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Abstract

Recently proposed adversarial classification methods have shown promising results
for cost sensitive and multivariate losses. In contrast with empirical risk mini-
mization (ERM) methods, which use convex surrogate losses to approximate the
desired non-convex target loss function, adversarial methods minimize non-convex
losses by treating the properties of the training data as being uncertain and worst
case within a minimax game. Despite this difference in formulation, we recast
adversarial classification under zero-one loss as an ERM method with a novel
prescribed loss function. We demonstrate a number of theoretical and practical
advantages over the very closely related hinge loss ERM methods. This establishes
adversarial classification under the zero-one loss as a method that fills the long
standing gap in multiclass hinge loss classification, simultaneously guaranteeing
Fisher consistency and universal consistency, while also providing dual parameter
sparsity and high accuracy predictions in practice.

1 Introduction

A common goal for standard classification problems in machine learning is to find a classifier that
minimizes the zero-one loss. Since directly minimizing this loss over training data via empirical
risk minimization (ERM) [1] is generally NP-hard [2], convex surrogate losses are employed to
approximate the zero-one loss. For example, the logarithmic loss is minimized by the logistic
regression classifier [3] and the hinge loss is minimized by the support vector machine (SVM) [4, 5].
Both are Fisher consistent [6, 7] and universally consistent [8, 9] for binary classification, meaning
they minimize the zero-one loss and are Bayes-optimal classifiers when they learn from any true
distribution of data using a rich feature representation. SVMs provide the additional advantage of dual
parameter sparsity so that when combined with kernel methods, extremely rich feature representations
can be efficiently considered. Unfortunately, generalizing the hinge loss to classification tasks with
more than two labels is challenging and existing multiclass convex surrogates [10–12] tend to lose
their consistency guarantees [13–15] or produce low accuracy predictions in practice [15].

Adversarial classification [16, 17] uses a different approach to tackle non-convex losses like the
zero-one loss. Instead of approximating the desired loss function and evaluating over the training
data, it adversarially approximates the available training data within a minimax game formulation
with game payoffs defined by the desired (zero-one) loss function [18, 19]. This provides promising
empirical results for cost-sensitive losses [16] and multivariate losses such as the F-measure and
the precision-at-k [17]. Conceptually, parameter optimization for the adversarial method forces the
adversary to “behave like” certain properties of the training data sample, making labels easier to
predict within the minimax prediction game. However, a key bottleneck for these methods has been
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their reliance on zero-sum game solvers for inference, which are computationally expensive relative
to inference in other prediction methods, such as SVMs.

In this paper, we recast adversarial prediction from an empirical risk minimization perspective by
analyzing the Nash equilibrium value of adversarial zero-one classification games to define a new
multiclass loss1. This enables us to demonstrate that zero-one adversarial classification fills the long
standing gap in ERM-based multiclass classification by simultaneously: (1) guaranteeing Fisher
consistency and universal consistency; (2) enabling computational efficiency via the kernel trick and
dual parameter sparsity; and (3) providing competitive performance in practice. This reformulation
also provides significant computational efficiency improvements compared to previous adversarial
classification training methods [16].

2 Background and Related Work

2.1 Multiclass SVM generalizations

The multiclass support vector machine (SVM) seeks class-based potentials fy(xi) for each input
vector x ∈ X and class y ∈ Y so that the discriminant function, ŷf (xi) = argmaxy fy(xi),
minimizes misclassification errors, lossf (xi, yi) = I(yi 6= ŷf (xi)). Unfortunately, empirical risk
minimization (ERM), minf EP̃ (x,y) [lossf (X, Y )], for the zero-one loss is NP-hard once the set of
potentials is (parametrically) restricted (e.g., as a linear function of input features) [2]. Instead, a
hinge loss approximation is employed by the SVM. In the binary setting, yi ∈ {−1,+1}, where the
potential of one class can be set to zero (f−1 = 0) with no loss in generality, the hinge loss is defined
as [1− yif+1(xi)]+, with the compact definition [g(.)]+ , max(0, g(.)). Binary SVM, which is an
empirical risk minimizer using the hinge loss with L2 regularization,

min
fθ

EP̃ (x,y) [lossfθ (X, Y )] + λ
2 ||θ||

2
2, (1)

provides strong theoretical guarantees (Fisher consistency and universal consistency) [8, 21] and
computational efficiency [1].

Many methods have been proposed to generalize SVM to the multiclass setting. Apart from
the one-vs-all and one-vs-one decomposed formulations [22], there are three main joint for-
mulations: the WW model by Weston et al. [11], which incorporates the sum of hinge losses
for all alternative labels, lossWW(xi, yi) =

∑
j 6=yi [1 − (fyi(xi) − fj(xi))]+; the CS model

by Crammer and Singer [10], which uses the hinge loss of only the largest alternative label,
lossCS(xi, yi) = maxj 6=yi [1− (fyi(xi)− fj(xi))]+; and the LLW model by Lee et al. [12], which
employs an absolute hinge loss, lossLLW(xi, yi) =

∑
j 6=yi [1 + fj(xi)]+, and a constraint that∑

j fj(xi) = 0. The former two models (CS and WW) both utilize the pairwise class-based potential
differences fyi(xi)− fj(xi) and are therefore categorized as relative margin methods. LLW, on the
other hand, is an absolute margin method that only relates to fj(xi)[15]. Fisher consistency, or Bayes
consistency [7, 13] guarantees that minimization of a surrogate loss for the true distribution provides
the Bayes-optimal classifier, i.e., minimizes the zero-one loss. If given any possible distribution of
data, a classifier is Bayes-optimal, it is called universally consistent. Of these, only the LLW method
is Fisher consistent and universally consistent [12–14]. However, as pointed out by Doğan et al. [15],
LLW’s use of an absolute margin in the loss (rather than the relative margin of WW and CS) often
causes it to perform poorly for datasets with low dimensional feature spaces. From the opposite
direction, the requirements for Fisher consistency have been well-characterized [13], yet this has not
led to a multiclass classifier that is both Fisher consistent and performs well in practice.

2.2 Adversarial prediction games

Building on a variety of diverse formulations for adversarial prediction [23–26], Asif et al. [16]
proposed an adversarial game formulation for multiclass classification with cost-sensitive loss
functions. Under this formulation, the empirical training data is replaced by an adversarially chosen
conditional label distribution P̌ (y̌|x) that must closely approximate the training data, but otherwise

1Farnia & Tse independently and concurrently discovered this same loss function [20]. They provide an
analysis focused on generalization bounds and experiments for binary classification.
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seeks to maximize expected loss, while an estimator player P̂ (ŷ|x) seeks to minimize expected loss.
For the zero-one loss, the prediction game is:

min
P̂

max
P̌ :EP (x)P̌ (y̌|x)[φ(X,Y̌ )]=φ̃

EP̃ (x)P̂ (ŷ|x)P̌ (y̌|x)

[
I(Ŷ 6= Y̌ )

]
. (2)

The vector of feature moments, φ̃ = EP̃ (x,y)[φ(X, Y )], is measured from sample training data.
Using minimax and strong Lagrangian duality, the optimization of Eq. (2) reduces to minimizing the
equilibrium game values of a new set of zero-sum games characterized by matrix L′xi,θ:

min
θ

∑
i

max
p̌

min
p̂

p̂Txi
L′xi,θp̌xi

; L′xi,θ =

 ψ1,yi(xi) · · · ψ|Y|,yi(xi) + 1
...

. . .
...

ψ1,yi(xi) + 1 · · · ψ|Y|,yi(xi)

 ; (3)

where θ is a vector of Lagrangian model parameters, p̂xi is a vector representation of the conditional
label distribution, P̂ (Ŷ = k|xi), i.e. p̂xi = [P̂ (Ŷ = 1|xi) P̂ (Ŷ = 2|xi) . . .]T, and similarly for
p̌xi . The matrix L′xi,θ is a zero-sum game matrix for each example, with ψj,yi(xi) = fj(xi) −
fyi(xi) = θT (φ(xi, j)− φ(xi, yi)). This optimization problem (Eq. (3)) is convex in θ and the
inner zero-sum game can be solved using linear programming [16].

3 Risk Minimization Perspective of Adversarial Multiclass Classification

3.1 Nash equilibrium game value

Despite the differences in formulation between adversarial loss minimization and empirical risk
minimization, we now recast the zero-one loss adversarial game as the solution to an empirical
risk minimization problem. Theorem 1 defines the loss function that provides this equivalence by
considering all possible combinations of the adversary’s label assignments with non-zero probability
in the Nash equilibrium of the game.2

Theorem 1. The model parameters θ for multiclass zero-one adversarial classification are equiva-
lently obtained from empirical risk minimization under the adversarial zero-one loss function:

AL0-1
f (xi, yi) = max

S⊆{1,...,|Y|}, S6=∅

∑
j∈S ψj,yi(xi) + |S| − 1

|S|
, (4)

where S is any non-empty member of the powerset of classes {1, 2, . . . , |Y|}.

Figure 1: AL0-1 evaluated over
the space of potential differences
(ψj,y(x) = fj(x) − fy(x); and
ψj,j(x) = 0) for binary prediction
tasks when the true label is y = 1.

