately aborts.

● Two distinctions between how different STM systems are implemented
include:

○ Transaction granularity
○ Data Organization in memory.

STM – Transaction Granularity

● Transaction granularity - the data store unit, through which a TM system detects
conflicts.

○ word, block, object and hybrid.

● Word Granularity
○ A shared word is possessed by no more than one transaction at any time.
○ In order to guarantee a shared memory word to update atomically, a

dedicated record is used to store the exclusive ownership of this word.

● Block Granularity
○ A multiword structure is used to store transactional variables, which include

a pointer to shared data, a mutual-exclusion lock number and a wait queue
used for conditional synchronization inside transactions.

○ Map shared memory addresses into a hash table, each item of which stores
an ownership record for tracking whether transactions conflict.

STM – Transaction Granularity

● Object granularity,
○ With object granularity, it is unnecessary to change original object

structure for translating non-transactional program to transactional
program.

○ An object can execute inside and outside transactions without any
change.

● Hybrid Granularity
○ In these systems, transaction granularity may change between word

and object.

○ Word is used when the workload has more high-level concurrent
data structures (e.g., multi-dimensional arrays)

○ Object is used when the workload has more dynamical data
structures.

STM – Transaction Granularity

● Comparisons
○ Word/Block Granularity

■ Supports fine-grained sharing and fine-grained parallelism.
■ Can get more concurrently access to data structures such as array,

matrix etc.

■ Provides higher conflict detection accuracy.
■ Leads to much more additional communication overhead.
■ Injures performance by making unnecessary transaction aborts.

○ Object Granularity
■ Object transactions are more helpful for supporting practical and

dynamic object-based structures.

■ Hard to support object transactions for non-object.
■ High parallel data structures such as arrays, using objects for conflict

detection can cause unnecessary conflicts, inhibiting concurrency.

STM - Data Management

● A high-level distinction between STM implementations is how they
organize data in memory.

○ One approach separates transactional data and ordinary data,
introducing a distinct memory format for transactional
objects. (Indirect)

○ An alternative approach allows data to retain its ordinary
structure in memory, and the STM uses separate structures to
maintain its own metadata. (Direct)

● There are advantages and disadvantages to each approach.

Indirect Data Management

● Since, transactional and ordinary data are stored in different memory
structure, these systems cannot access transactional data directly.

○ If a transaction wants to access a shared object, it must take actions to
open a TM object first.

○ The open operations are different according to whether the access
mode is READ or WRITE.

■ READ mode - the same object body can be shared by multiple
transactions at the same time.

■ WRITE mode - a new version copy of the object is prepared for
update and is only visible to the transaction until the transaction
commits.

○ Makes transactional data semantics clear

Direct Data Management

● Transactional and ordinary data are stored in the same low-
level memory structure in the system

● They refer transactional data by ordinary pointer directly.

● They are convenient for spatial access locality and hence
improve performance and transaction throughput.

STM - Version Management

● STM API implementation has two ways of managing tentative
updates: Buffered updates or Undo log.

○ Buffered updates/Lazy Version Management (LVM)

■ A transaction keeps a private shadow copy of all the memory words it
updates.

■ STMRead accesses the shadow copies so that they will see earlier writes by
the same transaction.

■ Hashing maps an address to a slot in the current transaction’s shadow table.

■ Benefits

● LVM is more efficient for transactions aborting.

● LVM allows concurrent transactional read and write for the same logical data.

● Keeping a private version of the object in store buffer and no one committing at the
time.

STM - Version Management

● Undo-log/Eager Version Management (EVM).
○ STMWrite directly updates the heap so that calls to STMRead will see earlier

updates without needing to search a table.

○ STMWrite maintains an undo log of all values that it overwrites referred to
as checkpoints

■ On commit, discard the old version in its checkpoint.
■ On an abort, the old version in its checkpoint is restored to its original

place and the new version is discarded.

