In "Lifelong Machine Learning" by Z. Chen and B. Liu, 2018. Morgan & Claypool Publishers.
55

CHAPTER 4

Continual Learning and
Catastrophic Forgetting

In the recent years, lifelong learning (LL) has attracted a great deal of attention in the deep
learning community, where it is often called continual learning. Though it is well-known that
deep neural networks (DNNs) have achieved state-of-the-art performances in many machine
learning (ML) tasks, the standard multi-layer perceptron (MLP) architecture and DNNs suffer
from catastrophic forgetting [McCloskey and Cohen, 1989] which makes it difficult for continual
learning. The problem is that when a neural network is used to learn a sequence of tasks, the
learning of the later tasks may degrade the performance of the models learned for the earlier
tasks. Our human brains, however, seem to have this remarkable ability to learn a large number
of different tasks without any of them negatively interfering with each other. Continual learning
algorithms try to achieve this same ability for the neural networks and to solve the catastrophic
forgetting problem. Thus, in essence, continual learning performs incremental learning of new
tasks. Unlike many other LL techniques, the emphasis of current continual learning algorithms
has not been on how to leverage the knowledge learned in previous tasks to help learn the new
task better. In this chapter, we first give an overview of catastrophic forgetting (Section 4.1) and
survey the proposed continual learning techniques that address the problem (Section 4.2). We
then introduce several recent continual learning methods in more detail (Sections 4.3—4.8). Two
evaluation papers are also covered in Section 4.9 to evaluate the performances of some existing
continual learning algorithms. Last but not least, we give a summary of the chapter and list the
relevant evaluation datasets.

4.1 CATASTROPHIC FORGETTING

Catastrophic forgetting or catastrophic interference was first recognized by McCloskey and Cohen
[1989]. They found that, when training on new tasks or categories, a neural network tends
to forget the information learned in the previous trained tasks. This usually means a new task
will likely override the weights that have been learned in the past, and thus degrade the model
performance for the past tasks. Without fixing this problem, a single neural network will not be
able to adapt itself to an LL scenario, because it forgess the existing information/knowledge when
it learns new things. This was also referred to as the stability-plasticity dilemma in Abraham and
Robins [2005]. On the one hand, if a model is too stable, it will not be able to consume new
information from the future training data. On the other hand, a model with sufficient plasticity

56 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

suffers from large weight changes and forgets previously learned representations. We should note
that catastrophic forgetting happens to traditional multi-layer perceptrons as well as to DNNs.
Shadow single-layered models, such as self-organizing feature maps, have been shown to have
catastrophic interference too [Richardson and Thomas, 2008].

A concrete example of catastrophic forgetting is transfer learning using a deep neural
network. In a typical transfer learning setting, where the source domain has plenty of labeled
data and the target domain has little labeled data, fine-funing is widely used in DNNs [Dauphin
etal., 2012] to adapt the model for the source domain to the target domain. Before fine-tuning,
the source domain labeled data is used to pre-train the neural network. Then the output layers
of this neural network are retrained given the target domain data. Backpropagation-based fine-
tuning is applied to adapt the source model to the target domain. However, such an approach
suffers from catastrophic forgetting because the adaptation to the target domain usually disrupts
the weights learned for the source domain, resulting inferior inference in the source domain.

Li and Hoiem [2016] presented an excellent overview of the traditional methods for
dealing with catastrophic forgetting. They characterized three sets of parameters in a typical
approach:

* f: set of parameters shared across all tasks;
* 0,: set of parameters learned specifically for previous tasks; and
* 0,: randomly initialized task-specific parameters for new tasks.

Li and Hoiem [2016] gave an example in the context of image classification, in which 6
consists of five convolutional layers and two fully connected layers in the AlexNet architecture
[Krizhevsky et al., 2012]. 6, is the output layer for classification [Russakovsky et al., 2015] and
its corresponding weights. 6, is the output layer for new tasks, e.g., scene classifiers.

There are three traditional approaches to learning 6, with knowledge transferred from 6.

* Feature Extraction (e.g., Donahue et al. [2014]): both 65 and 6, remain the same while
the outputs of some layers are used as features for training 6, for the new task.

* Fine-tuning (e.g., Dauphin et al. [2012]): 65 and 6, are optimized and updated for the
new task while 6, remains fixed. To prevent large shift in 6;, a low learning rate is typically
applied. Also, for the similar purpose, the network can be duplicated and fine-tuned for each
new task, leading to N networks for N tasks. Another variation is to fine-tune parts of 6y,
for example, the top layers. This can be seen as a compromise between fine-tuning and
feature extraction.

* Joint Training (e.g., Caruana [1997]): All the parameters 6y, 0,, 8, are jointly optimized
across all tasks. This requires storing all the training data of all tasks. Multi-task learning
(MTL) typically takes this approach.

4.2. CONTINUAL LEARNING IN NEURAL NETWORKS 57

'The pros and cons of these methods are summarized in Table 4.1. In light of these pros
and cons, Li and Hoiem [2016] proposed an algorithm called “Learning without Forgetting”
that explicitly deals with the weaknesses of these methods; see Section 4.3.

Table 4.1: Summary of traditional methods for dealing with catastrophic forgetting. Adapted
from Li and Hoiem [2016].

Feature

Duplicate and

Category Extraction Fine-Tuning Fine-Tuning Joint Training
New task performance Medium Good Good Good
Old task performance Good Bad Good Good
Training efficiency Fast Fast Fast Slow
Testing efficiency Fast Fast Slow Fast
Storage requirement Medium Medium Large Large
Require previous task data No No No Yes

4.2 CONTINUAL LEARNING IN NEURAL NETWORKS

A number of continual learning approaches have been proposed to lessen catastrophic forgetting
recently. This section gives an overview for these newer developments. A comprehensive survey
on the same topic is also given in Parisi et al. [2018a].

Much of the existing work focuses on supervised learning [Parisi et al., 2018a]. Inspired
by fine-tuning, Rusu et al. [2016] proposed a progressive neural network that retains a pool of
pretrained models and learns lateral connections among them. Kirkpatrick et al. [2017] proposed
a model called Elastic Weight Consolidation (EWC) that quantifies the importance of weights
to previous tasks, and selectively adjusts the plasticity of weights. Rebuffi et al. [2017] tackled the
LL problem by retaining an exemplar set that best approximates the previous tasks. A network
of experts is proposed by Aljundi et al. [2016] to measure task relatedness for dealing with
catastrophic forgetting. Rannen Ep Triki et al. [2017] used the idea of autoencoder to extend
the method in “Learning without Forgetting” [Li and Hoiem, 2016]. Shin et al. [2017] followed
the Generative Adversarial Networks (GANs) framework [Goodfellow, 2016] to keep a set of
generators for previous tasks, and then learn parameters that fit a mixed set of real data of the
new task and replayed data of previous tasks. All these works will be covered in details in the
next few sections.