Thus, AL0-1 is the maximum value over 2|Y| − 1 linear hy-
perplanes. For binary prediction tasks, there are three linear
hyperplanes: ψ1,y(x), ψ2,y(x) and ψ1,y(x)+ψ2,y(x)+1

2 . Figure
1 shows the loss function in potential difference spaces ψ when
the true label is y = 1. Note that AL0-1 combines two hinge
functions at ψ2,y(x) = −1 and ψ2,y(x) = 1, rather than
SVM’s single hinge at ψ1,y(x) = −1. This difference from
the hinge loss corresponds to the loss that is realized by ran-
domizing label predictions.3 For three classes, the loss function
has seven facets as shown in Figure 2a. Figures 2a, 2b, and
2c show the similarities and differences between AL0-1 and the
multiclass SVM surrogate losses based on class potential dif-
ferences. Note that AL0-1 is also a relative margin loss function
that utilizes the pairwise potential difference ψj,y(x).

3.2 Consistency properties

Fisher consistency is a desirable property for a surrogate loss function that guarantees its minimizer,
given the true distribution, P (x, y), will yield the Bayes optimal decision boundary [13, 14]. For

2The proof of this theorem and others in the paper are contained in the Supplementary Materials.
3We refer the reader to Appendix H for a comparison of the binary adversarial method and the binary SVM.
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(a) (b) (c)

Figure 2: Loss function contour plots over the space of potential differences for the prediction task
with three classes when the true label is y = 1 under AL0-1 (a), the WW loss (b), and the CS loss (c).
(Note that ψi in the plots refers to ψj,y(x) = fj(x)− fy(x); and ψj,j(x) = 0.)

multiclass zero-one loss, given that we know Pj(x) , P (Y = j|x), Fisher consistency requires
that argmaxj f

∗
j (x) ⊆ argmaxj Pj(x), where f∗(x) = [f∗1 (x), . . . , f∗|Y|(x)]T is the minimizer of

E [lossf (X, Y )|X = x]. Since any constant can be added to all f∗j (x) while keeping argmaxj f
∗
j (x)

the same, we employ a sum-to-zero constraint,
∑|Y|
j=1 fj(x) = 0, to remove redundant solutions. We

establish an important property of the minimizer for AL0-1 in the following theorem.

Theorem 2. The loss for the minimizer f∗ of E
[
AL0-1

f (X, Y )|X = x
]

resides on the hyperplane
defined (in Eq. 4) by the complete set of labels, S = {1, . . . , |Y|}.

As an illustration for the case of three classes (Figure 2a), the area described in the theorem
above corresponds to the region in the middle where the hyperplane that supports AL0-1 is
ψ1,y(x)+ψ2,y(x)+ψ3,y(x)+2

3 , and, equivalently, where − 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| ,∀j ∈ {1, . . . , |Y|}
with a constraint that

∑
j fj(x) = 0. Based on this restriction, we focus on the minimization of

E
[
AL0-1

f (X, Y )|X = x
]

subject to − 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| ,∀j ∈ {1, . . . , |Y|} and the sum of
potentials equal to zero. This minimization reduces to the following optimization:

max
f

|Y|∑
y=1

Py(x)fy(x) subject to: − 1

|Y|
≤ fj(x) ≤ |Y| − 1

|Y|
j ∈ {1, . . . , |Y|};

|Y|∑
j=1

fj(x) = 0.

The solution for this maximization (a linear program) satisfies f∗j (x) = |Y|−1
|Y| if j = argmaxj Pj(x),

and − 1
|Y| otherwise, which therefore implies the Fisher consistency theorem.

Theorem 3. The adversarial zero-one loss, AL0-1, from Eq. (4) is Fisher consistent.

Theorem 3 implies that AL0-1 (Eq. (4)) is classification calibrated, which indicates minimization
of that loss for all distributions on X × Y also minimizes the zero-one loss [21, 13]. As proven in
general by Steinwart and Christmann [2], Micchelli et al. [27], since AL0-1 (Eq.(4)) is a Lipschitz
loss with constant 1, the adversarial multiclass classifier is universally consistent under the conditions
specified in Corollary 1.
Corollary 1. Given a universal kernel and regularization parameter λ in Eq. (1) tending to zero
slower than 1

n , the adversarial multiclass classifier is also universally consistent.

3.3 Optimization

In the learning process for adversarial classification, Asif et al. [16] requires a linear program to be
solved that finds the Nash equilibrium game value and strategy for every training data point in each
gradient update. This requirement is computationally burdensome compared to multiclass SVMs,
which must simply find potential-maximizing labels. We propose two approaches with improved
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efficiency by leveraging an oracle for finding the maximization inside AL0-1 and Lagrange duality in
the quadratic programming formulation.

3.3.1 Primal optimization using stochastic sub-gradient descent

The sub-gradient in the empirical risk minimization of AL0-1 includes the mean of feature differences,
1
|R|
∑
j∈R [φ(xi, j)− φ(xi, yi)] , where R is the set that maximizes AL0-1. The set R is computed

by the oracle using a greedy algorithm. Given θ and a sample (xi, yi), the algorithm calculates all
potentials ψj,yi(xi) for each label j ∈ {1, . . . , |Y|} and sorts them in non-increasing order. Starting
with the empty set R = ∅, it then adds labels to R in sorted order until adding a label would decrease
the value of

∑
j∈R ψj,yi (xi)+|R|−1

|R| .

Theorem 4. The proposed greedy algorithm used by the oracle is optimal.

3.3.2 Dual optimization

In the next subsections, we focus on the dual optimization technique as it enables us to establish
convergence guarantees. We re-formulate the learning algorithm (with L2 regularization) as a
constrained quadratic program (QP) with ξi specifying the amount of AL0-1 incurred by each of the n
training examples:

min
θ

1

2
‖θ‖2 + C

n∑
i=1

ξi subject to: ξi ≥ ∆i,k ∀i ∈ {1, . . . n}k ∈ {1, . . . , 2|Y| − 1}, (5)

where we denote each of the 2|Y|−1 possible constraints for example i corresponding to non-empty el-
ements of the label powerset as ∆i,k (e.g., ∆i,1 = ψ1,yi(xi), and ∆i,2|Y|−1 =

∑
j∈Y ψj,yi (xi)+|Y|−1

|Y| ).
Note also that non-negativity for ξi is enforced since ∆i,yi = ψyi,yi(xi) = 0.

Theorem 5. Let Λi,k be the partial derivative of ∆i,k with respect to θ, i.e., Λi,k =
d∆i,k

dθ and νi,k
is the constant part of ∆i,k (for example if ∆i,k =

ψ1,yi
(xi)+ψ3,yi

(xi)+ψ4,yi
(xi)+2

3 , then νi,k = 2
3 ),

then the corresponding dual optimization for the primal minimization (Eq. 5) is:

max
α

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k −
1

2

m∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l] (6)

subject to: αi,k ≥ 0,

2|Y|−1∑
k=1

αi,k = C, i ∈ {1, . . . , n}, k ∈ {1, . . . , 2|Y| − 1},

where αi,k is the dual variable for the k-th constraint of the i-th sample.

Note that the dual formulation above only depends on the dot product of two constraints’ partial deriva-
tives (with respect to θ) and the constant part of the constraints. The original primal variable θ can be
recovered from the dual variables using the formula: θ = −

∑n
i=1

∑2|Y|−1
k=1 αi,k Λi,k. Given a new

datapoint x, de-randomized predictions are obtained from argmaxj fj(x) = argmaxj θ
Tφ(x, j).

3.3.3 Efficiently incorporating rich feature spaces using kernelization

Considering large feature spaces is important for developing an expressive classifier that can learn
from large amounts of training data. Indeed, Fisher consistency requires such feature spaces for its
guarantees to be meaningful. However, naïvely projecting from the original input space, xi, to richer
(or possibly infinite) feature spaces ω(xi), can be computationally burdensome. Kernel methods
enable this feature expansion by allowing the dot products of certain feature functions to be computed
implicitly, i.e., K(xi,xj) = ω(xi) ·ω(xj). Since our dual formulation only depends on dot products,
we employ kernel methods to incorporate rich feature spaces into our formulation as stated in the
following theorem.
Theorem 6. Let X be the input space and K be a positive definite real valued kernel on X ×X with
a mapping function ω(x) : X → H that maps the input space X to a reproducing kernel Hilbert
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space H. Then all the values in the dual optimization of Eq. (6) needed to operate in the Hilbert
spaceH can be computed in terms of the kernel function K(xi,xj) as:

Λi,k · Λj,l = c(i,k),(j,l)K(xi,xj), ∆i,k = −
n∑
j=1

2|Y|−1∑
l=1

αj,l c(j,l),(i,k)K(xj ,xi) + νi,k, (7)

fm(xi) = −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
K(xj ,xi)

]
, (8)

where c(i,k),(j,l) =

|Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
,

and Ri,k is the set of labels included in the constraint ∆i,k (for example if ∆i,k =
ψ1,yi

(xi)+ψ3,yi
(xi)+ψ4,yi

(xi)+2

3 , then Ri,k = {1, 3, 4}), the function 1(j = yi) returns 1 if j = yi or
0 otherwise, and the function 1(j ∈ Ri,k) returns 1 if j is a member of set Ri,k or 0 otherwise.

3.3.4 Efficient optimization using constraint generation

The number of constraints in the QP formulation above grows exponentially with the number
of classes: O(2|Y|). This prevents the naïve formulation from being efficient for large multi-
class problems. We employ a constraint generation method to efficiently solve the dual quadratic
programming formulation that is similar to those used for extending the SVM to multivariate loss
functions [28] and structured prediction settings [29].

