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Abstract

The problem of adversarial examples has high-
lighted the need for a theory of regularisation
that is general enough to apply to exotic function
classes, such as universal approximators. In re-
sponse, we have been able to significantly sharpen
existing results regarding the relationship between
distributional robustness and regularisation, when
defined with a transportation cost uncertainty set.
The theory allows us to characterise the conditions
under which the distributional robustness equals a
Lipschitz-regularised model, and to tightly quan-
tify, for the first time, the slackness under very
mild assumptions. As a theoretical application
we show a new result explicating the connection
between adversarial learning and distributional
robustness. We then give new results for how to
achieve Lipschitz regularisation of kernel classi-
fiers, which are demonstrated experimentally.

1. Introduction
When learning a statistical model, it is rare that one has
complete access to the distribution. More often it is the case
that one approximates the risk minimisation by an empirical
risk, using sequence of samples from the distribution. In
practice this can be problematic — particularly when the
curse of dimensionality is in full force — to a) know with
certainty that one has enough samples, and b) guarantee
good performance away from the data. Both of these two
problems can, in effect, be cast as problems of ensuring
generalisation. A remedy for both of these problems has
been proposed in the form of a modification to the risk
minimisation framework, wherein we integrate a certain
amount of distrust of the distribution. This distrust results
in a guarantee of worst case performance if it turns out later
that the distribution was specified imprecisely, improving
generalisation.
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In order to make this notion of distrust concrete, we intro-
duce some mathematical notation. The set of Borel prob-
ability measures on an outcome space Ω is P(Ω). A loss
function is a mapping f : Ω → R̄ so that f(ω) is the loss
incurred with some prediction under the outcome ω ∈ Ω.
For example, if Ω = X × Y then fv(x, y) = (v(x)− y)2

could be a loss function for regression or classification with
some classifier v : X → Y . For a distribution µ ∈ P(Ω)
we replace the objective in the classical risk minimisation
minv Eµ[fv] with the robust Bayes risk:

supν∈Bc(µ,r) Eν [f ] (rB)

where Bc(µ, r) ⊆ P(Ω) is a set containing µ, called the
uncertainty set (viz. Berger, 1993; Vidakovic, 2000, Grün-
wald & Dawid, 2004, §4). It is in this way that we introduce
distrust into the classical risk minimisation, by instead min-
imising the worst case risk over a set of distributions.

It is sometimes the case that for an uncertainty set,
Bc(µ, r) ⊆ P(Ω), there is a function, r lipc : R̄Ω → R̄≥0

(not necessarily the usual Lipschitz constant), so that

supν∈Bc(µ,r) Eν [f ] ≤ Eµ[f ] + r lipc(f). (L)

Results like (L) have been studied in the literature, however
these usually make onerous assumptions on the structure of
the loss function/model class (Shafieezadeh-Abadeh et al.,
2019; Blanchet et al., 2019) or on the cost function underpin-
ning the uncertainty set (Kuhn et al., 2019). Thus ruling out
application to many common machine learning and statisti-
cal techniques. Therefore, in §3, our first major contribution
is to revisit such a result using a new proof technique that
relies on the difference-convex optimization literature to
strictly generalise and improve upon several well-known
related results (summarised in Table 1). In particular, a
major novelty of our approach lies with the characterisation
of when (L) holds as an equality, and when the bound is
tight. These are quite involved and are as important as the
inequality (L) itself.

In practice, however, the evaluation of Lipschitz constant is
NP-hard for neural networks (Scaman & Virmaux, 2018),
compelling approximations of it, or the explicit engineering
of Lipschitz layers and analysing the resulting expressive-
ness in specific cases (e.g.,∞-norm, Anil et al., 2019). By
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Table 1: Comparison of results related to (L). Assumptions listed in boldface are the weakest.