○ Benefits
■ VM is more efficient for transactions committing.

○ Disadvantages
■ Prevents other transactions to read a modified uncommitted object,

limiting possible concurrency.

Conflict Detection

● Generally, there are three type of conflict detection: Eager Conflict Detection
(ECD), Lazy Conflict Detection (LCD) and Hybrid Conflict Detection (HCD).

● ECD
○ Detects conflicts when a transaction wants to access memory.
○ ECD always works with EVM, since it is necessary to make sure that only one

transaction can write a new version to a logical data.

● LCD
○ Detects conflicts when a transaction is about to commit updates
○ Similarly, LCD commonly works with LVM.

● HCD, combines ECD and LCD.
○ Manage transactional version with EVM mechanism.
○ Uses ECD before a transaction read or write.
○ Allow multiple transactions to read a shared data concurrently and to delay

detecting conflicts until committing with LCD.

Synchronization

● Synchronization is the mechanism to guarantee that a transaction attempting to
access a logical data will finish its work.

○ Blocking Synchronization (BS)
○ Non-blocking Synchronization (NS).

● The BS blocks concurrent access
○ In order to keep consistency, BS forces multiple threads to access critical sections

exclusively, maintaining a queue in the order of request(wait-state).

○ A compiler can automate this approach, by using locks as a transaction executes
until it commits.

○ Disadvantages
■ This wait-state easily leads to severe problems such as deadlock, priority

inversion, contention, etc.

Synchronization

● NS prevents concurrent threads from entering wait-state.
○ In NS, a concurrent thread may either abort its transaction, or abort the

transaction of conflicting thread.

○ The NS has been classified into three main categories based on their
assurances for forward progress:

■ Wait-freedom
● Assures all threads avoid deadlocks and starvation.

■ Lock-freedom
● Assures all threads avoid deadlocks, but not starvation.

■ Obstruction-freedom
● Assures all threads avoid deadlocks, but not livelocks .
● Livelock can be effectively minimized with simple methods like

exponential backoff.

○ Disadvantages
■ NS may cause more memory traffic than BS.

Existing Implementations

Existing Implementations

● Hardware implementations
○ Sun - Rock microprocessor
○ IBM Blue Gene/Q
○ IBM zEnterprise EC12
○ Transactional Synchronization Extensions (TSX)

● Software implementations
○ Code examples

■ C/C++ Boost.STM
■ C# SXM

Hardware Implementations

● Sun - Rock microprocessor (2006 - 2009)
■ First production processor to support

transactional memory

■ Added two new instructions chkpt and
commit and one new status register cps

■ chkpt <fail_pc> used to begin transaction

■ commit to commit transaction

■ If transaction aborts then we jump to

<fail_pc> and cps is used to determine
reason

Hardware Implementations

● Sun - Rock microprocessor
○ Transactional memory support is best-effort based

■ Does not guarantee support of transactions of
any size

■ Committed in in-cache and aborted if don't fit
○ Transactions can be aborted for other reasons

■ TLB misses
■ Interrupts
■ Certain commonly used function call sequences
■ "Difficult" instructions (division)

Hardware Implementations

● Blue Gene/Q processor (2012) (Ranked #2 - top500.org)
○ L2 multi-versioned, transactional memory and

speculative execution, hardware support for atomic
operations

○ Implemented in hardware, can access all memory up
to 16GB boundary

○ Transactions implemented through regions of code
that are designated as single operations

○ These regions are called transactional atomic regions

●

Hardware Implementations

● Blue Gene/Q processor - Transactional memory
○ When transactional memory is activated,

transactions run in one of two modes
■ Speculation mode

● Allows for coarse grain multi-threading
● load/store conflicts detected and resolved

according to sequential semantics

● Long running speculation mode (default)
● Short running speculation mode

■ Irrevocable mode
○ Each mode applies to an entire transactional

atomic region

Hardware Implementations

● Blue Gene/Q processor - Execution modes
○ Speculation mode

■ Kernel address space, devices I/O, memory-mapped I/O are
protected from irrevocable actions