Algorithm 1 Constraint generation method

Require: Training data (x1, y1), . . . (xn, yn), C, ε
1: θ ← 0
2: A∗i ← {∆i,k|∆i,k = ψyi,yi(xi)} ∀i = 1, . . . , n . Actual label enforces non-negativity
3: repeat
4: for i← 1, n do
5: a← arg maxk|∆i,k∈Ai ∆i,k . Find the most violated constraint
6: ξi ← maxk|∆i,k∈A∗i ∆i,k . Compute the example’s current loss estimate
7: if ∆i,a > ξi + ε then
8: A∗i ← A∗i ∪ {∆i,a} . Add it to the enforced constraints set
9: α← Optimize dual over A∗ = ∪iA∗i

10: Compute θ from α: θ = −
∑n
i=1

∑
k|∆i,k∈A∗i

αi,k Λi,k
11: end if
12: end for
13: until no A∗i has changed in the iteration

Algorithm 1 incrementally expands the set of enforced constraints, A∗i , until no remaining constraint
from the set of all 2|Y| − 1 constraints (in Ai) is violated by more than ε. To obtain the most
violated constraint, we use the greedy algorithm described in the primal optimization. The constraint
generation algorithm’s stopping criterion ensures that a solution close to the optimal is returned
(violating no constraint by more than ε). Theorem 7 provides a polynomial run time convergence
bounds for the Algorithm 1.

Theorem 7. For any ε > 0 and training dataset {(x1, y1), . . . , (xn, yn)} with U = maxi[xi · xi],
Algorithm 1 terminates after incrementally adding at most max

{
2n
ε ,

4nCU
ε2

}
constraints to the

constraint set A∗.

The proof of Theorem 7 follows the procedures developed by Tsochantaridis et al. [28] for bounding
the running time of structured support vector machines. We observe that this bound is quite loose in
practice and the algorithm tends to converge much faster in our experiments.
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4 Experiments

We evaluate the performance of the AL0-1 classifier and compare with the three most popular
multiclass SVM formulations: WW [11], CS [10], and LLW [12]. We use 12 datasets from the UCI
Machine Learning repository [30] with various sizes and numbers of classes (details in Table 1). For
each dataset, we consider the methods using the original feature space (linear kernel) and a kernelized
feature space using the Gaussian radial basis function kernel.

Table 1: Properties of the datasets, the number of constraints considered by SVM models
(WW/CS/LLW), the average number of constraints added to the constraint set for AL0-1 and the
average number of active constraints at the optima under both linear and Gausssian kernels.

Dataset Properties SVM AL0-1 constraints added and active

# class # train # test # feature constraints Linear kernel Gauss. kernel

(1) iris 3 105 45 4 210 213 13 223 38
(2) glass 6 149 65 9 745 578 125 490 252
(3) redwine 10 1119 480 11 10071 5995 1681 3811 1783
(4) ecoli 8 235 101 7 1645 614 117 821 130
(5) vehicle 4 592 254 18 1776 1310 311 1201 248
(6) segment 7 1617 693 19 9702 4410 244 4312 469
(7) sat 7 4435 2000 36 26610 11721 1524 11860 6269
(8) optdigits 10 3823 1797 64 34407 7932 597 10072 2315
(9) pageblocks 5 3831 1642 10 15324 9459 427 9155 551
(10) libras 15 252 108 90 3528 1592 389 1165 353
(11) vertebral 3 217 93 6 434 344 78 342 86
(12) breasttissue 6 74 32 9 370 258 65 271 145

For our experimental methodology, we first make 20 random splits of each dataset into training and
testing sets. We then perform two stage, five-fold cross validation on the training set of the first
split to tune each model’s parameter C and the kernel parameter γ under the kernelized formulation.
In the first stage, the values for C are 2i, i = {0, 3, 6, 9, 12} and the values for γ are 2i, i =
{−12,−9,−6,−3, 0}. We select final values for C from 2iC0, i = {−2,−1, 0, 1, 2} and values for
γ from 2iγ0, i = {−2,−1, 0, 1, 2} in the second stage, where C0 and γ0 are the best parameters
obtained in the first stage. Using the selected parameters, we train each model on the 20 training sets
and evaluate the performance on the corresponding testing set. We use the Shark machine learning
library [31] for the implementation of the three multiclass SVM formulations.

Despite having an exponential number of possible constraints (i.e., n(2|Y|− 1) for n examples versus
n(|Y| − 1) for SVMs), a much smaller number of constraints need to be considered by the AL0-1

algorithm in practice to realize a better approximation (ε = 0) than Theorem 7 provides. Table 1
shows how the total number of constraints for multiclass SVM compares to the number considered
in practice by our AL0-1 algorithm for linear and Gaussian kernel feature spaces. These range from
a small fraction (0.23) of the SVM constraints for optdigits to a slightly greater number (with a
fraction of 1.06) for iris. More specifically, of the over 3.9 million (= 210·3823) possible constraints
for optdigits when training the classifier, fewer than 0.3% (7932 or 10072 depending on the feature
representation) are added to the constraint set during the constraint generation process. Fewer still
(597 or 2315 constraints—less than 0.06%) are constraints that are active in the final classifier
with non-zero dual parameters. The sparsity of the dual parameters provides a key computational
benefit for support vector machines over logistic regression, which has essentially all non-zero dual
parameters. The small number of active constraints shown in Table 1 demonstrate that AL0-1 induces
similar sparsity, providing efficiency when employed with kernel methods.

We report the accuracy of each method averaged over the 20 dataset splits for both linear feature
representations and Gaussian kernel feature representations in Table 2. We denote the results that
are either the best of all four methods or not worse than the best with statistical significance (under
paired t-test with α = 0.05) using bold font. We also show the accuracy averaged over all of the
datasets for each method and the number of dataset for which each method is “indistinguishably best”
(bold numbers) in the last row. As we can see from the table, the only alternative model that is Fisher
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Table 2: The mean and (in parentheses) standard deviation of the accuracy for each model with linear
kernel and Gaussian kernel feature representations. Bold numbers in each case indicate that the result
is the best or not significantly worse than the best (paired t-test with α = 0.05).

D Linear Kernel Gaussian Kernel

AL0-1 WW CS LLW AL0-1 WW CS LLW

(1) 96.3 (3.1) 96.0 (2.6) 96.3 (2.4) 79.7 (5.5) 96.7 (2.4) 96.4 (2.4) 96.2 (2.3) 95.4 (2.1)
(2) 62.5 (6.0) 62.2 (3.6) 62.5 (3.9) 52.8 (4.6) 69.5 (4.2) 66.8 (4.3) 69.4 (4.8) 69.2 (4.4)
(3) 58.8 (2.0) 59.1 (1.9) 56.6 (2.0) 57.7 (1.7) 63.3 (1.8) 64.2 (2.0) 64.2 (1.9) 64.7 (2.1)
(4) 86.2 (2.2) 85.7 (2.5) 85.8 (2.3) 74.1 (3.3) 86.0 (2.7) 84.9 (2.4) 85.6 (2.4) 86.0 (2.5)
(5) 78.8 (2.2) 78.8 (1.7) 78.4 (2.3) 69.8 (3.7) 84.3 (2.5) 84.4 (2.6) 83.8 (2.3) 84.4 (2.6)
(6) 94.9 (0.7) 94.9 (0.8) 95.2 (0.8) 75.8 (1.5) 96.5 (0.6) 96.6 (0.5) 96.3 (0.6) 96.4 (0.5)
(7) 84.9 (0.7) 85.4 (0.7) 84.7 (0.7) 74.9 (0.9) 91.9 (0.5) 92.0 (0.6) 91.9 (0.5) 91.9 (0.4)
(8) 96.6 (0.6) 96.5 (0.7) 96.3 (0.6) 76.2 (2.2) 98.7 (0.4) 98.8 (0.4) 98.8 (0.3) 98.9 (0.3)
(9) 96.0 (0.5) 96.1 (0.5) 96.3 (0.5) 92.5 (0.8) 96.8 (0.5) 96.6 (0.4) 96.7 (0.4) 96.6 (0.4)
(10) 74.1 (3.3) 72.0 (3.8) 71.3 (4.3) 34.0 (6.4) 83.6 (3.8) 83.8 (3.4) 85.0 (3.9) 83.2 (4.2)
(11) 85.5 (2.9) 85.9 (2.7) 85.4 (3.3) 79.8 (5.6) 86.0 (3.1) 85.3 (2.9) 85.5 (3.3) 84.4 (2.7)
(12) 64.4 (7.1) 59.7 (7.8) 66.3 (6.9) 58.3 (8.1) 68.4 (8.6) 68.1 (6.5) 66.6 (8.9) 68.0 (7.2)

avg 81.59 81.02 81.25 68.80 85.14 84.82 85.00 84.93
#bold 9 6 8 0 9 6 6 7

consistent—the LLW model—performs poorly on all datasets when only linear features are employed.
This matches with previous experimental results conducted by Doğan et al. [15] and demonstrates a
weakness of using an absolute margin for the loss function (rather than the relative margins of all other
methods). The AL0-1 classifier performs competitively with the WW and CS models with a slight
advantages on overall average accuracy and a larger number of “indistinguishably best” performances
on datasets—or, equivalently, fewer statistically significant losses to any other method.