Reference (L) f c µ X

(Shafieezadeh-Abadeh et al., 2019, Thm. 14) =
convex Lipschitz margin
loss with linear classifier norm empirical dist. Rd

(Kuhn et al., 2019, Thm. 5) ≤ upper semicontinuous norm empirical dist. Rd
(Kuhn et al., 2019, Thm. 10) = convex, Lipschitz norm empirical dist. Rd

(Gao & Kleywegt, 2016, Cor. 2 (iv)) ≤ similar to generalised
Lipschitz p-metric empirical dist. Rd

Theorem 1 (this paper)
≤ - - probability

measure
separable

Banach space=
convex, generalised

Lipschitz
convex, k-positively

homogeneous

comparison, kernel machines have a reproducing kernel
Hilbert space (RKHS) encompassing a family of models
that are universal (Micchelli et al., 2006). Our second major
contribution, in §4, is to show that product kernels, such
as Gaussian kernels, have a Lipzchitz constant that can be
efficiently approximated and optimised with high proba-
bility. By using the Nyström approximation (Williams &
Seeger, 2000; Drineas & Mahoney, 2005). we show that an
ε approximation error requires only O(1/ε2) samples. Such
a sampling-based approach also leads to a single convex
constraint, making it scalable to large sample sizes, even
with an interior-point solver (§5). As our experiments show,
this method achieves higher robustness than state of the art
(Cisse et al., 2017; Anil et al., 2019).

2. Preliminaries
Let R̄ def

= [−∞,∞] and R̄≥0
def
= [0,∞], with similar nota-

tions for the real numbers. Let [n] denote the set {1, . . . , n}
for n ∈ N. Unless otherwise specified, X,Y,Ω are topolog-
ical outcome spaces. Often X will be used when there is
some linear structure so thatΩ = X×Y may be interpreted
as the classical outcome space for classification problems
(cf. Vapnik, 2000). In particular, in all cases X and Y can
be taken to be Rd and {1, . . . , k} respectively.

The Dirac measure at some point ω ∈ Ω is δω ∈ P(Ω), and
the set of Borel mappings X → Y is L0(X,Y ). For µ ∈
P(Ω), denote by Lp(Ω,µ) the Lebesgue space of functions

f ∈ L0(Ω,R) satisfying
(∫
|f(ω)|pµ(dω)

)1/p
< ∞ for

p ≥ 1. The continuous real functions on Ω are collected
in C(Ω). In many of our subsequent formulas it is more
convenient to write an expectation directly as an integral:
Eµ[f ] =

∫
f dµ def

=
∫
f(ω)µ(dω).

For two measures µ, ν ∈ P(Ω) the set of (µ, ν)-couplings
is Π(µ, ν) ⊆ P(Ω × Ω) where π ∈ Π(µ, ν) if and
only if the marginals of π are µ and ν. For a coupling
function c : Ω × Ω → R̄, the c-transportation cost of
µ, ν ∈ P(Ω) is costc(µ, ν) def

= infπ∈Π(µ,ν)

∫
cdπ. The c-

transportation cost ball of radius r ≥ 0 centred at µ ∈ P(Ω)

is Bc(µ, r)
def
= {ν ∈ P(Ω) | costc(µ, ν) ≤ r}, and serves as

our uncertainty set. The the least c-Lipschitz constant (cf.

Cranko et al., 2019) of a function f : X → R̄ is the number
lipc(f) def

= inf Λc(f), where

Λc(f) def
= {λ ≥ 0 | ∀x,y∈X : |f(x)− f(y)| ≤ λc(x, y)}.

Thus when (X, d) is a metric space, lipd(f) agrees with the
usual Lipschitz notion. When c maps X → R̄, for example
when c is a norm, we let c(x, y) def

= c(x− y) for all x, y∈X .

A function f : X → R is called k-positively homogeneous
if, for all a > 0, there is f(ax) = akf(x) for all x ∈ X .
Throughout we always assume k ≥ 1.