Instead of using knowledge distillation as in the model “Learning without Forgetting”
(LwF) [Li and Hoiem, 2016], Jung et al. [2016] proposed a less-forgetful learning that regu-
larizes the final hidden activations. Rosenfeld and Tsotsos [2017] proposed controller modules
to optimize loss on the new task with representations learned from previous tasks. They found

58 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

that they could achieve satisfactory performance while only requiring about 22% of parameters
of the fine-tuning method. Ans et al. [2004] designed a dual-network architecture to generate
pseudo-items which are used to self-refresh the previous tasks. Jin and Sendhoff [2006] modeled
the catastrophic forgetting problem as a multi-objective learning problem and proposed a multi-
objective pseudo-rehearsal framework to interleave base patterns with new patterns during op-
timization. Nguyen et al. [2017] proposed variational continual learning by combining online
variational inference (VI) and Monte Carlo VI for neural networks. Motivated by EWC [Kirk-
patrick et al., 2017], Zenke et al. [2017] measured the synapse consolidation strength in an
online fashion and used it as regularization in neural networks. Seff et al. [2017] proposed to
solve continual generative modeling by combining the ideas of GANs [Goodfellow, 2016] and
EWC [Kirkpatrick et al., 2017].

Apart from regularization-based approaches mentioned above (e.g., LwF [Li and Hoiem,
2016], EWC [Kirkpatrick et al., 2017]), dual-memory-based learning systems have also been
proposed for LL. They are inspired by the complementary learning systems (CLS) theory [Ku-
maran et al., 2016, McClelland et al., 1995] in which memory consolidation and retrieval are
related to the interplay of the mammalian hippocampus (short-term memory) and neocortex
(long-term memory). Gepperth and Karaoguz [2016] proposed using a modified self-organizing
map (SOM) as the long-term memory. To complement it, a short-term memory (STM) is
added to store novel examples. During the sleep phase, the whole content of STM is replayed
to the system. This process is known as intrinsic replay or pseudo-rehearsal [Robins, 1995].
It trains all the nodes in the network with new data (e.g., from STM) and replayed samples
from previously seen classes or distributions on which the network has been trained. The re-
played samples prevents the network from forgetting. Kemker and Kanan [2018] proposed a
similar dual-memory system called FearNet. It uses a hippocampal network for STM, a medial
prefrontal cortex (mPFC) network for long-term memory, and a third neural network to deter-
mine which memory to use for prediction. More recent developments in this direction include
Deep Generative Replay [Shin et al., 2017], DGDMN [Kamra et al., 2017] and Dual-Memory
Recurrent Self-Organization [Parisi et al., 2018b].

Some other related works include Learn++ [Polikar et al., 2001], Gradient Episodic
Memory [Lopez-Paz et al., 2017], Pathnet [Fernando et al., 2017], Memory Aware
Synapses [Aljundi et al., 2017], One Big Net for Everything [Schmidhuber, 2018], Phan-
tom Sampling [Venkatesan et al., 2017], Active Long Term Memory Networks [Furlanello
et al., 2016], Conceptor-Aided Backprop [He and Jaeger, 2018], Gating Networks [Masse
et al., 2018, Serra et al., 2018], PackNet [Mallya and Lazebnik, 2017], Diftfusion-based Neu-
romodulation [Velez and Clune, 2017], Incremental Moment Matching [Lee et al., 2017b],
Dynamically Expandable Networks [Lee et al., 2017a], and Incremental Regularized Least
Squares [Camoriano et al., 2017].

There are some unsupervised learning works as well. Goodrich and Arel [2014] studied
unsupervised online clustering in neural networks to help mitigate catastrophic forgetting. They

4.3. LEARNING WITHOUT FORGETTING 59

proposed building a path through the neural network to select neurons during the feed-forward
pass. Each neural is assigned with a cluster centroid, in addition to the regular weights. In the
new task, when a sample arrives, only the neurons whose cluster centroid points are close to
the sample are selected. This can be viewed as a special dropout training [Hinton et al., 2012].
Parisi etal. [2017] tackled LL of action representations by learning unsupervised visual represen-
tation. Such representations are incrementally associated with action labels based on occurrence
frequency. The proposed model achieves competitive performance compared to models trained
with predefined number of action classes.

In the reinforcement learning applications [Ring, 1994], other than the works mentioned
above (e.g., Kirkpatrick et al. [2017], Rusu et al. [2016]), Mankowitz et al. [2018] proposed a
continual learning agent architecture called Unicorn. The Unicorn agent is designed to have the
ability to simultaneously learn about multiple tasks including the new tasks. The agent can reuse
its accumulated knowledge to solve related tasks effectively. Last but not least, the architecture
aims to aid agent in solving tasks with deep dependencies. The essential idea is to learn multiple
tasks off-policy, i.e., when acting on-policy with respect to one task, it can use this experience
to update policies of related tasks. Kaplanis et al. [2018] took the inspiration from biological
synapses and incorporated different timescales of plasticity to mitigate catastrophic forgetting
over multiple timescales. Its idea of synaptic consolidation is along the lines of EWC [Kirk-
patrick et al., 2017]. Lipton et al. [2016] proposed a new reward shaping function that learns
the probability of imminent catastrophes. They named it as insrinsic fear, which is used to pe-
nalize the Q-learning objective.

Evaluation frameworks were also proposed in the context of catastrophic forgetting.
Goodfellow et al. [2013a] evaluated traditional approaches including dropout training [Hin-
ton et al., 2012] and various activation functions. More recent continual learning models were
evaluated in Kemker et al. [2018]. Kemker et al. [2018] used large-scale datasets and evaluated
model accuracy on both old and new tasks in the LL setting. See Section 4.9 for more details.
In the next few sections, we discuss some representative continual learning approaches.