The kernel trick in the Gaussian kernel case provides access to much richer feature spaces, improving
the performance of all models, and the LLW model especially. In general, all models provide
competitive results in the Gaussian kernel case. The AL0-1 classifier maintains a similarly slight
advantage and only provides performance that is sub-optimal (with statistical significance) in three
of the twelve datasets versus six of twelve and five of twelve for the other methods. We conclude
that the multiclass adversarial method performs well in both low and high dimensional feature
spaces. Recalling the theoretical analysis of the adversarial method, it is a well-motivated (from
the adversarial zero-one loss minimization) multiclass classifier that enjoys both strong theoretical
properties (Fisher consistency and universal consistency) and empirical performance.

5 Conclusion

Generalizing support vector machines to multiclass settings in a theoretically sound manner remains a
long-standing open problem. Though the loss function requirements guaranteeing Fisher-consistency
are well-understood [13], the few Fisher-consistent classifiers that have been developed (e.g., LLW)
often are not competitive with inconsistent multiclass classifiers in practice. In this paper, we
have sought to fill this gap between theory and practice. We have demonstrated that multiclass
adversarial classification under zero-one loss can be recast from an empirical risk minimization
perspective and its surrogate loss, AL0-1, shown to satisfy the Fisher consistency property, leading
to a universally consistent classifier that also performs well in practice. We believe that this is an
important contribution in understanding both adversarial methods and the generalized hinge loss. Our
future work includes investigating the adversarial methods under the different losses and exploring
other theoretical properties of the adversarial framework, including generalization bounds.
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[15] Ürün Doğan, Tobias Glasmachers, and Christian Igel. A unified view on multi-class support vector
classification. Journal of Machine Learning Research, 17(45):1–32, 2016.

[16] Kaiser Asif, Wei Xing, Sima Behpour, and Brian D. Ziebart. Adversarial cost-sensitive classification. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2015.

[17] Hong Wang, Wei Xing, Kaiser Asif, and Brian Ziebart. Adversarial prediction games for multivariate
losses. In Advances in Neural Information Processing Systems, pages 2710–2718, 2015.

[18] Flemming Topsøe. Information theoretical optimization techniques. Kybernetika, 15(1):8–27, 1979.
[19] Peter D. Grünwald and A. Phillip Dawid. Game theory, maximum entropy, minimum discrepancy, and

robust Bayesian decision theory. Annals of Statistics, 32:1367–1433, 2004.
[20] Farzan Farnia and David Tse. A minimax approach to supervised learning. In Advances in Neural

Information Processing Systems, pages 4233–4241. 2016.
[21] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Large margin classifiers: Convex loss, low noise,

and convergence rates. In Advances in Neural Information Processing Systems, pages 1173–1180, 2003.
[22] Naiyang Deng, Yingjie Tian, and Chunhua Zhang. Support vector machines: optimization based theory,

algorithms, and extensions. CRC press, 2012.
[23] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. Adversarial classification. In

Proceedings of the International Conference on Knowledge Discovery and Data Mining, pages 99–108.
ACM, 2004.

[24] Anqi Liu and Brian Ziebart. Robust classification under sample selection bias. In Advances in Neural
Information Processing Systems, pages 37–45, 2014.

[25] Gert RG Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, and Michael I Jordan. A robust minimax
approach to classification. The Journal of Machine Learning Research, 3:555–582, 2003.

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, pages 2672–2680, 2014.

[27] Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of Machine Learning
Research, 6:2651–2667, 2006.

[28] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin methods
for structured and interdependent output variables. In JMLR, pages 1453–1484, 2005.

[29] Thorsten Joachims. A support vector method for multivariate performance measures. In Proceedings of
the International Conference on Machine Learning, pages 377–384, 2005.

[30] M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.
[31] Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers. Shark. Journal of Machine Learning

Research, 9:993–996, 2008.

9

http://archive.ics.uci.edu/ml


Supplementary Materials

A Proof for the Adversarial Zero-One Loss (Theorem 1)

To prove Theorem 1, which defines the ERM loss of the adversarial classifier for zero-one loss, we
first develop two important lemmas. Our approach analyzes the Nash equilibrium value of the game
described in Eq. 3, beginning with a specific simple case of the game: the game matrix L′xi,θ is a
completely mixed game.
Lemma 1. If the game matrix L′xi,θ is a completely mixed game, i.e., every adversary’s and predic-
tor’s strategy has non zero probability, and if the game value is nonzero, then the equilibrium game

value for the game is
∑|Y|
j=1 ψj,yi (xi)+|Y|−1

|Y| .

Proof. According to Barron 4 , a completely mixed game with a square game matrix has only one
saddle point. If we know that the game value is nonzero, then the game matrix is invertible and the
game value can be computed using the formula v(M) = 1

JTM−1J
, where M is the zero-sum game

matrix with row player as the maximizing player and column player as the minimizing player, and J
is a vector with length |Y| containing all ones, J = [1, 1, . . . , 1]T .

Therefore, under the adversarial game matrix formulation, M is the transpose of Lxi,θ:

M = L′Txi,θ =


ψ1,yi(xi) ψ1,yi(xi) + 1 · · · ψ1,yi(xi) + 1

ψ2,yi(xi) + 1 ψ2,yi(xi) · · · ψ2,yi(xi) + 1
...

...
. . .

...
ψ|Y|,yi(xi) + 1 ψ|Y|,yi(xi) + 1 · · · ψ|Y|,yi(xi)

 . (9)

The inverse of game matrix M is of the form (detailed proof described in Appendix G):

M−1 =


a1,1 a1,2 · · · a1,|Y|
a2,1 a2,2 · · · a2,|Y|

...
...

. . .
...

a|Y|,1 a|Y|,2 · · · a|Y|,|Y|

 , (10)

where:

ak,k = −
∑|Y|
j=1,j 6=k ψj,yi(xi) + |Y| − 2∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

k ∈ {1, . . . , |Y|},

ak,l =
ψk,yi(xi) + 1∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
k, l ∈ {1, . . . , |Y|}, k 6= l.

The value of the vector-matrix multiplication JTM−1J where J is a vector containing all ones, is
the summation of all elements in M−1:

JTM−1J =

−
∑|Y|
k=1

[∑|Y|
j=1
j 6=k

ψj,yi(xi) + |Y| − 2

]
+
∑
k,l∈{1,...,|Y|}

k 6=l
[ψk,yi(xi) + 1]∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(11)

=

∑
k,l∈{1,...,|Y|}

k 6=l
ψk,yi(xi)−

∑
j,k∈{1,...,|Y|}

j 6=k
ψj,yi(xi) + |Y|(|Y| − 1)− |Y|(|Y| − 2)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

(12)

=
|Y|∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
. (13)

4Emmanual N Barron. Game Theory: An Introduction, Volume 2. John Wiley & Sons, 2013.
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Therefore, the equilibrium game value when the game matrix L′xi,θ is a completely mixed game with
nonzero game value is:

v(M) =
1
|Y|∑|Y|

j=1 ψj,yi (xi)+|Y|−1

=

∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

|Y|
. (14)

We next consider the case where one of the adversary’s strategies in the game matrix L′xi,θ has zero
probability. Lemma 2 establishes the game value for such cases.
Lemma 2. If an adversary strategy k (corresponding with column k) has zero probability in
the Nash equilibrium of game matrix L′xi,θ, and if the game matrix excluding column and row
k is a completely mixed game with nonzero game value, the equilibrium value for the game is∑|Y|

j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 ≥
∑|Y|
j=1 ψj,yi (xi)+|Y|−1

|Y| .

Proof. If an adversary strategy k (corresponds with column k) has zero probability, row k also
has zero probability because removing column k causes the removal of ψk,yi(xi) term from row k,
leaving ψj,yi(xi) + 1,∀j 6= k. Since the row player seeks to minimize the game value and row k
now has values greater than or equal to the other rows, row k can be dominated and therefore has
zero probability in the Nash equilibrium of the game.

Using Lemma 1, we can compute the value of a game without column k and row k in the case that

the game value is nonzero, which is
∑|Y|
j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 . Therefore, since both column and row
k has zero probability and the game matrix excluding column and row k is a completely mixed game,

the value of the game matrix L′xi,θ is also
∑|Y|
j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 . By definition of equilibrium
game value, this value has to be greater than or equal to any possible strategy that the adversary player
can play, including the strategy that assigns non-zero probability to column and row k. Therefore, we

can also conclude that the inequality
∑|Y|
j=1,j 6=k ψj,yi (xi)+|Y|−2

|Y|−1 ≥
∑|Y|
j=1 ψj,yi (xi)+|Y|−1

|Y| holds.

The proof for Theorem 1 involves the generalization of Lemma 2 to all possible combination of
strategies with zero probability, as described in the following.

Theorem 1. The model parameters θ for multiclass zero-one adversarial classification are equiva-
lently obtained from empirical risk minimization under the adversarial zero-one loss function:

AL0-1
f (xi, yi) = max

S⊆{1,...,|Y|}
S6=∅

∑
j∈S ψj,yi(xi) + |S| − 1

|S|
, (15)

where S is any non-empty member of the powerset of classes {1, 2, . . . , |Y|}.