To a function f : X → R̄ we associate another function
co f : X → R̄, called the convex envelope of f , defined
to be the greatest closed convex function that minorises
f . The quantity ρ(f) def

= supx∈X(f(x)− co f(x)) was first
suggested by Aubin & Ekeland (1976) to quantify the lack
of convexity of a function f , and has since shown to be of
considerable interest for, among other things, bounding the
duality gap in nonconvex optimisation (cf. Lemaréchal &
Renaud, 2001; Udell & Boyd, 2016; Askari et al., 2019;
Kerdreux et al., 2019). In particular, observe

ρ(f) = 0 ⇐⇒ f = co f ⇐⇒ f is closed convex.

While it may seem like somewhat of an intractable quantity,
ρ(f) can be estimated in principle, details of which are
included in the supplementary material (Supplement B).
Complete proofs of all technical results are relegated to the
supplementary material.

3. Distributional robustness
In this section we present our major result regarding identi-
ties of the form (L).

Theorem 1. Suppose X is a separable Banach space and
fix µ ∈ P(X). Suppose c : X → R̄≥0 is closed convex,
k-positively homogeneous, and f ∈ L1(X,µ) is upper semi-
continuous with lipc(f) < ∞. Then for all r ≥ 0, there
exists ∆f,c,r(µ) ≥ 0 so that

sup
ν∈Bc(µ,r)

∫
f dν +∆f,c,r(µ) =

∫
f dµ+ r lipc(f),(1)
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Table 2: Comparison of results related to Theorem 2. Assumptions listed in boldface are the weakest, and assumptions in
red are prohibitive.

Reference Result f c µ X

(Staib & Jegelka, 2017, Prop. 3.1) ≤ unclear p-metric unclear metric space

(Shafieezadeh-Abadeh et al., 2019, Thm. 12)
≤ Lipschitz margin loss with

linear classifier norm empirical dist. Rd

=
additional strong regularity

condition

(Gao & Kleywegt, 2016, Cor. 2 (ii)) = concave p-metric empirical dist. convex subset
of Rd

Theorem 2 (this paper)
≤ measurable

norm
probability

measure separable
Banach space

= continuous non-atomic,
compact support

and

∆f,c,r(µ) ≤ r lipc(f)−
max{0, r lipc(co f)− Eµ[f − co f ]}. (2)

Observe that when f is closed convex, (2) implies
∆f,c,r(µ) = 0.

A summary of the results Theorem 1 improves upon is
presented in Table 1 and a more detailed discussion follows
in the supplementary material (Supplement A).

Proposition 1. Suppose X is a separable Banach space.
Suppose c : X → R̄≥0 satisfies the conditions of Theorem 1,
and f ∈

⋂
µ∈P(X0) L1(X,µ) is upper semicontinuous, has

lipc(f) <∞, and attains its maximum on X0 ⊆ X . Then
for all r ≥ 0

supµ∈P(X0)∆f,c,r(µ)

= r lipc(f)−max
{

0, r lipc(co f)− ρ(f)
}
.

Remark 1. Proposition 1 shows that for any compact sub-
set X0 ⊆ Rd (such as the set of d-dimensional images,
[0, 1]d) the bound (1) is tight with respect to the set of dis-
tributions supported here, for any upper semicontinuous
f ∈

⋂
µ∈P(X0) L(X,µ).

It is the first time to our knowledge that the slackness (2)
has been characterised tightly. Remark 3 (in §A.1) discusses
a similar way to construct such a bound from some existing
results in the literature, and compares it to Theorem 2.

3.1. Adversarial learning

Szegedy et al. (2014) observe that deep neural networks,
trained for image classification using empirical risk min-
imisation, exhibit a curious behaviour whereby an image,
x ∈ Rd, and a small, imperceptible amount of noise,
δx ∈ Rd, may found so that the network classifies x and
x+δx differently. Imagining that the troublesome noise vec-
tor is sought by an adversary seeking to defeat the classifier,

such pairs have come to be known as adversarial examples
(Moosavi Dezfooli et al., 2017; Goodfellow et al., 2015;
Kurakin et al., 2017).