■ Transaction goes into irrevocable mode if such an action occurs
to guarantee correct results

○ Irrevocable mode
■ System calls, irrevocable operations such as I/O operations, and

OpenMP constructs trigger transactions to go into speculation
mode which serializes the transactions

■ Transactions run in this mode when max number of transaction
rollbacks has been reached

■ Each memory update of thread is committed instantaneously
instead of at end of transaction → memory updates immediately
visible to other threads

Hardware Implementations

● Blue Gene/Q processor - Built-in transactional memory functions
○ Can create struct to fill out fields:

■ Hardware thread ID
■ Total number of transactions
■ Total number of rollbacks for transactional memory

threads

■ Various other serialization counts
○ This struct can be passed into functions to be populated:

■ tm_get_stats(TmReport_t *stats)
■ tm_get_all_stats(TmReport_t *stats)

○ Can also call write statistics for transactional memory of
particular hardware thread to a log file using:

■ tm_print_stats()
■ tm_print_all_stats()

○ #pragma tm_atomic specifies atomic region

Hardware Implementations

● Transactional Synchronization Extensions (TSX)
○ Extension to the x86 ISA that adds HTM support
○ Documented by Intel in February 2012 scheduled

for implementation in microprocessors based on
Haswell architecture

○ Hardware monitors multiple threads for
conflicting memory accesses and aborts/rolls
back transactions that cannot complete
successfully

Hardware Implementations

● Transactional Synchronization Extensions (TSX)
○ Programmer has ability to specify code regions to be executed

transactionally

○ Provides two software interfaces to specify regions:
■ Hardware Lock Elision (HLE)

● Legacy XACQUIRE/XRELEASE instructions

● Allows optimistic execution by suppressing the write to lock
so lock appears to be free to other threads

● Failed transaction restarts from XACQUIRE
■ Restricted Transactional Memory (RTM)

● New instruction set interface
● XBEGIN, XEND, XABORT instructions

● Allows programmers to define transactional regions in more
flexible manner than with HLE

● Gives programmer ability to specify fallback code path

Software Implementations

Software Implementations
Proposed Language Support

● Simplest form "atomic block"

// Insert a node into a doubly linked list atomically
atomic
{
 newNode->prev = node;
 newNode->next = node->next;
 node->next->prev = newNode;
 node->next = newNode;
}

● When end of block reached,
○ Transaction committed if possible
○ Or else aborted and retried

Software Implementations
Proposed Language Support

● Conditional critical region (CCR) permit guard condition

atomic (queueSize > 0)
{
 // remove item from queue and use it
}

● Enables transaction to wait until it has to do work
● If condition is not satisfied, transaction manager will

wait until another transaction has made a commit that
affects the condition before retrying

Software Implementations
Proposed Language Support

● Composable Memory Transactions, adds retry command
● Can abort transaction at any time and wait until some

value previously read by the transaction is modified before
retrying

atomic
{
 if (queueSize > 0)
 {
 // remove item from queue and use it
 }
 else
 {
 retry
 }
}

Software Implementations

● Currently a hot area of research
● Many implementations are still considered

experimental

● Numerous implementations in various languages:
○ C/C++
○ C#
○ Clojure
○ Common Lisp
○ Haskell
○ Java

○ JavaScript
○ OCaml
○ Perl
○ Python
○ Scala
○ Smalltalk

Source: http://en.wikipedia.org/wiki/Software_transactional_memory

Software Implementations
Various C/C++ Implementations

● TinySTM - time-based STM, integrates STM with C/C++ with
LLVM

● LibCMT - open-source implementation based on
"Composable Memory Transactions"

● Intel STM Compiler Prototype Edition
○ Implements STM for C/C++ directly in compiler producing