Proof. Generalizing Lemma 2, if we consider all possible combination of strategies with zero
probability, then the game value of game matrix L′xi,θ equals to the game value of the matrix after
removing all columns and rows with zero probability, resulting in a completely mixed game matrix.
Let R be a set of the remaining columns in the resulting completely mixed game matrix. If we know
that the game value for the resulting game matrix is nonzero, then the equilibrium game value of
L′xi,θ is

∑
j∈R ψj,yi (xi)+|R|−1

|R| . This value must be greater than or equal to any possible strategy of
the adversary player. Moreover, we know that if the set R contains only one element {yi}, then the
game value is∑

j∈R ψj,yi(xi) + |R| − 1

|R|
=
ψyi,yi(xi) + 1− 1

1
= θT (φ(xi, yi)− φ(xi, yi)) = 0. (16)

Therefore, by considering all possible combination of strategies with zero probability, we can conclude
that the game value of the game matrix L′xi,θ is the following function:

max
S⊆{1,...,|Y|}
S6=∅

∑
j∈S ψj,yi(xi) + |S| − 1

|S|
. (17)
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The adversarial optimization (Eq. 3) can be viewed from the empirical risk minimization perspective
where the loss function is defined by the game value described above, hence proving the theorem.

B Proof for the Consistency Analysis (Theorem 2 and Theorem 3)

In this section, we will prove Theorem 2 and Theorem 3. We first analyze the properties of the set of
labels that define the supporting hyperplane of AL0-1 loss.
Lemma 3. If R∗ ⊆ {1, . . . , |Y|} is the set of labels that defines the supporting hyperplane of AL0-1

loss (Eq. (4)) when the true label y = k, then R∗ also defines the supporting hyperplane of AL0-1

loss when the true label is any label other than k.

Proof. We know that for any set R ⊆ {1, . . . , |Y|},∑
j∈R ψj,y(x) + |R| − 1

|R|
=

∑
j∈R [fj(x)− fy(x)] + |R| − 1

|R|
(18)

=

∑
j∈R fj(x) + |R| − 1

|R|
− fy(x). (19)

Since R∗ is the set of labels that define the supporting hyperplane of the loss when the true label class
y = k, then for any other set R ⊆ {1, . . . , |Y|}:

∑
j∈R∗ ψj,k(x) + |R∗| − 1

|R∗|
≥
∑
j∈R ψj,k(x) + |R| − 1

|R|
(20)∑

j∈R∗ fj(x) + |R∗| − 1

|R∗|
− fk(x) ≥

∑
j∈R fj(x) + |R| − 1

|R|
− fk(x) (21)∑

j∈R∗ fj(x) + |R∗| − 1

|R∗|
≥
∑
j∈R fj(x) + |R| − 1

|R|
. (22)

Therefore, for any other class l, the inequality below also holds:∑
j∈R∗ fj(x) + |R∗| − 1

|R∗|
− fl(x) ≥

∑
j∈R fj(x) + |R| − 1

|R|
− fl(x) (23)∑

j∈R∗ ψj,l(x) + |R∗| − 1

|R∗|
≥
∑
j∈R ψj,l(x) + |R| − 1

|R|
. (24)

We now analyze AL0-1 using a geometrical view. We know that the loss is the maximization over
different linear hyperplanes. We analyze the hyperplane defined by the complete set of labels
R∗ = {1, . . . , |Y|}. For three class classification (Figure 2a), it is the hyperplane in the middle
with AL0-1 value ψ1,y(x)+ψ2,y(x)+ψ3,y(x)+2

3 . Note that in Figure 2a, ψ1,y(x) = 0 since y = 1. We
demonstrate the circumstances that correspond with this case in the following lemma.
Lemma 4. The hyperplane defined by the complete set of labels R∗ = {1, . . . , |Y|} supports AL0-1

in the area where − 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| ,∀j ∈ {1, . . . , |Y|} given that
∑|Y|
j=1 fj(x) = 0.

Proof. Since the hyperplane defined by the complete set of labels R∗ = {1, . . . , |Y|} supports AL0-1,
from the proof in Lemma 3, we know that:∑|Y|

j=1 fj(x) + |Y| − 1

|Y|
=
|Y| − 1

|Y|
≥
∑
j∈R fj(x) + |R| − 1

|R|
, (25)

for any R ⊆ {1, . . . , |Y|}, R 6= ∅. In the case that R contains only one element j, we know that
|Y|−1
|Y| ≥ fj(x). In the case that R contains all element but j, we have:

|Y| − 1

|Y|
≥
∑
k∈{1,...,|Y|},k 6=j fk(x) + |Y| − 2

|Y| − 1
=
−fj(x) + |Y| − 2

|Y| − 1
(26)
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|Y|2 − 2|Y|+ 1 ≥ −|Y|fj(x) + |Y|2 − 2|Y| (27)

fj(x) ≥ − 1

|Y|
. (28)

In general for any set R ⊆ {1, . . . , |Y|}, R 6= ∅, the following holds:

|Y| − 1

|Y|
≥
∑
j∈R fj(x) + |R| − 1

|R|
(29)

|R||Y| − |R| ≥ |Y|
∑
j∈R

fj(x) + |R||Y| − |Y| (30)

∑
j∈R

fj(x) ≤ |Y| − |R|
|Y|

. (31)

If we consider Rc as the complement of set R, i.e., Rc = {1, . . . , |Y|}\R, the following also holds:

|Y| − 1

|Y|
≥
∑
j∈Rc fj(x) + |Rc| − 1

|Rc|
=
−
∑
j∈R fj(x) + |Rc| − 1

|Rc|
(32)

|Rc||Y| − |Rc| ≥ −|Y|
∑
j∈R

fj(x) + |Rc||Y| − |Y| (33)

∑
j∈R

fj(x) ≥ −|Y| − |R
c|

|Y|
= −|R|
|Y|

. (34)

We can easily see that the general case above is automatically implied from the individual rule
− 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| ,∀j ∈ {1, . . . , |Y|}, given that
∑|Y|
j=1 fj(x) = 0.

Next, we prove Theorem 2, which states that the loss for minimizer f∗ of E
[
AL0-1

f (X, Y )|X = x
]

resides in the area described in Lemma 4.

Theorem 2. The loss for the minimizer f∗ of E
[
AL0-1

f (X, Y )|X = x
]

resides on the hyperplane
defined (in Eq. 4) by the complete set of labels, S = {1, . . . , |Y|}.

Proof. We start the proof by denoting R as a non-complete set of labels, R ( {1, . . . , |Y|}, R 6= ∅,
that defines the supporting hyperplane of AL0-1 loss. Let f0 be the potential function where its
loss resides on the hyperplane defined by R. We will show that we can construct f1 such that
its loss resides on the hyperplane defined by the complete set of labels, S = {1, . . . , |Y|}, such
that E

[
AL0-1

f1 (X, Y )|X = x
]
≤ E

[
AL0-1

f0 (X, Y )|X = x
]
. Note that E

[
AL0-1

f (X, Y )|X = x
]

=∑|Y|
y=1 Py(x) AL0-1

f (x, y). In this proof, we need consider the loss for each possible true label y ∈ Y .

Let Rc be the complement of the set R, i.e., Rc = {1, . . . , |Y|}\R, and let us denote ψf0

j,y(x) =

f0
j (x) − f0

y (x). We note that for y ∈ R, the loss,
∑
j∈R ψ

f0

j,y(x)+|R|−1

|R| , does not depend on any

ψf0

k,y(x) for k ∈ Rc. Therefore, changing any ψf0

k,y(x) where k ∈ Rc does not change the loss when
the true label is y ∈ R.

Let f1 be the potential function such that f1
k (x) = − 1

|Y| for ∀k ∈ Rc, and keep all ψf1

j,y(x) =

f1
j (x) − f1

y (x) remaining the same as ψf0

j,y(x) = f0
j (x) − f0

y (x) for j ∈ R and y ∈ R. Let

b = − |R
c|
|Y| −

∑
k∈Rc f

0
k (x), setting f1

j (x) = f0
j (x)− b

|R| for all j ∈ R will satisfy the requirement

above while keeping it valid, i.e.,
∑|Y|
j=1 f

1
j (x) = 0. Analyzing the transformation above, we have:∑

j∈R f
1
j (x) + |R| − 1

|R|
=

∑
j∈R f

0
j (x) +

∑
j∈Rc f

0
j (x) + |Rc|

|Y| + |R| − 1

|R|
(35)

=
|Rc|+ |R||Y| − |Y|

|R||Y|
=
|R||Y| − |R|
|R||Y|

=
|Y| − 1

|Y|
(36)
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=

∑|Y|
j=1 f

1
j (x) + |Y| − 1

|Y|
. (37)

We can view this transformation as the following: when y ∈ R, we fix ψj,y(x) for all j ∈ R and
move all ψk,y(x) for all k ∈ Rc towards the intersection between the hyperplane defined by R and
the hyperplane defined by the complete set of labels.