The closed c : X → R̄ ball of radius r ≥ 0, centred at
x ∈ X is denoted Bc(x, r)

def
= {y ∈ X | c(x− y) ≤ r}.

Let X be a linear space and Y a topological space. Fix µ ∈
P(X × Y ). The following objective has been proposed as
a means of learning classifiers that are robust to adversarial
examples (viz. Madry et al., 2018; Shaham et al., 2018;
Carlini & Wagner, 2017; Cisse et al., 2017)∫

sup
δ∈Bc(0,r)

f(x+ δ, y)µ(dx× dy), (3)

where f : X × Y → R̄ is the loss of some classifier.

Theorem 2. Suppose (X, c0) is a separable Banach
space. Fix µ ∈ P(X) and for r ≥ 0 let Rµ(r) def

=
{g ∈ L0(X,R≥0) |

∫
g dµ ≤ r}. Then for f ∈ L0(Ω, R̄)

and r ≥ 0 there is

sup
g∈Rµ(r)

∫
µ(dω) sup

ω′∈Bc0 (ω,g(ω))

f(ω′) ≤ sup
ν∈Bc0 (µ,r)

∫
f dν,

(4)

If f is continuous and µ is non-atomically concentrated with
compact support, then (4) is an equality.

Remark 2. By observing the constant function gr ≡ r is
included in the setRµ(r), it’s easy to see that the adversarial
risk (3) is upper bounded as follows

(3) =

∫
sup

ω′∈Bc(ω,r)

f(ω′)µ(dω)

≤ sup
g∈Rµ(r)

∫
µ(dω) sup

ω′∈Bc(ω,g(ω))

f(ω′), (5)

where, in the equality, we extend c0 to a metric c on X × Y
in the same way as (B.6).

Theorem 2 generalises and subsumes a number of existing
results to relate the adversarial risk minimisation (3) to the
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distributionally robust risk in Theorem 1. A discussion and
summary of the improvements made by Theorem 2 on other
comparable results is presented in §3.2, with a table that is
similar to Table 1.

A simulation is in place demonstrating that the sum of the
gaps from Theorems 1 and 2 and Equation (5) is relatively
low. We randomly generated 100 Gaussian kernel classi-
fiers f =

∑100
i=1 γik(xi, ·), where xi was sampled from the

MNIST dataset and γi sampled uniformly from [−2, 2]. The
bandwidth was set to the median of pairwise distances. In
Figure 3, the x-axis is the adversarial risk (LHS of (5), i.e.,
(3)) where the perturbation δ is bounded in an `p ball and
computed by projected gradient descent (PGD). The y-axis
is the Lipschitz regularised empirical risk (RHS of (1)). The
scattered dots lie closely to the diagonal, demonstrating that
the above bounds are tight in practice.

3.2. Results related to Theorem 2

Similarly to Theorem 1, Theorem 2 improves upon a num-
ber of existing results in the literature. These are listed in
Table 2. The majority of other results mentioned are are for-
mulated with respect to an empirical distribution, that is, an
average of Dirac masses. Of course any finite set is compact,
and so these empirical distributions satisfy the concentration
assumption. Staib & Jegelka (2017, Prop. 3.1) also state an
equality result, but this is in the setting of an∞-Wasserstein
ball, which is a much more exotic object (viz. Champion
et al., 2008) and is not obvious how it relates to the other
results, so we choose to omit it from Table 2.