4.3 LEARNING WITHOUT FORGETTING

'This section describes the approach called Learning without Forgetting given in Li and Hoiem
[2016]. Based on the notations in Section 4.1, it learns 6, (parameters for the new task) with the
help of 05 (shared parameters for all tasks) and 6, (parameters for old tasks) without degrading
much of the performance on the old tasks. The idea is to optimize 5 and 6, on the new task
with the constraint that the predictions on the new task’s examples using 65 and 6, do not shift
much. The constraint makes sure that the model still “remembers” its old parameters, for the
sake of maintaining satisfactory performance on the previous tasks.

'The algorithm is outlined in Algorithm 4.1. Line 2 records the predictions Y, of the new
task’s examples X, using 6, and 6,, which will be used in the objective function (Line 7). For
each new task, nodes are added to the output layer, which is fully connected to the layer beneath.

60 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

These new nodes are first initialized with random weights 6, (Line 3). There are three parts in
the objective function in Line 7.

Algorithm 4.1 Learning without Forgetting

Input: shared parameters 0y, task-specific parameters for old tasks 6,, training data X,,, Y, for
the new task.
Output: updated parameters 0, 05, 0,

§) 70 "n*

A - NV S O SV R SR

: // Initialization phase.

. Y, < CNN(X,, 65, 6,)

. 6, < RANDINIT(|6,)

: // Training phase.

. Define ¥, = CNN(X,,, 0;. 6,,)

. Define ¥, = CNN(X,, 0, éo)

07,67, 67 < argming ; (E,,ew(f’n, Y) + AoLota(Yo, Yo) + R(@s,eo,e,,))

§s70°"n

* Loew (f’n, Y,): minimize the difference between the predicted values Y, » and the
groundtruth Y,,. ¥, is the predicted value using the current parameters 65 and 6, (Line 5).
In Li and Hoiem [2016], the multinomial logistic loss is used:

ﬁnew (},}n’ Yn) = —Yn . log i}n .

. Eold(l?o, Y,): minimize the difference between the predicted values Y, and the recorded
values Y, (Line 2), where ¥, comes from the current parameters 6 and 6, (Line 6). Li
and Hoiem [2016] used knowledge distillation loss [Hinton et al., 2015] to encourage
the outputs of one network to approximate the outputs of another. The distillation loss is
defined as modified cross-entropy loss:

Lo1a(Yo,Yo) = —H(Y,, Y,

0’7o
1
= — Z yo(l) 1Og on(l) ,
i=1
where [is the number of labels. y;(i) and ﬁ;(i) are the modified probabilities defined as:
(gi)) 1/T

G) (y &/G) (ﬁgl))l/T

ST T S IHIT
T is set to 2 in Li and Hoiem [2016] to increase the weights of smaller logit values. In the

objective function (Line 7), A, is used to balance the new task and the old/past tasks. Li
and Hoiem [2016] tried various values for A, in their experiments.

4.4. PROGRESSIVE NEURAL NETWORKS 61

* R(bs. 05, 0n): regularization term to avoid overfitting.

4.4 PROGRESSIVE NEURAL NETWORKS

Progressive neural networks were proposed by Rusu et al. [2016] to explicitly tackle catastrophic
forgetting for the problem of LL. The idea is to keep a pool of pretrained models as knowledge,
and use lateral connections between them to adapt to the new task. The model was originally
proposed to tackle reinforcement learning, but the model architecture is general enough for other
ML paradigms such as supervised learning. Assuming there are N existing/past tasks: 71, 7z, . . .,
Tn, progressive neural networks maintain N neural networks (or N columns). When a new task
TN +1 is created, a new neural network (or a new column) is created, and its lateral connections
with all previous tasks are learned. The mathematical formulation is presented below.

In progressive neural networks, each task 7, is associated with a neural network, which
is assumed to have L layers with hidden activations hl(") for the units at layer i < L. The set of
parameters in the neural network for 7, is denoted by O™ _ When a new task Ty arrives, the
parameters W 0@ . W) remain the same while each layer hl(NH) in the Ty 41’s neural
network takes inputs from (i — 1)th layers of all previous tasks” neural networks, i.e.,

h§N+1) = max (O, VVi(N_H)hl(Tl—’_l) + Z Ui(n:N—’_l)h,(’i)l) , (4.1)
n<N+1

where Wi(NH) denotes the weight matrix of layer i in neural network N + 1. The lateral connec-
tions are learned via Ui(":NH) to indicate how strong the (i — 1)th layer from task n influences
the ith layer from task N + 1. hg is the network input.

Unlike pretraining and fine-tuning, progressive neural networks do not assume any rela-
tionship between tasks, which makes it more practical for real-world applications. The lateral
connections can be learned for related, orthogonal, or even adversarial tasks. To avoid catas-
trophic forgetting, settings of parameters @™ for existing tasks 7, where n < N are “frozen”
while the new parameter set @V 1 is learned and adapted for the new task Ty 1. As a result,
the performance on existing tasks does not degrade.

For the applications in reinforcement learning, each task’s neural network is trained to
learn a policy function for a particular Markov Decision Process (MDP). The policy function
implies the probabilities over actions given states. Nonlinear lateral connections are learned
through a single hidden perceptron layer, which reduces the number of parameters from the
lateral connections to the same order as |©(|. More details can be found in Rusu et al. [2016].

With the flexibility of considering various task relationships, progressive neural networks
come at a price: it can explode the numbers of parameters with an increasing number of tasks,
since it needs to learn a new neural network for a new task and its lateral connections with all
existing ones. Rusu et al. [2016] suggested pruning [LeCun et al., 1990] or online compression
[Rusu et al., 2015] as potential solutions.

62 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING
4.5 ELASTIC WEIGHT CONSOLIDATION
Kirkpatrick et al. [2017] proposed a model called Elastic Weight Consolidation (EWC) to miti-

gate catastrophic forgetting in neural networks. It was inspired by human brain in which synaptic
consolidation enables continual learning by reducing the plasticity of synapses related to previous
learned tasks. As mentioned in Section 4.1, plasticity is the main cause of catastrophic forget-
ting since the weights learned in the previous tasks can be easily modified given a new task.
More precisely, plasticity of weights that are closely related to previous tasks is more prone to
catastrophic forgetting than plasticity of weights that are loosely connected to previous tasks.
'This motivates [Kirkpatrick et al., 2017] to quantify the importance of weights in terms of their
impact on previous tasks’ performance, and selectively decrease the plasticity of those important
weights to previous tasks.