We know that AL0-1
f1 (x, y) is equal to AL0-1

f0 (x, y) if the true label y ∈ R. The difference comes when
the true label y ∈ Rc. For f1, the loss will be:∑

j∈R f
1
j (x) + |R| − 1

|R|
− f1

y (x) =
Y − 1

Y
+

1

Y
= 1. (38)

Before analyzing the loss for f0, we observe the following inequality. Since R is the set that defines
the hyperplane that supports the AL0-1 loss under f0, then for all k ∈ Rc:∑

j∈R f
0
j (x) + |R| − 1

|R|
≥
∑
j∈R f

0
j (x) + f0

k (x) + |R|
|R|+ 1

(39)

|R|
∑
j∈R

f0
j (x) + |R|2 −R+

∑
j∈R

f0
j (x) + |R| − 1 ≥ |R|

∑
j∈R

f0
j (x) + |R|f0

k (x) + |R|2 (40)

∑
j∈R

f0
j (x)− 1 ≥ |R|f0

k (x) (41)

∑
j∈R

f0
j (x)− |R|f0

k (x) ≥ 1. (42)

Applying the inequality above, we get the loss for f0 when the true label y ∈ Rc:∑
j∈R f

0
j (x) + |R| − 1

|R|
− f0

y (x) =

∑
j∈R f

0
j (x)− |R|f0

y (x) + |R| − 1

|R|
(43)

≥ 1 + |R| − 1

|R|
= 1. (44)

In the analysis above, we construct f1, where its loss resides in the intersection between
the hyperplane defined by R and the hyperplane defined by the complete set of labels.
Since E

[
AL0-1

f (X, Y )|X = x
]

=
∑|Y|
y=1 Py(x) AL0-1

f (x, y), the analysis above shows that
E
[
AL0-1

f1 (X, Y )|X = x
]
≤ E

[
AL0-1

f0 (X, Y )|X = x
]
. Therefore, we can conclude that given the

probability for each class Py(x), the loss of the minimizer of E
[
AL0-1

f (X, Y )|X = x
]

resides on the
hyperplane defined by the complete set of labels, S = {1, . . . , |Y|}.

To better understand Theorem 2, we will discuss an example for three-class classification. Let the
potential function f0 = [ 1

6 ,
4
6 ,−

5
6 ], whose loss resides on the hyperplane defined by the set of labels

R = {1, 2}, i.e., ψ1,y(x)+ψ2,y(x)+1
2 . Figure 3 shows the plot of the loss when the true label y is 1, 2

or 3. We can compute the losses as follows:

y = 1 y = 2 y = 3

f0
1 (x) = 1

6 ψf0

1,1 = 0 ψf0

1,2 = −0.5 ψf0

1,3 = 1

f0
2 (x) = 4

6 ψf0

2,1 = 0.5 ψf0

2,2 = 0 ψf0

2,3 = 1.5

f0
3 (x) = − 5

6 ψf0

3,1 = −1 ψf0

3,2 = −1.5 ψf0

3,3 = 0

loss AL0-1
f0 (x, 1) = 0.75 AL0-1

f0 (x, 2) = 0.25 AL0-1
f0 (x, 3) = 1.75

We construct f1 from f0 using the steps described above. Note that Rc = {3} and b = − |R
c|
|Y| −∑

k∈Rc f
0
k (x) = − 1

3 + 5
6 = 1

2 . We set f1
3 (x) = − 1

|Y| = − 1
3 since 3 ∈ Rc. We compute f1

1 (x) and
f1

2 (x) by subtracting f0
1 (x) and f0

2 (x) with b
|R| = 1

2·2 = 1
4 . The losses incurred by f1 (Figure 4) and

its computations displayed in the following:
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y = 1 y = 2 y = 3

f1
1 (x) = 1

6 −
1
4 = − 1

12 ψf1

1,1 = 0 ψf1

1,2 = −0.5 ψf1

1,3 = 0.25

f1
2 (x) = 4

6 −
1
4 = 5

12 ψf1

2,1 = 0.5 ψf1

2,2 = 0 ψf1

2,3 = 0.75

f1
3 (x) = − 1

3 ψf1

3,1 = −0.25 ψf1

3,2 = −0.75 ψf1

3,3 = 0

loss AL0-1
f1 (x, 1) = 0.75 AL0-1

f1 (x, 2) = 0.25 AL0-1
f1 (x, 3) = 1

(a) (b) (c)

Figure 3: The plot of loss AL0-1 for f0 when the true label y is 1, 2, or 3.

(a) (b) (c)

Figure 4: The plot of loss AL0-1 for f1 when the true label y is 1, 2, or 3.

As we can see from the table, the loss incurred by f1 when the true label is 1 or 2 remains the same
as the loss incurred by f0. The difference comes when the true label is 3. In this case, f1 incurs less
loss than f0 (1 compared to 1.75).

Utilizing the lemmas and theorem above, we can now prove the Fisher consistency of AL0-1.

Theorem 3. The adversarial zero-one loss, AL0-1, from Eq. (4) is Fisher consistent.

Proof. For any given X = x, our goal is to minimize E
[
AL0-1

f (X, Y )|X = x
]

=∑|Y|
y=1 Py(x) maxS⊆{1,...,|Y|}

S6=∅

∑
j∈S ψj,y(x)+|S|−1

|S| . According to Theorem 2, it is equal to minimizing

the following:

|Y|∑
y=1

Py(x)

∑|Y|
j=1 ψj,y(x) + |Y| − 1

|Y|
=

|Y|∑
y=1

Py(x)

[∑|Y|
j=1 (fj(x)− fy(x)) + |Y| − 1

|Y|

]
(45)

=

|Y|∑
y=1

Py(x)

[
|Y| − 1

|Y|
− fy(x)

]
(46)
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=
|Y| − 1

|Y|

|Y|∑
y=1

Py(x)−
|Y|∑
y=1

Py(x)fy(x) (47)

=
|Y| − 1

|Y|
−
|Y|∑
y=1

Py(x)fy(x), (48)

subject to − 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| and
∑|Y|
j=1 fj(x) = 0.

Since (|Y|−1)/|Y| is constant with respect to {fi}, finding f∗ in the minimization above is equivalent
with finding f∗ in the following maximization:

max
f

|Y|∑
y=1

Py(x)fy(x) (49)

subject to − 1

|Y|
≤ fj(x) ≤ |Y| − 1

|Y|
j ∈ {1, . . . , |Y|};

|Y|∑
j=1

fj(x) = 0.

The solution for this maximization satisfies f∗j (x) = |Y|−1
|Y| if j = argmaxj Pj(x), and − 1

|Y|
otherwise. This implies that the adversarial zero-one loss, AL0-1, from Eq. (4) is Fisher consistent.

C Proof for the Oracle’s Greedy Algorithm Optimality (Theorem 4)

Theorem 4. The proposed greedy algorithm used by the oracle is optimal.

Proof. To calculate the set R that maximize AL0-1 given θ and a sample (xi, yi), the algorithm
calculates all potentials ψj,yi(xi) for each label j ∈ {1, . . . , |Y|} and sorts them from in non-
increasing order. Starting with the empty set R = ∅, it then adds labels to R in sorted order until
adding a label would decrease the value of

∑
j∈R ψj,yi (xi)+|R|−1

|R| .

If the set that maximizes AL0-1 has k elements, it must contain the k largest potentials, otherwise we
can swap the potentials that are not in the k largest potentials list with the potentials in the list and get
a larger value. We are now left to prove that adding more potentials to the set R will not increase the
value of

∑
j∈R ψj,yi (xi)+|R|−1

|R| .

Let ψi denote the potentials sorted in non-increasing order, i.e. ψ1 ≥ ψ2 ≥ · · · ≥ ψ|Y|, and

let k be the size of the set R, hence
∑
j∈R ψj,yi (xi)+|R|−1

|R| =
∑k
i=1 ψi+k−1

k . We aim to prove that∑k
i=1 ψi+k−1

k ≥
∑k+j
i=1 ψi+k+j−1

k+j for any j = {1, . . . , |Y| − k}. From the construction of the
algorithm we know that it is true for j = 1, i.e.,:∑k

i=1 ψi + k − 1

k
≥
∑k+1
i=1 ψi + k

k + 1
(50)

(k + 1)

(
k∑
i=1

ψi + k − 1

)
≥ k

(
k+1∑
i=1

ψi + k

)
(51)

k

k∑
i=1

ψi + k2 − k +

k∑
i=1

ψi + k − 1 ≥ k
k∑
i=1

ψi + kψk+1 + k2 (52)

k∑
i=1

ψi − 1 ≥ kψk+1. (53)

Since the potentials are sorted in non-increasing order, then for any j = {1, . . . , |Y| − k}:

j

(
k∑
i=1

ψi − 1

)
≥ jkψk+1 ≥ k

j∑
i=1

ψk+j (54)

16



j

k∑
i=1

ψi − j + k

k∑
i=1

ψi + k2 + k(j − 1) ≥ k
j∑
i=1

ψk+j + k

k∑
i=1

ψi + k2 + k(j − 1) (55)

k

k∑
i=1

ψi + k2 − k + j

k∑
i=1

ψi + jk − j ≥ k
k+j∑
i=1

ψi + k2 + k(j − 1) (56)

(k + j)

(
k∑
i=1

ψi + k − 1

)
≥ k

(
k+j∑
i=1

ψi + k + j − 1

)
(57)

∑k
i=1 ψi + k − 1

k
≥
∑k+j
i=1 ψi + k + j − 1

k + j
. (58)

Therefore, we can conclude that the oracle’s greedy algorithm is optimal.

D Proof for the Quadratic Programming Formulation (Theorem 5)

Theorem 5. Let Λi,k be the partial derivative of ∆i,k with respect to θ, i.e., Λi,k =
d∆i,k

dθ and

let νi,k be the constant part of ∆i,k (for example if ∆i,k =
ψ1,yi

(xi)+ψ3,yi
(xi)+ψ4,yi

(xi)+2

3 , then
νi,k = 2

3 ), then the corresponding dual optimization for the primal minimization (Eq. 5) is:

max
α

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k −
1

2

m∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l] (59)

subject to: αi,k ≥ 0,

2|Y|−1∑
k=1

αi,k = C, i ∈ {1, . . . , n}, k ∈ {1, . . . , 2|Y| − 1},

where αi,k is the dual variable for the k-th constraint of the i-th sample.