4. Lipschitz regularisation for kernel methods
Theorems 1 and 2 open up a new path to optimising the
adversarial risk (3) by Lipschitz regularisation (RHS of
(1)). In general, however, it is still hard to compute the
Lipschitz constant for a nonlinear model (Scaman & Vir-
maux, 2018). Interestingly, we will show that for some
types of kernels, this can be done efficiently on functions
in its RKHS, which is rich enough to approximate con-
tinuous functions on a bounded domain (Micchelli et al.,
2006). Thanks to the connections between kernel method
and deep learning, this technique also potentially benefits
the latter. For example, `1-regularised neural networks are
compactly contained in the RKHS of multi-layer inverse ker-
nels k(x, y) = (2− x>y)−1 with ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1
(Zhang et al., 2016, Lem. 1 & Thm. 1) and (Shalev-Shwartz
et al., 2011; Zhang et al., 2017), and possibly Gaussian
kernels k(x, y)=exp( −1

2σ2 ‖x−y‖2) (Shalev-Shwartz et al.,
2011, §5).

Consider a Mercer’s kernel k on a convex domain X ⊆ Rd,
with the corresponding RKHS denoted asH. The standard
kernel method seeks a discriminant function f fromH with
the conventional form of finite kernel expansion f(x) =

1
l

∑l
a=1 γa k(xa, ·), such that the regularised empirical risk

can be minimised with the standard (hinge) loss and RKHS
norm. We start with real-valued f for univariate output such
as binary classification, and later extend it to multiclass.

Our goal here is to additionally enforce, while retaining a
convex optimisation in γ def

= {γa}, that the Lipschitz con-
stant of f falls below a prescribed threshold L > 0, which is
equivalent to supx∈X ‖∇f(x)‖2 ≤ L thanks to the convex-
ity of X . A quick but primitive solution is to piggyback on
the standard RKHS norm constraint ‖f‖H ≤ C, in view that
it already induces an upper bound on ‖∇f(x)‖2 as shown
in Example 3.23 of Shafieezadeh-Abadeh et al. (2019):

sup
x∈X
‖∇f(x)‖2 ≤ ‖f‖H sup

z>0

1
z g(z), (6)

where g(z) ≥ sup
x,x′∈X:‖x−x′‖2=z

‖k(x, ·)− k(x′, ·)‖H .

For Gaussian kernels, g(z) = max{σ−1, 1}z. For exponen-
tial and inverse kernels, g(z) = z (Bietti & Mairal, 2019).
Bietti et al. (2019) justified that the RKHS norm of a neural
network may serve as a surrogate for Lipschitz regularisa-
tion. But the quality of such an approximation, i.e., the gap
in (6), can be loose as we will see later in Figure 4. Besides,
C and L are supposed to be independent parameters.

How can we tighten the approximation? A natural idea is
to directly bound the gradient norm at n random locations
{ws}ns=1 sampled i.i.d. from X , an approach adopted by
Arbel et al. (2018, Appendix D). These obviously result in
convex constraints on γ. But how many samples are needed
to ensure ‖∇f(x)‖2 ≤ L+ ε for all x ∈ X? Unfortunately,
as shown in §C.1, n may have to grow exponentially by
1/εd for a d-dimensional space. Therefore we seek a more
efficient approach by first slightly relaxing ‖∇f(x)‖2. Let
gj(x) def

= ∂jf(x) be the partial derivative with respect to the
j-th coordinate of x, and ∂i,jk(x, y) be the partial derivative
to xi and yj . i or j being 0 means no derivative. Assuming
supx∈X k(x, x) = 1 and gj ∈ H (true for various kernels
considered by Assumptions 1 and 2 below), we get a bound

sup
x∈X
‖∇f(x)‖22 = sup

x∈X

∑d

j=1
〈gj , k(x, ·)〉2H

≤ sup
φ:‖φ‖H=1

∑d

j=1
〈gj , φ〉2H

= λmax(G>G), (7)

where λmax evaluates the maximum eigenvalue, and G def
=

(g1, . . . , gd). The “matrix” is only a notation because each
column is a function inH, and obviously the (i, j)-th entry
of G>G is 〈gi, gj〉H.