Kirkpatrick et al. [2017] illustrated their idea using an example consisting of two tasks A
and B where A is a previous task and B is the new task. The example only contains two tasks
for easy understanding, but the EWC model works in an LL manner with tasks coming in a
sequence. The parameters (weights and biases) for task A and B are represented by 64 and 6p.
'The sets of parameters that lead to low errors for task 4 and B are represented by ©% and O3,
respectively. Over-parametrization makes it possible to find a solution 65 € ®% and 03 € ©F,
i.e., the solution is learned toward task B while also maintaining low errors in task 4. EWC
achieves this goal by constraining the parameters to stay in A’s low-error region. Figure 4.1
visualizes the example.

'The Bayesian approach is used to measure the importance of parameters toward a task
in EWC. In particular, the importance is modeled as the posterior distribution p(6|D), the
probability of parameter 6 given a task’s training data D. Using Bayes’ rule, the log value of the
posterior probability is:

log p(0|D) = log p(D|) + log p(8) — log p(D) . (4.2)

Assume that the data consists of two independent parts: Dy for task 4 and Dp for task
B. Equation (4.2) can be written as:

log p(8|D) = log p(Dg|0) + log p(0|D4) —log p(Dp) . (4.3)

The left side in Equation (4.3) is still the posterior distribution given the entire dataset,
while the right side only depends on the loss function for task B, i.e., log p(Dp|6). All the in-
formation related to task A4 is embedded in the term log p(6|D4). EWC wants to extract infor-
mation about weight importance from log p(6|D4). Unfortunately, log p(6|Dy) is intractable.
'Thus, EWC approximates it as a Gaussian distribution with mean given by the parameters 6
and a diagonal precision by the diagonal of the Fisher information matrix F. Thus, the new loss

function in EWC is: s
L(0) = Lp(®) + Z S0 =057 . (4.4)

4.5. ELASTIC WEIGHT CONSOLIDATION 63

1 OX: Low error for task A — EWC
—— No penalty

*.
™ ©g: Low error for task B L, Regularization

i

Figure 4.1: An example to illustrate EWC. Given task B, a regular neural network learns a
point that yields a low error for task B but not task A (blue arrow). A L, regularization instead
provides a suboptimal model to task B (purple arrow). EWC updates its parameters for task B
while slowly updating the parameters important to task A to stay in A’s low error region (red
arrow).

where Lp(0) is the loss for task B only. A controls how strong the constraint posed should not
move too far away from task A’s low error area. i denotes each index in the weight vector.

Recall that if 0 has n dimensions, 61, 05, ..., 0,, the Fisher information matrix F is a
n x n matrix with each entry being:

16);) = Ex [(%Mg p(1>|9)) (%mg p(D|9)) ’e] | (4.5)
1 J

The diagonal entry is then:

2
Fo = 1(6) = Ex [(%Mgp(me))

9i| . (4.6)

When a task C comes, EWC updates Equation (4.4) with the penalty term enforcing the

parameters 6 to be close to 6} 5, where 0} p is the parameters learned for tasks A and B.

64 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

To evaluate EWC, Kirkpatrick et al. [2017] used the MNIST dataset [LeCun et al.,
1998]. A new task is obtained by generating a random permutation and the input pixels of all
images are shuffled according to the permutation. As a result, each task is unique with equal
difficulty to the original MNIST problem. The results showed that EWC achieves superior
performances to those models that suffer from catastrophic forgetting. For more details on the
evaluation as well as EWC’s application in reinforcement learning, please refer to the original

paper by Kirkpatrick et al. [2017].

4.6 ICARL: INCREMENTAL CLASSIFIER AND
REPRESENTATION LEARNING

Rebuffi et al. [2017] proposed a new model for class-incremental learning. Class-incremental
learning requires the classification system to incrementally learn and classify new classes that it
has never seen before. This is similar to open-world-learning (or cumulative learning) [Fei et al.,
2016] introduced in Chapter 5 without the rejection capability of open-world learning. It as-
sumes that examples of different classes can occur at different times, with which the system
should maintain a satisfactory classification performance on each observed class. Rebuffi et al.
[2017] also emphasized that computational resources should be bounded or slowly increased
with more and more classes coming.

To meet these criteria, a new model called iCaRL, incremental Classifier and Representation
Learning, was designed to simultaneously learn classifiers and feature representations in the
class-incremental setting. At the high level, iCaRL maintains a set of exemplar examples for
each observed class. For each class, an exemplar set is a subset of all examples of the class, aiming
to carry the most representative information of the class. The classification of a new example is
performed by choosing the class whose exemplars are the most similar to it. When a new class
shows up, iCaRL creates an exemplar set for this new class while trimming the exemplar sets of
the existing/previous classes.

Formally, at any time, iCaRL learns a stream of classes in the class-incremental learning
setting with their training example sets, X*, X**1 ... X’ where X?” is a set of examples of
class y. y can either be an observed/past class or a new class. To avoid memory overflow, iCaRL
holds a fixed number (K') of exemplars in total. With C classes, the exemplar sets are represented
by P = {Pi,..., Pc} where each class’s exemplar set P; maintains K/C exemplars. In Rebufhi
et al. [2017], both original examples and exemplars are images, but the proposed method is
general enough for non-image datasets.

4.6.1 INCREMENTAL TRAINING

Algorithm 4.2 presents the incremental training algorithm in iCaRL with new training example
sets X*, ..., X" of classes s, ..., t arriving in a stream. Line 1 updates the model parameters

® with the new training examples (defined in Algorithm 4.3). Line 2 computes the number of

4.6. ICARL: INCREMENTAL CLASSIFIER AND REPRESENTATION LEARNING 65
Algorithm 4.2 iCaRL IncrementalTraining

Input: new training examples X*, ..., X ! of new classes s, ..., t, current model parameters O,
current exemplar sets P = {Py,..., Ps_1}, memory size K.
Output: updated model parameters ©, updated exemplar sets P.

® <« UpdateReresentation(X*, ..., X*; P, ©)
m<« K/t
fory=1tos—1do
Py < Py[1:m]
end for
fory =stot do
P, < ConstructExemplarSet(X”, m, ©)
end for
P {P,... P}

R A N

exemplars per class. For each existing class, we reduce the number of exemplars per class to m.
Since the exemplars are created in the order of importance (see Algorithm 4.4), we just keep the
first m exemplars for each class (Line 3-5). Line 68 construct the exemplar set for each new
class (see Algorithm 4.4).