Proof. We can write the Lagrangian for the primal optimization in Eq. 5 as follows:

L(θ, ξ,α) =
1

2
‖θ‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi,1[−∆i,1 + ξi]− · · · −
n∑
i=1

αi,2|Y|−1[−∆i,2|Y|−1 + ξi].

(60)

We then write the KKT conditions for optimality and the complementary conditions as follows:

∇θL = θ −
n∑
i=1

αi,1[−Λi,1]− · · · −
n∑
i=1

αi,2|Y|−1[−Λi,2|Y|−1] = 0 ⇒ θ = −
n∑
i=1

2|Y|−1∑
k=1

αi,k Λi,k

(61)

∇ξiL = C − αi,1 − · · · − αi,2|Y|−1 = 0 ⇒
2|Y|−1∑
k=1

αi,k = C (62)

∀i, k, αi[−∆i,k + ξi] = 0 ⇒ αi,k = 0 ∨ ξi = ∆i,k

(63)

Rearranging the Lagrangian formula, and plugging the definition of θ in terms of dual variables and
applying the complementary conditions yields:

L =
1

2
‖θ‖2 +

n∑
i=1

αi,1[θ · Λi,1 + νi,1] + · · ·+
n∑
i=1

αi,2|Y|−1[θ · Λi,2|Y|−1 + νi,2|Y|−1]

+

n∑
i=1

(C − αi,1 − · · · − αi,2|Y|−1)ξi (64)
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=
1

2
‖θ‖2 +

n∑
i=1

2|Y|−1∑
k=1

αi,k [θ · Λi,k] +

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k (65)

= −1

2

n∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l] +

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k. (66)

Therefore, the dual quadratic programming formulation can be written as:

max
α

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k −
1

2

m∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l] (67)

subject to αi,k ≥ 0,

2|Y|−1∑
k=1

αi,k = C, i ∈ {1, . . . , n}, k ∈ {1, . . . , 2|Y| − 1}.

E Proof for the Kernel Trick (Theorem 6)

Theorem 6. Let X be the input space and K be a positive definite real valued kernel on X × X
with a mapping function ω(x) : X → H that maps the input space X to a reproducing kernel Hilbert
space H. Then, all the values in the dual optimization of Eq. (6) needed to operate in the Hilbert
spaceH can be computed in terms of the kernel function K(xi,xj) as:

Λi,k · Λj,l = c(i,k),(j,l)K(xi,xj), (68)

∆i,k = −
n∑
j=1

2|Y|−1∑
l=1

αj,l c(j,l),(i,k)K(xj ,xi) + νi,k, (69)

fm(xi) = −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
K(xj ,xi)

]
, (70)

where c(i,k),(j,l) =

|Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
,

and Ri,k is the set of labels included in the constraint ∆i,k (for example if ∆i,k =
ψ1,yi

(xi)+ψ3,yi
(xi)+ψ4,yi

(xi)+2

3 , then Ri,k = {1, 3, 4}), the function 1(j = yi) returns 1 if j = yi or
0 otherwise, and the function 1(j ∈ Ri,k) returns 1 if j is a member of set Ri,k or 0 otherwise.

Proof. First, let us define the feature function φ(xi, j) used in our formulation in the input space:
φ(xi, j) is a vector containing zeros except for the one corresponding to class j, which is equal
to xi. For example, φ(xi, 1) = [xi,0, . . . ,0]T , φ(xi, 2) = [0,xi, . . . ,0]T , and φ(xi, |Y|) =
[0, . . . ,0,xi]

T , where 0 is a vector containing all zeros with the same length as xi. Therefore, the
vector multiplication θTφ(xi, j) = θT

j xi, where θj is the vector elements in the parameter space
corresponding with class j.

By employing kernel methods, the optimization works in the reproducing kernel Hilbert space
(RKHS). Therefore, in the kernelized optimization, our feature function is φ(ω(xi), j). Note
that our dual formulation (Eq. 6) depends on the dot product Λi,k · Λj,l. By definition, Λi,k =

1
|Ri,k|

(∑
j∈Ri,k [φ(ω(xi), j)− φ(ω(xi), yi)]

)
. We can expand Λi,k as:

Λi,k =
1

|Ri,k|
∑
j∈Ri,k

(φ(ω(xi), j)− φ(ω(xi), yi)) (71)
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=

 1

|Ri,k|

|Y|∑
j=1

1(j ∈ Ri,k)φ(ω(xi), j)

− φ(ω(xi), yi) (72)

=

|Y|∑
j=1

(
1(j ∈ Ri,k)

|Ri,k|
φ(ω(xi), j)− 1(j = yi)φ(ω(xi), j)

)
(73)

=

|Y|∑
j=1

(
1(j ∈ Ri,k)

|Ri,k|
− 1(j = yi)

)
φ(ω(xi), j). (74)

Since φ(ω(xi), j) is just a vector containing zeros and ω(xi), using the scalar multiplication properties
of dot product, we can expand Λi,k · Λj,l as the following:

Λi,k · Λj,l =

 |Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)
φ(ω(xi),m)


·

 |Y|∑
m=1

(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
φ(ω(xj),m)

 (75)

=

|Y|∑
m=1

[(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
(φ(ω(xi),m) · φ(ω(xj),m))

]
(76)

=

 |Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

) [ω(xi) · ω(xj)]

(77)

=

 |Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)K(xi,xj).

(78)

Let us define:

c(i,k),(j,l) =

|Y|∑
m=1

(
1(m ∈ Ri,k)

|Ri,k|
− 1(m = yi)

)(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
, (79)

then, we have Λi,k ·Λj,l = c(i,k),(j,l)K(xi,xj). We can also express ∆i,k in terms of kernel functions
as the following:

∆i,k = θ · Λi,k + νi,k = −
n∑
j=1

2|Y|−1∑
l=1

αj,l [Λj,l · Λi,k] + νi,k (80)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l c(j,l),(i,k)K(xj ,xi) + νi,k. (81)

In the prediction step, given a new datapoint xi, we need to calculate fm(xi) = θTφ(xi,m) for all
m ∈ {1, . . . , |Y|}. We can also compute fm(xi) in terms of kernel functions as the following:

fm(xi) = θ · φ(ω(xi),m) (82)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l [Λj,l · φ(ω(xi),m)] (83)
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= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

 |Y|∑
q=1

(
1(q ∈ Rj,l)
|Rj,l|

− 1(q = yj)

)
φ(ω(xj), q)

 · φ(ω(xi),m)


(84)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
φ(ω(xj),m) · φ(ω(xi),m)

]
(85)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
ω(xj) · ω(xi)

]
(86)

= −
n∑
j=1

2|Y|−1∑
l=1

αj,l

[(
1(m ∈ Rj,l)
|Rj,l|

− 1(m = yj)

)
K(xj ,xi)

]
. (87)

F Proof for the Polynomial Convergence Analysis (Theorem 7)

Theorem 7. For any ε > 0 and training dataset {(x1, y1), . . . , (xn, yn)} with U = maxi[xi · xi],
Algorithm 1 terminates after incrementally adding at most max

{
2n
ε ,

4nCU
ε2

}
constraints to the

constraint set A∗.

Proof. First, we want to establish a lower bound on the improvement of the dual objective value after
each time we add an additional constraint. The proof follows the structure of the proof described by
Tsochantaridis et al. [28].

For the purpose of simplification, let us change the index of the dual QP variable. Assuming a
combined index s = (i, k) represents the i-th sample and k-th constraint, we can rewrite our dual QP
objective as:

W (α) =
∑
s

νs αs −
1

2

∑
s,t

αsαt[Λs · Λt]. (88)

In the constraint generation steps, we only consider the constraints that are already added to the
constraint set A∗. In the simplification above, we can set αs = 0 for all constraints that are not yet
added to the set. When we add a new constraint ξi ≥ ∆s, we allow αs to have value from 0 to C,
but it needs to maintain the constraint that

∑2|Y|−1
k=1 αi,k = C. Therefore, we cannot analyze the

improvement in the dual objective for adding one constraint by just optimizing over αs alone. We
need to consider a larger optimization over the whole space.

For the purpose of deriving bounds, it is sufficient to restrict our attention to a one-dimensional
version of the optimization, i.e., trying to optimize in just one specific direction. If we can show that
it makes sufficient improvement on just one specific direction, it implies that the optimization over
the whole space can improve at least that much on the objective function.

Let us consider adding one new constraint where we allow αr taking values other than 0. Let β be
the value we set for αr and W ′(α) be the new objective value after we add the new constraint. Then
the difference of the objective value between before and after adding the constraint is:

W ′(α)−W (α) = νrβ −
1

2

(
2
∑
s

αsβ[Λs · Λr] + β2[Λr · Λr]

)
(89)

= β

(
νr −

∑
s

αs[Λs · Λr]

)
− β2

2
[Λr · Λr]. (90)

The optimization needs to find β∗ that maximizes the formula above. We can find β∗ by taking the
derivative of the difference above with respect to β and setting it to zero.

d(W ′(α)−W (α))

dβ
= νr −

∑
s

αs[Λs · Λr]− β[Λr · Λr] = 0 (91)
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β∗ =
νr −

∑
s αs[Λs · Λr]

Λr · Λr
=
νr + θ · Λr

Λr · Λr
=

∆r

Λr · Λr
. (92)

Note that β∗ > 0 because [Λr · Λr] > 0 and the algorithm only add one constraint where ∆r > 0.
The improvement of the dual objective value after adding the new constraint can be computed as
follows:

max
β>0

[W ′(α)−W (α)] =
(∆r)

2

[Λr · Λr]
− (∆r)

2

2([Λr · Λr])2
[Λr · Λr] =

(∆r)
2

2[Λr · Λr]
. (93)

Note that this improvement is always positive.