Why does λmax(G>G) tend to provide a lower (i.e.,
tighter) approximation of the Lipschitz constant than
(6)? To gain some intuition, note that the latter takes two
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Figure 3: Empirical evaluation of the sum of the gaps
from Theorems 1 and 2. The Lipschitz constants
supx∈X ‖∇f(x)‖q (left: p = 2, right: p = ∞, 1/p +
1/q = 1) were estimated by BFGS.
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Figure 4: Comparison of λmax(G>G) and the RHS of (6),
as upper bounds for the Lipschitz constant. Smaller values
are tighter. We sampled 100 functions in the same way as
in Figure 3.

steps of relaxation: |f(x) − f(x′)| ≤ ‖f‖H · ‖k(x, ·) −
k(x′, ·)‖H and ‖k(x,·)−k(x′,·)‖H

‖x−x′‖2 ≤ supz>0
gz
z . They attain

equality at potentially very different (x, x′) pairs, and the
former depends on f while the latter does not. In contrast,
our bound in (7) only relaxes once, leveraging the efficiently
approximable partial derivatives gj in §4.1 and capturing the
correlations across different coordinates j by the eigenvalue.

An empirical comparison is further shown in Figure 4, where
λmax(G>G) was computed from (9) derived below, and the
landmarks {ws} consisted of the whole training set; drawing
more samples led to little difference. The gap is smaller
when the bandwidth σ is larger, making functions smoother.
To be fair, both Figure 3 and Figure 4 set σ to the median of
pairwise distances, a common practice.

Such a positive result motivated us to develop refined al-
gorithms to address the only remaining obstacle to lever-
aging λmax(G>G): a computational strategy. Interest-
ingly, it is readily approximable in both theory and prac-
tice. Indeed, the role of gj can be approximated by its
Nyström approximation g̃j ∈ Rd (Williams & Seeger, 2000;
Drineas & Mahoney, 2005) with K def

= [k(wi, wi
′
)]i,i′ and

Z def
= (k(w1, ·), k(w2, ·), . . . , k(wn, ·)):

g̃j
def
= K−1/2(gj(w

1), . . . , gj(w
n))>

= (Z>Z)−1/2Z>gj (8)
because gj(w

i) =
〈
gj , k(wi, ·)

〉
H. Then to ensure

λmax(G>G) ≤ L2 + ε, intuitively we can enforce
λmax(G̃>G̃) ≤ L2, where G̃ def

= (g̃1, . . . , g̃d). It retains
the convexity in the constraint on γ. However, to guarantee
ε error, the number of samples (n) required is generally
exponential (Barron, 1994). Fortunately, we will next show
that n can be reduced to polynomial for quite a general class
of kernels that possess some decomposed structure.

4.1. A Nyström approximation for product kernels

A number of kernels factor multiplicatively over the coordi-
nates, such as periodic kernels (MacKay, 1998), Gaussian

kernels, and Laplacian kernels. Let us consider k(x, y) =∏d
j=1 k0(xj , yj) where X = (X0)d and k0 is a base kernel

on an interval X0. Let the RKHS of k0 beH0, and let µ0 be
a finite Borel measure with supp[µ0] = X0. Periodic ker-
nels have k0(xj , yj) = exp

(
− sin

(
π
v (xj − yj)

)2
/(2σ2)

)
.

We stress that product kernels can induce very rich function
spaces. For example, Gaussian kernel is universal (Micchelli
et al., 2006), meaning that its RKHS is dense in the space
of continuous functions in the `∞ norm over any bounded
domain. Also note that the factorization of kernel k does
not imply a function f ∈ H must factor as

∏
j fj(xj).