4.6.2 UPDATING REPRESENTATION

Algorithm 4.3 details the steps for updating the feature representation. Two datasets are created
(Lines 1 and 2): one with all existing exemplar examples, and the other with new examples of
the new classes. Note that the exemplar examples have the original feature space, not the learned
representation. Lines 35 store the prediction output of each exemplar example with the current
model. Learning in Rebuffi et al. [2017] used a convolutional neural network (CNN) [LeCun
et al., 1998], interpreted as a trainable feature extractor: ¢ : X — R¥. A single classification
layer is added with as many sigmoid output nodes as the number of classes observed so far. The
output score for class y € {1,...,t} is formulated as follows:

1
1 + exp(—ay(x))

gy(x) = with ay(x) = w;go(x) . (4.7)

Note that the network is just utilized for representation learning, not for the actual classi-
fication. The actual classification is covered in Section 4.6.4. The last step in Algorithm 4.3 runs
Backpropagation with the loss function that (1) minimizes the loss on the new examples of new
classes D"€Y (classification loss), and (2) reproduces the scores stored using previous networks
(distillation loss [Hinton et al., 2015]). The hope is that the neural network will be updated with
new examples of the new classes, while not forgetting the existing classes.

66 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

Algorithm 4.3 iCaRL UpdateRepresentation

Input: new training examples X*, ..., X ! of new classes s, .. ., t, current model parameters O,
current exemplar sets P = {Py, ..., Ps_1}, memory size K.
Output: updated model parameters ©.

1. pexemplar |] {(x,y):x € Py}
1
2: D" —) {(x,y):x€e XV}

V=5,...,t
fory=1tos—1do
q; < gy(x;) forall (x;,) € pexemplar
end for
Pptrain Dexemplar U PDrew
Run network training (e.g., Backpropagation) with loss function that contains c/assification
and distillation terms:

L(®) =— Z(x,,yi)epfmi" [ij:s 8y=y,' log gy (xi) + Syyéyf log(1 — gy (x;))
+ Y52 4 log gy (i) + (1 — g) log(1 — gy (x;))]

N AW

4.6.3 CONSTRUCTING EXEMPLAR SETS FORNEW CLASSES

When examples of a new class ¢ show up, iCaRL balances the number of exemplars in each
class, i.e., reducing the number of exemplars for each existing class and creating the exemplar
set for the new class. If K exemplars are allowed in total due to the memory limitation, each
class receives m = K/t exemplar quota. For each existing class, the first m exemplars are kept
(Lines 35 in Algorithm 4.2). For the new class ¢, Algorithm 4.4 chooses m exemplars for it.
Here is the intuition of how the selection of exemplars works: the average feature vector over
all exemplars should be close to the average feature vector over all examples of the class. As
such, the general property of all examples in a class does not diminish much when most of them
are removed, i.e., only exemplars are retained. Also, to make sure that exemplars can be easily
trimmed, the exemplars are stored in the order that the most important ones are stored first,
thus making the list a priority list.

In Algorithm 4.4, the average feature vector p of all training examples of class ¢ is com-
puted (Line 1). Then m exemplars are selected in the order that by picking each exemplar py,
the average feature vector is the closest to i compared to adding any other non-exemplar ex-
ample (Lines 2—4). Consequently, the resulting exemplar set P < (pi. ..., pm) should well
approximate the class mean vector. Note that all non-exemplar examples are dropped after class
¢ training. So having an ordered list of exemplars according to importance is a key to LL since
it is easy to reduce its size with future new classes added while retaining the most essential past
information.

4.7. EXPERT GATE 67

Algorithm 4.4 iCaRL ConstructExemplarSet

Input: examples X = {xy1,...,x,} of class ¢, the target number of exemplars m, current feature
function ¢ : X — R¥.
Output: exemplar set P for class y.

A %erX QD(X)
: fork =1tomdo

. k—
Pk < rgMiNy e Xandxé{py,....px_1} HM — Ho(x) + X5 90(1);)]H
end for
P <~ (p1,....,Pm)

A

4.6.4 PERFORMING CLASSIFICATION IN ICARL

With all the training algorithms introduced above, the classification is performed with the sets
of exemplars P = {Py,..., P;}. The idea is straightforward: given a test example x, we pick
the class y* whose exemplar set’s average feature vector is the closet to x as x’s class label (see

Algorithm 4.5).

Algorithm 4.5 iCaRL Classify in iCaRL

Input: a test example x to be classified, sets of exemplars P = {P,..., P;}, current feature
function ¢ : X — R¥.
Output: predicted class label y* of x.

1: fory=1tot do
1
2 My < 1P > _pep, #(P)
3: end for
4 y* «— arglmin [lo(x) — pyl|
y=1,..., t

4.7 EXPERT GATE

Aljundi et al. [2016] proposed a Network of Experts where each expert is a model trained given a
specific task. Since an expert is trained on one task only, it is good at this particular task, but not
others. Thus, in the LL context, a network of experts are needed to handle a sequence of tasks.

One compelling point that Aljundi et al. [2016] emphasizes is the importance of memory
efficiency, especially in the era of big data. As we know, GPUs are widely used for training deep

learning models due to their rapid processing capability. However, GPUs have limited memory

compared to CPUs. As deep learning models are becoming more and more complex, GPUs can

68 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

only load a small number of models at a time. With a large number of tasks, as in LL, it requires
the system to know what model or models to load when making a prediction on a test example.

With this need in mind, Aljundi et al. [2016] proposed an Expert Gate algorithm to deter-
mine the relevance of tasks, and only load the most relevant tasks in memory during inference.
Denoting the existing tasks as 71, 72, ..., Tn, an undercomplete autoencoder model Ay and
an expert model Ej are constructed for each existing task T where k € {1,..., N}. When a
new task Ty 41 and its training data Dy 41 arrive, Dy will be evaluated against each autoen-
coder Ay to find the most relevant tasks. The expert models of these most relevant tasks are used
for fine-tuning or learning-without-forgetting (LwF) (Section 4.3) to build the expert model
EnN+1. At the same time, Ay is learned from Dy 1. When making a prediction on a test
example x;, the expert models whose corresponding autoencoders best describe x; are loaded in
memory and used to make the prediction.