Let us denote the index r as an index consisting of the pair (i, k). By the definition, Λr =
1
|Rr|

(∑
j∈Rr [φ(xi, j)− φ(xi, yi)]

)
, where Rr is the set of classes included in the constraint ∆r.

Using Equation (78), we analyze the dot product Λr · Λr as follows:

Λr · Λr =

 |Y|∑
m=1

(
1(m ∈ Rr)
|Rr|

− 1(m = yi)

)(
1(m ∈ Rr)
|Rr|

− 1(m = yi)

) [xi · xi] (94)

=
1

|Rr|2

 |Y|∑
m=1

[1(m ∈ Rr)− |Rr|1(m = yi)] [1(m ∈ Rr)− |Rr|1(m = yi)]

 [xi · xi]

(95)

≤ |Rr|
2 + |Rr|
|Rr|2

[xi · xi] =

(
1 +

1

|Rr|

)
[xi · xi] ≤ 2 [xi · xi] . (96)

Let U be the maximum of [xi · xi] over all training data, i.e., U = maxi[xi · xi]. Plugging the result
above into the improvement, we have:

W ′(α)−W (α) =
(∆r)

2

2[Λr · Λr]
≥ (∆r)

2

4[xi · xi]
≥ (∆r)

2

4U
. (97)

Note that there is also a restriction: αr ≤ C. In the case of β∗ > C, we need to adjust the
improvement. If β∗ > C, it also implies that:

∆r

Λr · Λr
> C ⇔ ∆r > C[Λr · Λr]. (98)

Therefore, the improvement of the dual objective after adding the constraint with the restriction
0 < β ≤ C is:

max
0<β≤C

[W ′(α)−W (α)] =

{
(∆r)2

2[Λr·Λr] if ∆r ≤ C[Λr · Λr]
C∆r − C2

2 [Λr · Λr] otherwise
(99)

≥ ∆r

2
min

{
C,

∆r

[Λr · Λr]

}
≥ ∆r

2
min

{
C,

∆r

2U

}
. (100)

Note that the dual objective value is upper-bounded by nC, where n is the number of training data.
Since in every iteration the algorithm will add a new constraint if ∆r ≥ ξi + ε and the objective get
the improvement as described above for each additional constraint, the algorithm will terminate after
incrementally adding a number of constraints that is at most:

max

{
2nC

∆rC
,

4nCU

(∆r)2

}
≤ max

{
2n

ε
,

4nCU

ε2

}
. (101)
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G Proof of the Matrix Inverse in the Equilibrium Game Value Analysis

Lemma 5. The matrix M−1 in Eq. 10 is the inverse of the matrix M in Eq. 9, i.e.

MM−1 = I

Proof. Let us denote H = MM−1. We want to prove that H = I . We will prove the equality
by analyzing each cell Hk,l of the matrix. The value of Hk,l should be 1 if k is equal to l and 0
otherwise.

For the k-th diagonal entry in the matrix H , we have:

Hk,k =−
ψk,yi(xi)

(∑|Y|
j=1,j 6=k ψj,yi(xi) + |Y| − 2

)
∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+

∑|Y|
j=1,j 6=k (ψk,yi(xi) + 1) (ψj,yi(xi) + 1)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

(102)

=−
ψk,yi(xi)

∑|Y|
j=1,j 6=k ψj,yi(xi) + (|Y| − 2)ψk,yi(xi)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi)

∑|Y|
j=1,j 6=k ψj,yi(xi) +

∑|Y|
j=1,j 6=k ψj,yi(xi) + (|Y| − 1)ψk,yi(xi) + |Y| − 1∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

(103)

=

∑|Y|
j=1,j 6=k ψj,yi(xi) + ψk,yi(xi) + |Y| − 1∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(104)

=

∑|Y|
j=1 ψj,yi(xi) + |Y| − 1∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

(105)

= 1, (106)

and for non-diagonal entries Hk,l, where k 6= l, we have:

Hk,l =−
(ψk,yi(xi) + 1)

(∑|Y|
j=1,j 6=l ψj,yi(xi) + |Y| − 2

)
∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi) (ψk,yi(xi) + 1)∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+

∑|Y|
j=1,j 6=k,j 6=l (ψk,yi(xi) + 1) (ψj,yi(xi) + 1)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(107)

=−
ψk,yi(xi)

∑|Y|
j=1,j 6=l ψj,yi(xi) + (|Y| − 2)ψk,yi(xi) +

∑|Y|
j=1,j 6=l ψj,yi(xi) + |Y| − 2∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi) (ψk,yi(xi) + 1)∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

+

ψk,yi(xi)
∑|Y|

j = 1,
j 6= k,
j 6= l

ψj,yi(xi) +
∑|Y|

j = 1,
j 6= k,
j 6= l

ψj,yi(xi) + (|Y| − 2)ψk,yi(xi) + |Y| − 2

∑|Y|
j=1 ψj,yi(xi) + |Y| − 1

(108)

=−
ψk,yi(xi)

∑|Y|
j=1,j 6=l ψj,yi(xi) +

∑|Y|
j=1,j 6=l ψj,yi(xi)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1

+
ψk,yi(xi)

∑|Y|
j=1,j 6=l ψj,yi(xi) +

∑|Y|
j=1,j 6=l ψj,yi(xi)∑|Y|

j=1 ψj,yi(xi) + |Y| − 1
(109)

= 0 (110)
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Therefore, since all diagonal entries of H has value 1, and all non-diagonal entries of H has zero
value, then MM−1 = I .

H Illustrations for the Binary Classification Cases

In the binary classification case, the adversarial loss is the maximum among three functions: ψ1,yi(xi),
ψ2,yi(xi), and ψ1,yi

(xi)+ψ2,yi
(xi)+1

2 . In the case where the true label yi = 1, we have ψ1,yi(xi) = 0.
The adversarial loss in this case can be computed as max{0, ψ2,1(xi),

ψ2,1(xi)+1
2 }, which has values:

AL0-1
binary|yi=1 =


0 if ψ2,1(xi) ≤ −1

ψ2,1(xi) if ψ2,1(xi) ≥ 1
ψ2,1(xi)+1

2 if − 1 ≤ ψ2,1(xi) ≤ 1.

(111)

Note that ψ2,1(xi) = f2(xi) − f1(xi) = θTφ(xi, 2) − θTφ(xi, 1), where φ(xi, j) is a vector
containing zero elements except the one corresponding to class j which is equal to xi. If we
change our notation for the class label from y ∈ {1, 2} to y ∈ {−1,+1} and define the parameter
θ to contains both vector parameter w and bias b, the binary adversarial loss can be equivalently
formulated as:

AL0-1
binary =


0 if yi(w · xi + b) ≥ 1
−yi(w·xi+b)+1

2 if − 1 ≤ yi(w · xi + b) ≤ 1

−yi(w · xi + b) if yi(w · xi + b) ≤ −1.

(112)

Adding L2 regularization to the binary adversarial loss and introducing slack variables ξi and δi
results in the following quadratic programming formulation:

min
w,b

1

2
‖w‖2 + C

[
m∑
i=1

1

2
ξi +

m∑
i=1

1

2
δi

]
(113)

subject to yi(w · xi + b) ≥ 1− ξi
yi(w · xi + b) ≥ −1− δi
ξi ≥ 0

δi ≥ 0

i ∈ {1, . . . ,m}.

Note that the formulation above is similar to the formulation of SVMs. The difference is that the
adversarial formulation has two slack variables corresponding to the hinges at 1 and -1.

We can view the adversarial formulation as maximizing a margin that is similar to the soft-margin
SVM, but with different constraints. We study how this adversarial formulation’s double hinges
affect the maximum margin in its solutions. Figure 5 shows the comparison of the maximum margin
resulted from the adversarial method and SVM for different values of the C.

As we can see from the figure, the adversarial solution tends to have larger margins than the SVM
solution under identitical choices of C. In the case where C = 10 and C = 100, the adversarial
solution is very similar to the SVM solution, with different choice of the support vector points that
define the margin.

The interesting results can be seen in the case where C = 1000 and C = 10000. In the SVM solution,
the marginal hyperplanes (i.e., the line w · xi + b = ±1) that define the boundary of the margin
always cross some support vectors that are classified correctly by the algorithm (highlighted with red
in the figure). In the adversarial solution, however, the marginal hyperplanes may also cross some
support vectors that are classified incorrectly by the algorithm (highlighted with green in the figure).
For example in the case where C = 10000, the marginal hyperplanes in the adversarial solution are
defined by three support vectors, one of them is classified correctly and two of them are classified
incorrectly. This kind of solution is unique to the adversarial method with no possibility of being
realized under the standard SVM algorithm.
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Figure 5: The maximum margin hyperplanes of the adversarial classification and SVM for different
values of C.
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