The key benefit of this decomposition of k is
that the derivative ∂0,1k(x, y) can be written as
∂0,1k0(x1, y1)

∏d
j=2 k0(xj , yj). Since k0(xj , yj)

can be easily dealt with, approximation will be
needed only for ∂0,1k0(x1, y1). Applying this idea
to gj = 1

l

∑l
a=1 γa∂

0,jk(xa, ·), we can derive

l2 ‖g1‖2H =

l∑
a,b=1

[
γaγbMa,b

d∏
j=2

k0(xaj , x
b
j)
]
, (9)

where Ma,b
def
=
〈
∂0,1k0(xa1 , ·), ∂0,1k0(xb1, ·)

〉
H0
,

l2 〈g1, g2〉H =

l∑
a,b=1

[
γaγb∂

0,1k0(xa1 , x
b
1)∂0,2k0(xb2, x

a
2)

d∏
j=3

k0(xaj , x
b
j)
]
.

So the off-diagonal entries of G>G can be computed ex-
actly. But this is not the case for the diagonal entries because
Ma,b is not equal to ∂1,1k0(xa1 , x

b
1). This differs from the

( ∂
∂x1

f(x))2 used in Arbel et al. (2018), which can be com-
puted with more ease via

〈
f, [∂1,0k(x, ·)⊗ ∂1,0k(x, ·)]f

〉
H.

Now it is natural to apply Nyström approximation to Ma,b

in the diagonal, using samples {w1
1, . . . , w

n
1 } from µ0:

Ma,b≈∂0,1k0(xa1 , ·)>Z1(Z>1 Z1)−1Z>1 ∂
0,1k0(xb1, ·), (10)

where Z1
def
= (k0(w1

1, ·), . . . , k0(wn1 , ·)). Note

Z>1 ∂
0,1k0(xa1 , ·)=(∂0,1k0(xa1 , w

1
1), . . . , ∂0,1k0(xa1 , w

n
1 ))>,
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and similarly for Z>1 ∂
0,1k0(xb1, ·). Denote this approxi-

mation of G>G as P̃G. Clearly, λmax(P̃G) ≤ L2 is a
convex constraint on γ, based on i.i.d. samples {wsj |
s ∈ [n], j ∈ [d]} from µ0.

The overall convex training procedure is summarised in Al-
gorithm 1, where the goal is to train a kernel SVM with the
additional constraint that the Lipschitz constant is at most
L. More detailed formulations are available in §D. The
three different ways to enforce the Lipschitz constant as dis-
cussed above correspond to options 1© to 3©. For practical
efficiency, we greedily expand the Nyström landmark set S
by locally maximizing the norm of the gradient at each iter-
ation (step b©). Figure 7 in §5.1 will show that the Nyström
based algorithm is much more efficient than the brute-force
counterpart, and the greedy approach significantly reduces
the number of samples for both algorithms.

4.2. General sample complexity and assumptions

Finally, it is important to analyse how many samples wsj are
needed, such that with high probability

λmax(P̃G) ≤ L2 =⇒ λmax(G>G) ≤ L2 + ε.

Fortunately, product kernels only require approximation
bounds for each coordinate, making the sample complexity
immune to the exponential growth in the dimensionality
d. Specifically, we first consider base kernels k0 with a
scalar input, i.e., X0 ⊆ R. Recall from Steinwart & Christ-
mann (2008, §4) that the integral operator for k0 and µ0 is
Tk0

def
= I ◦ Sk0 , where Sk0 : L2(X0, µ0) → C(X0) oper-

ates according to (Sk0f)(x) def
=
∫
k0(x, y)f(y)µ0(dy) for

all f ∈ L2(X0, µ0), and I: C(X0) ↪→ L2(X0, µ0) is the in-
clusion operator. By the spectral theorem, if Tk0 is compact,
then there is an at most countable orthonormal set {ẽj}j∈J
of L2(X0, µ0) and {λj}j∈J with λ1 ≥ λ2 ≥ . . . > 0
such that Tk0f =

∑
j∈J λj 〈f, ẽj〉L2(X0,µ0) ẽj for all f ∈

L2(X0, µ0). It follows that ϕj
def
=
√
λjej is an orthonormal

basis ofH0 (cf. Steinwart & Christmann, 2008).