4.7.1 AUTOENCODER GATE

An autoencoder [Bourlard and Kamp, 1988] model is a neural network that learns to recover
input in the output layer in an unsupervised manner. There are encoder and decoder in the
model. The encoder f = h(x) projects the input x to an embedded space /1(x) while the decoder
r = g(h(x)) maps the embedded space to the original input space. There are two types of au-
toencoder models: undercomplete autoencoder and overcomplete autoencoder. Undercomplete
autoencoder learns a lower-dimensional representation and overcomplete autoencoder learns a
higher-dimensional representation with regularization. An example of undercomplete autoen-
coder is illustrated in Figure 4.2.

Input Hidden
Layer Layers

X JS=h

Figure 4.2: An example of undercomplete autoencoder model.

The intuition for using autoencoder in Expert Gate is that, as an unsupervised approach,
an undercomplete autoencoder can learn a lower-dimensional feature representation that best

4.7. EXPERT GATE 69

describes the data in a compact way. The autoencoder of one task should perform well at re-
constructing the data of that task, i.e., one autoencoder model is a decent representation of one
task. If two autoencoder models from two tasks are close to each other, the tasks are likely to be
similar too.

'The autoencoder used in Aljundi et al. [2016] is simple: it has one ReLU layer [Zeiler
et al.,, 2013] between the encoding and decoding layers. ReLU activation units are fast and easy
to optimize, which also introduce sparsity to avoid over-fitting.

4.7.2 MEASURING TASK RELATEDNESS FOR TRAINING

Given a new task Ty 41 with its training data Dy 11, Expert Gate first learns an autoencoder
AN 41 from Dy 4. To facilitate training expert model En 41, it finds the most related existing
task and use its expert model. Specifically, the reconstruction error of D using an autoencoder
Ay is defined as:

k
D ceperl
Er, = =X x 4.8

: D] (4.8)
where erk is the reconstruction error of applying x to the autoencoder Ay. Since the data of
existing tasks are discarded, only Dy 11 can be used to evaluate the relatedness. Given an existing
task Tk, Dy +1 is used to compute two reconstruction errors: Ery 4 of autoencoder Ay 41 and
Ey of autoencoder Ag. The task relatedness is thus defined as:

Erys1—Erg

Relatedness(Ty+1,Te) = 1 —
Ery

(4.9

Note that this relatedness definition is asymmetric. After the most related task is chosen,
depending on how related it is to the new task, fine-tuning (see Section 4.1) or learning-without-
forgetting (LwF) (Section 4.3) is employed. If two tasks are sufficiently related, LwF is applied;
otherwise, fine-tuning is used. In LwF, a shared model is used for all tasks while each task has its
own classification layer. A new task introduces a new classification layer. The model is fine-tuned
to the new task’s data while trying to preserve the previous tasks’ predictions on the new data.

4.7.3 SELECTING THE MOST RELEVANT EXPERT FOR TESTING

If a test example x; yields a very small reconstruction error when going through an autoencoder
(say Ag), x; should be similar to the data that was used to train Ag. The specialized model
(expert) Ej should hence be utilized to make predictions on x;. The probability pi of x; being
relevant to an expert Ey is defined as:

exp(—e r)’jt /T)
> exp(—er,{,/t) ’

where er¥ is the reconstruction error of applying x; to the autoencoder A. 7 is the temperature

whose value is 2, leading to soft probability values. Aljundi et al. [2016] picked the expert Ex

Pk = (4.10)

70 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

to make the prediction on x; whose py is the maximum among all existing tasks. The approach
can also accommodate loading multiple experts by simply selecting experts whose relevant score

is higher than a threshold.

4.7.4 ENCODER-BASED LIFELONG LEARNING

Finally, we note that Rannen Ep Triki et al. [2017] also used the idea of autoencoder to extend
LwF (Section 4.3). Rannen Ep Triki et al. [2017] argued that LwF has an inferior loss function
definition when the new task data distribution is quite different from those of previous tasks. To
address this issue, an autoencoder based method is proposed to preserve only the features that
are the most important for previous tasks while allowing other features to adapt more quickly
to new tasks. This is achieved by learning a lower-dimensional manifold via autoencoder, and
constraining the distance between the reconstructions. Note that this is similar to EWC (Sec-
tion 4.5) in the sense that EWC tries to maintain the most important weights while Rannen Ep
Triki et al. [2017] aims to conserve features. See Rannen Ep Triki et al. [2017] for more details.

4.8 CONTINUAL LEARNING WITH GENERATIVE REPLAY

Shin et al. [2017] proposed a continual learning method using replayed examples from a gen-
erative model without referring to the actual data of past tasks. It is inspired by the suggestion
that the hippocampus is better paralleled with a generative model than a replay buffer [Ramirez
etal., 2013, Stickgold and Walker, 2007]. As mentioned in Section 4.2, this represents a stream
of lifelong learning systems that use dual-memory for knowledge consolidation. We pick the
work of Shin et al. [2017] to give a flavor of such models. In the deep generative replay frame-
work proposed by Shin et al. [2017], a generative model is maintained to feed pseudo-data as
knowledge of past tasks to the system. To train such a generative model, the generative adversar-
ial networks (GANSs) [Goodfellow et al., 2014] framework is used. Given a sequence of tasks,
a scholar model, containing a generator and a solver, is learned and retained. Such a scholar
model holds the knowledge representing the previous tasks, and thus prevents the system from
forgetting previous tasks.

4.8.1 GENERATIVE ADVERSARIAL NETWORKS

'The Generative Adversarial Networks (GANs) framework is not only used in Shin et al. [2017],
but also widely adopted in the deep learning community (e.g., Radford et al. [2015]). In this
subsection, we give an overview of GANs based on Goodfellow [2016].

In GAN:S, there are two players: a generator and a discriminator. On the one hand, the
generator creates samples that mimic training data, i.e., drawing samples from the similar (ide-
ally same) distribution as the training data. On the other hand, the discriminator classifies the
samples to tell whether they are real (from real training data) or fake (from samples created

by the generator). The problem that discriminator faces is a typical binary classification prob-

4.8. CONTINUAL LEARNING WITH GENERATIVE REPLAY 71

lem. Following the example given in Goodfellow [2016], a generator is like a counterfeiter who
tries to make fake money. A discriminator is like a police who wants to allow legitimate money
and catch counterfeit money. To win the game, the counterfeiter (generator) must learn how to
make money that looks identical to genuine money while the police (discriminator) learns how
to distinguish authenticity without mistakes.