32 or 64 bit code for Intel or AMD processors

○ Implements atomic keyword

○ Provides ways of decorating (declspec) function
definitions to control/authorize use in atomic sections

○ This is a substantial implementation with the stated
purpose to enable large scale experimentation in any
C/C++ program

Software Implementations
C/C++ Implementation

● Boost.STM - Library under construction
○ Optimistic concurrency
○ ACI transactions

■ Atomic - all operations execute or none do
■ Consistent - only legal memory states
■ Isolated - other transactions cannot see until committed

○ Language-like atomic transaction macro blocks - like above

○ Closed, flattened composable transactions
○ Direct and deferred updating run-time policies
○ Validation/invalidation conflict detection policies
○ Lock-aware transactions
○ Programmable contention management
○ Isolated/irrevocable transactions for transactions that must

commit

Software Implementations
C/C++ Implementation

● Boost.STM "Hello World" example
○ Both read and write on counter variable function atomically

or neither operations are performed

○ Transaction begins and ends in legal memory states
○ Intermediate state of incremented counter is isolated until

the transaction is complete

#include <boost/stm.hpp>
Boost::stm::tx::object<int> counter(0);

int increment() {
 BOOST_STM_TRANSACTION {
 return counter++;
 } BOOST_STM_TRANSACTION;
}

Software Implementations
C/C++ Implementation

● Boost.STM - Simple Transaction Example - Linked List Insert
○ tx_ptr smart pointer
○ 100 atomic insertions
○ No additional code needed to perform transactional

linked list

○ Simple!

tx_ptr< linked_list<int> > linkedList;
...
for (int i = 0; i < 100; ++i) {
 BOOST_STM_TRANSACTION {
 linkedList->insert(i);
 } BOOST_STM_TRANSACTION;
}

Software Implementations
C/C++ Implementation

● Boost.STM - Insert Retry Transaction Example
○ Code performs two key operations

i. Retries the transaction until it succeeds (commits)
ii. Catches aborted transaction exceptions

○ aborted_transaction_exception - exception neutral while gaining
performance benefits from early notification of doomed
transactions

void insert(T const &val)
{
 BOOST_STM_TRANSACTION
 {
 // our code to insert
 } BOOST_STM_END_TRANSACTION;
}

Software Implementations
Various C# Implementations

● SXM - Implemented by Microsoft Research
● NSTM - .NET STM, truly nested transactions and integrating

with System.Transactions

● MikroKosmos
○ Verification-oriented model implementation of STM

(Bartok STM)

○ Implementation meant for benchmarking, not practical
use

● STM.NET
○ Microsoft DevLabs project
○ Delineate sections of code as running with an atomic

block using a delegate or try/catch

Software Implementations
C# Implementation

● SXM Overview
○ Facilitate experimentation with new algorithms

and techniques for implementing STM
○ Users encouraged to implement/experiment

with new components
■ Benchmarks
■ Contention managers

● Greedy - Maximal independent set running
● Aggressive - Always aborts conflicting transactions
● Priority - Prior transaction has later timestamp, abort it

■ Object factories

Software Implementations
C# Implementation - SXM

[Atomic]
public class Node
{
 protected int value;
 protected Node next;
 public Node(int value)
 {
 this.value = value;
 }
 public virtual int Value
 {
 get { return value; }
 set { this.value = value; }
 }
 public virtual Node Next
 {
 get { return next; }
 set { this.next = value; }
 }
}

Software Implementations
C# Implementation - SXM

● Factory creates transactional proxies that intercept property
calls:

IFactory factory = new XAction.MakeFactory(typeof(Node));

● Can create Node objects by using:

Node node = (Node)factory.Create(value);

Software Implementations
C# Implementation - SXM

public override object Insert(object _v)
{
 int v = (int)_v;
 Node newNode = (Node)factory.Create(v);
 Node prevNode = this.root;
 Node currNode = prevNode.Next;
 while (currNode.Value < v)
 {
 prevNode = currNode;
 currNode = prevNode.Next;
 }
 if (currNode.Value == v)
 {
 return false;
 }
 else
 {
 newNode.Next = prevNode.Next;
 prevNode.Next = newNode;
 return true;
 }
}