Formally, GANS are a structured probabilistic model with latent variables z and observed
variables x. The discriminator has a function D that takes x as input. The function for the
generator is defined as G whose input is z. Both functions are difterentiable with respect to their
inputs and parameters. The cost function for the discriminator is:

1 1
J = —EEvapdatu(x) [log D(x)] - zEzpr(z) [log(l — D(G(Z)))] . (411)

By treating the two-player game as a zero-sum game (or minimax game), the solution
involves minimization in an outer loop and maximization in an inner loop, yielding the objective
function for discriminator D and generator G as:

L(D,G) = min max V(D, G)

= mi —J
min max (4.12)

= HlGiIl mgXEvapda,a(x)[lOgD(x)] + Ezvp.(»)[log(l — D(G(2)))] .

4.8.2 GENERATIVE REPLAY

In Shin et al. [2017], a scholar model H is learned and maintained in an LL. manner. The scholar
model contains a generator G and a solver S with parameters 6. The solver here is like the
discriminator in Section 4.8.1. Denoting the previous N tasks as Tn = (71, 72,...,Tn), and
the scholar model for previous N taskas Hy = (Gn, Sn), the system aims to learn a new scholar
model Hy 11 = (Gn+1. Sn+1) given the new task T 1’s training data Dy 4.

To obtain Hy+1 = (Gn+1, Sn+1) given the training data Dy 41 = (x, y), there are two
steps.

1. Gn41 is updated with the new task input x and replayed inputs x’ created from Gy . Real
and replayed samples are mixed at a ratio that depends on the importance of the new task
compared to previous ones. Recall that this step is known as intrinsic replay or pseudo-
rehearsal [Robins, 1995] in which new data and replayed samples of old data are mixed to
prevent catastrophic forgetting.

2. Sn41 is trained to couple the inputs and targets drawn from the same mix of real and
replayed data, with the loss function:

Lirain(On 1) = rE(x,y)~DN+1 [L(S(x;0Nn+1),)]
+ (1= r)Exgy [L(S(x":0n41). S(x":6N8))] (4.13)

72 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

where Oy denotes the parameters for the solver Sy, and r denotes the ratio of mixing real
data. If Sy is tested on the previous tasks, the test loss function becomes:

Etest(eN-l-l) = r[E(x,y)~DN+1 [L(S(x’ 9N+1)’ y)]
+ (1 = NE,p)~Dpas [L(S(x: On+1). ¥)] (4.14)

where Dy, is the cumulative distribution of the data from the past tasks.

The proposed framework is independent of any specific generative model or solver. The
choice for the deep generative model can be a variational autoencoder [Kingma and Welling,

2013] or a GAN [Goodfellow et al., 2014].

4.9 EVALUATING CATASTROPHIC FORGETTING

There are two main papers [Goodfellow et al., 2013a, Kemker et al., 2018] in the literature that
evaluate ideas aimed at addressing catastrophic forgetting in neural networks.

Goodfellow et al. [2013a] evaluated some traditional approaches that attempt to reduce
catastrophic forgetting. They evaluated dropout training [Hinton et al., 2012] as well as various
activation functions including:

* logistic sigmoid,

* rectified linear [Jarrett et al., 2009],

* hard local winner take all (LWTA) [Srivastava et al., 2013], and
* Maxout [Goodfellow et al., 2013b].

They also used random hyperparameter search [Bergstra and Bengio, 2012] to auto-
matically select hyperparameters. In terms of experiments, only pairs of tasks were considered
in Goodfellow et al. [2013a] with one being the “old task” and the other being the “new task.”
"The tasks were MNIST classification [LLeCun et al., 1998] and sentiment classification on Ama-
zon reviews [Blitzer et al., 2007]. Their experiments showed that dropout training is mostly
beneficial to prevent forgetting. They also found that the choice of activation function matters
less than the choice of training algorithm.

Kemker et al. [2018] evaluated several more recent continual learning algorithms using
larger datasets. These algorithms include the following.

* Elastic weight consolidation (EWC) [Kirkpatrick et al., 2017]: it reduces plasticity of

important weights with respect to previous tasks when adapting to a new task (see Sec-
tion 4.5).

* PathNet [Fernando et al., 2017]: it creates an independent output layer for each task to
preserve previous tasks. It also finds the optimal path to be trained when learning a par-

ticular task, which is like a dropout network.

4.10. SUMMARY AND EVALUATION DATASETS 73

* GeppNet [Gepperth and Karaoguz, 2016]: it reserves a sample set of training data of
previous tasks, which is replayed to serve as a short-term memory when training on a new
task.

* Fixed expansion layer (FEL) [Coop et al., 2013]: it uses sparsity in representation to mit-
igate catastrophic forgetting.

'They proposed three benchmark experiments for measuring catastrophic forgetting.

1. Data Permutation Experiment: The elements in the feature vector are randomly permu-
tated. In the same task, the permutation order is the same while different tasks have distinct
permutation orders. This is similar to the experiment setup in Kirkpatrick et al. [2017].

2. Incremental Class Learning: After learning the base task set, each new task contains only
a single class to be incrementally learned.

3. Multi-Modal Learning: The tasks contain different datasets, e.g., learn image classifica-
tion and then audio classification.

Three datasets were used in the experiments: MNIST [LeCun et al., 1998], CUB-
200 [Welinder et al., 2010], and AudioSet [Gemmeke et al., 2017]. Kemker et al. [2018] evalu-
ated the accuracy on the new task as well as the old tasks in the LL setting, i.e., tasks arriving in
a sequence. They found that PathNet performs the best in data permutation, GreppNet obtains
the best accuracy in incremental class learning, and EWC has the best results in multi-modal
learning.

4.10 SUMMARY AND EVALUATION DATASETS

This chapter reviewed the problem of catastrophic forgetting and existing continual learning
algorithms aimed at dealing with it. Most existing works fall into some variations of regulariza-
tion or increasing/allocating extra parameters for new tasks. They are shown to be effective in
some simplified LL settings. Considering the huge success of deep learning in recent years, con-
tinual/lifelong deep learning continues to be one of the most promising channels to reach true
intelligence with embedded LL. Nonetheless, catastrophic forgetting remains a long-standing
challenge. We look forward to the day when a robot can learn to perform all kinds of tasks and
solve all kinds of problems continually and seamlessly without human intervention and without
interfering each other.

To reach this ideal, there are many obstacles and gaps. We believe that one major gap is
how to seamlessly discover, integrate, organize, and solve problems or tasks of different sim-
ilarities at the different levels of detail in a single network or even multiple networks just like
our human brains, with minimum interference of each other. For example, some tasks are dis-
similar at the detailed action level but may be similar at a higher or more abstract level. How
to automatically recognize and leverage the similarities and differences in order to learn quickly

74 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

and better in an incremental and lifelong manner without the need of a large amount of training
data is a very challenging and interesting research problem.

Another gap is the lack of research in designing systems that can truly embrace real-life
problems with memories. This is particularly relevant to DNNs due to catastrophic forgetting.
One idea is to encourage the system to take snapshots of its status and parameters, and keep
validating itself against a gold dataset. It is not practical to retain all the training data. But to
prevent the system from moving to some extreme parameter point in the space, it is useful to
keep a small sampled set of training data that can cover most of the patterns/classes seen before.

In short, catastrophic forgetting is a key challenge for DNNs to enable LL. We hope this
chapter can shed some light in the area and attract more attention to address this challenge.

Regarding evaluation datasets, image data are among the most commonly used datasets
for evaluating continual learning due to their wide availability. Some of the common ones are as
tollows.

* MNIST [LeCun et al., 1998]" is perhaps the most commonly used dataset (used in more
than half of the works introduced in this chapter). It consists of labeled examples of hand-
written digits. There are 10 digit classes. One way to produce datasets for multiple tasks
is to create the representations of the data by randomly permuting the elements of input
feature vectors [Goodfellow et al., 2013a, Kemker et al., 2018, Kirkpatrick et al., 2017].
'This paradigm ensures that the tasks are overlapping and have equal complexity.

+ CUB-200 (Caltech-UCSD Birds 200) [Welinder et al., 2010]?) is another popular dataset
for LL evaluation. It is an image dataset with photos of 200 bird species. It has been used
in Aljundi et al. [2016, 2017], Kemker et al. [2018], Li and Hoiem [2016], Rannen Ep
Triki et al. [2017], and Rosenfeld and Tsotsos [2017].

* CIFAR-10 and CIFAR-100 [Krizhevsky and Hinton, 2009]° are also widely used. They
contain images of 10 classes and 100 classes, respectively. They are used in Fernando et al.
[2017], Jung et al. [2016], Lopez-Paz et al. [2017], Rebufhi et al. [2017], Venkatesan et al.
[2017], Zenke et al. [2017], and Rosenfeld and Tsotsos [2017].

* SVHN (Google Street View House Numbers) [Netzer et al., 2011]* is similar to MNIST,
but contains an order of magnitude more labeled data. These images are from real-world
problems and are harder to solve. It also has 10 digit classes. It is used in Aljundi et al.
[2016, 2017], Fernando et al. [2017], Jung et al. [2016], Rosenfeld and Tsotsos [2017],
Shin et al. [2017], Venkatesan et al. [2017], and Seff et al. [2017].

http://yann.lecun. com/exdb/mnist/
2http://www.vision.caltech.edu/visipedia/CUB-200.html
Shttps://www.cs.toronto.edu/~kriz/cifar.html
“http://ufldl.stanford.edu/housenumbers/

http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/visipedia/CUB-200.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/

4.10. SUMMARY AND EVALUATION DATASETS 75

Other image datasets include Caltech-256 [Griffin et al., 2007],> GTSR [Stallkamp
et al,, 2012],° Human Sketch dataset [Eitz et al.,, 2012],” Daimler (DPed) [Munder and
Gavrila, 2006],>° MIT Scenes [Quattoni and Torralba, 2009],” Flower [Nilsback and Zisser-
man, 2008],'° FGVC-Aircraft [Maji et al., 2013],'! ImageNet ILSVRC2012 [Russakovsky
et al., 2015],'? and Letters (Chars74K) [de Campos et al., 2009].1%

More recently, Lomonaco and Maltoni [2017] proposed a dataset called CORe50.™ It
contains 50 objects that were collected in 11 distinct sessions (8 indoor and 3 outdoor) differing
in background and lighting. The dataset is specifically designed for continual object recogni-
tion. Unlike many popular datasets such as MNIST and SVHN, CORe50’s multiple views of
the same object from different sessions enable richer and more practical LL. Using CORe50,
Lomonaco and Maltoni [2017] considered evaluation settings where the new data can con-
tain (1) new patterns of the existing classes, (2) new classes, and (3) new patterns and new
classes. Such real-life evaluation scenarios are very useful for carrying the LL research forward.
Parisi et al. [2018b] used CORe50 to perform an evaluation of their own approach as well as
some other approaches, e.g., LwF [Li and Hoiem, 2016], EWC [Kirkpatrick et al., 2017], and
iCaRL [Rebufhi et al., 2017].

Apart from image datasets, some other types of data are also used. AudioSet [Gemmeke
et al, 2017]¥ is a large-scale collection of human-labeled 10-sec sound clips sampled from
YouTube videos. It is used in Kemker et al. [2018].

In continual learning on reinforcement learning, different environments were used for
evaluation. Atari games [Mnih et al., 2013] are among the most popular ones which are used
in Kirkpatrick et al. [2017], Rusu et al. [2016], and Lipton et al. [2016]. Some other environ-
ments include Adventure Seeker [Lipton et al., 2016], CartPole-v0 in OpenAl gym [Brock-
man et al., 2016], and Treasure World [Mankowitz et al., 2018].

Shttp://ufldl.stanford.edu/housenumbers/

Shttp://benchmark.ini.rub.de/

"http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/

8http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.h

tml

‘http://web.mit.edu/torralba/www/indoor.html
Ohttp://www.robots.ox.ac.uk/~vgg/data/flowers/
Uhttp://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Lhttp://www.image-net.org/challenges/LSVRC/
Bhttp://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
https://vlomonaco.github.io/core50/benchmarks.html
15h1:tps://research.google.com/audioset/dataset/index.html

http://ufldl.stanford.edu/housenumbers/
http://benchmark.ini.rub.de/
http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://web.mit.edu/torralba/www/indoor.html
http://www.robots.ox.ac.uk/~vgg/data/flowers/
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
http://www.image-net.org/challenges/LSVRC/
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
https://vlomonaco.github.io/core50/benchmarks.html
https://research.google.com/audioset/dataset/index.html