Software Implementations
C# Implementation - SXM

● To prepare method to be executed by transaction, turn it
into an XStart delegate

XStart insertXStart = new XStart(Insert);

● To execute the transaction:

XAction.Run(insertXStart, value);

Software Implementations
C# Implementation - SXM

● Conditional Waiting
○ XAction.Retry()
○ Aborts current transaction, restarts it when some object

accessed by that transaction has been modified

● OrElse Combinator
○ Provides way to specify alternative execution paths
○ Example

■ Remove item from buffer b1, but buffer is empty
■ Instead of blocking you would prefer to remove an item

from buffer b2

■ Get1() - remove item from b1, Get2() - remove from b2

getXStart = XAction.OrElse(new XStart(Get1), new XStart(Get2));
int x = (int)XAction.Run(getXStart);

Conclusion

● Great alternative to lock-based synchronization
● Simplifies conceptual understanding of multi-

threaded programs, makes programs more
maintainable by working in harmony with high-level
abstractions such as objects and modules

● Many implementations, each with own strengths
and weaknesses

● Beginning to see more mainstream interest in TM
with multi-threaded applications being much more
prevalent

References

1. Harris, T.; Cristal, A.; Unsal, O.S.; Ayguade, E.;
Gagliardi, F.; Smith, B.; Valero, M.; , "Transactional
Memory: An Overview," Micro, IEEE , vol.27, no.3, pp.8-
29, May-June 2007

2. Wang, X., Z. Ji, C. Fu and M. Hu, 2010. A review of
software transactional memory in multicore processors.
Inform. Technol. J., 9: 192-200

3. Wang, X., Z. Ji, C. Fu and M. Hu, 2009. A review of
hardware transactional memory in multicore processors.
Inform. Technol. J., 8: 965-970.

References
● http://en.wikipedia.org/wiki/Transactional_memory
● http://en.wikipedia.org/wiki/Software_transactional_memory
● http://en.wikipedia.org/wiki/IBM_zEC12_(microprocessor)
● http://www.eetimes.com/electronics-news/4218914/IBM-plants-transactional-memory-in-CPU
● http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp?topic=%2Fcom.ibm.xlcpp121.bg.doc%

2Fproguide%2Fbg_tm_concept.html

● http://en.wikipedia.org/wiki/Rock_processor
● http://www.dolcera.com/wiki/index.php?title=Transactional_memory
● https://svn.boost.org/trac/boost/wiki/LibrariesUnderConstruction
● http://svn.boost.

org/svn/boost/sandbox/stm/branches/vbe/libs/stm/doc/html/toward_boost_stm/users_guide/getting_
started.html

● http://svn.boost.
org/svn/boost/sandbox/stm/branches/vbe/libs/stm/doc/html/toward_boost_stm/users_guide/tutorial.
html

● http://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
● http://software.intel.com/sites/default/files/m/3/2/1/0/b/41417-319433-012.pdf
● http://research.microsoft.com/en-us/downloads/c282dbde-01b1-4daa-8856-98876e513462/
● http://www.cs.brown.edu/~mph/SXM/README.doc
● ftp://ftp.research.microsoft.com/downloads/fbe1cf9a-c6ac-4bbb-b5e9-d1fda49ecad9/SXM1.1.zip
● http://blogs.msdn.com/b/stmteam/archive/2009/07/28/stm-net-released.aspx
● http://www.disco.ethz.ch/lectures/fs11/seminar/paper/johannes-2-2.pdf
● http://en.wikipedia.org/wiki/Simultaneous_multithreading
● ftp://public.dhe.ibm.com/common/ssi/ecm/en/dcw03006usen/DCW03006USEN.PDF