Our proof is built upon the following two assumptions on
the base kernel. The first one asserts that fixing x, the energy
of k0(x, ·) and ∂0,1k0(x, ·) “concentrates” on the leading
eigenfunctions.
Assumption 1. Suppose k0(x, x) = 1 and ∂0,1k0(x, ·) ∈
H0 for all x ∈ X0. For all ε > 0, there exists Nε ∈ N
such that the tail energy of ∂0,1k0(x, ·) beyond the Nε-th
eigenpair is less than ε, uniformly for all x ∈ X0. That is,
denoting Φm

def
= (ϕ1, . . . , ϕm), Nε <∞ is the smallest m

such that

∀x∈X0 :
∥∥∂0,1k0(x, ·)− ΦmΦ>m∂0,1k0(x, ·)

∥∥
H0

< ε

and
∥∥k0(x, ·)− ΦmΦ>mk0(x, ·)

∥∥
H0

< ε.

The second assumption asserts the smoothness and range of
eigenfunctions in a uniform sense.

Algorithm 1 Training L-Lipschitz binary SVM
1 Randomly sample S = {w1, . . . , wn} from X .
2 for i = 1, 2, . . . do
3 Train an SVM under one of the following constraints:

1© Brute-force: ‖∇f(w)‖22 ≤ L2, ∀ w ∈ S

2© Nyström holistic: λmax(G̃>G̃)≤L2 in (8) by S

3© Nyström coordinate wise: λmax(P̃G) ≤ L2 in
(10) by using S

4 Let the trained SVM be f (i).
5 Add a new w to S by one of the following methods:

a© Random: randomly sample w from X .

b© Greedy: find arg maxx∈X
∥∥∇f (i)(x)

∥∥ (local
optimisation) by L-BFGS with 10 random ini-
tialisations and add the distinct results

6 Return if L(i) def
= maxx∈X

∥∥∇f (i)(x)
∥∥ falls below L

Assumption 2. Under Assumption 1, {ej(x) : j ∈ Nε}
is uniformed bounded over x ∈ X0, and the RKHS inner
product of ∂0,1k0(x, ·) with {ej : j ∈ Nε} is also uniformly
bounded over x ∈ X0:

Mε
def
= sup
x∈X0

max
j∈[Nε]

∣∣∣〈∂0,1k0(x, ·), ej
〉
H0

∣∣∣ <∞,
Qε

def
= sup
x∈X0

max
j∈[Nε]

|ej(x)| <∞.

Theorem 3. Suppose k0, X0, and µ0 satisfy Assumptions
1 and 2. Let {wsj : s ∈ [n], j ∈ [d]} be sampled i.i.d. from
µ0. Then for any f whose coordinate-wise Nyström approx-
imation (9) and (10) satisfy λmax(P̃G) ≤ L2, the Lipschitz
condition λmax(G>G) ≤ L2 + ε is met with probability
1 − δ, as long as n ≥ Θ̃

(
1
ε2N

2
εM

2
εQ

2
ε log dNε

δ

)
, almost

independent of d. Here Θ̃ hides all poly-log terms except
those involving d. The proof is deferred to §C.3.

The log d dependence on dimension d is interesting, but not
surprising. After all, only the diagonal entries of G>G need
approximation, and the quantity of interest is its spectral
norm, not Frobenious norm. Compared with the brute-force
approach in Arbel et al. (2018) which costs exponential sam-
ple complexity, we manage to reduce it to 1/ε2 by making
two assumptions, which interestingly hold true for important
classes of kernels.
Theorem 4. Assumptions 1 and 2 hold for periodic kernel
and Gaussian kernel with Õ(1) values of Nε, Mε, and Qε.

The proof is in §C.4 and §C.5. It remains open whether
non-product kernels such as inverse kernel also enjoy this
polynomial sample complexity. §C.6 suggests that its com-
plexity may be quasi-polynomial.
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5. Experimental results
We studied the empirical robustness and accuracy of the
proposed Lipschitz regularisation technique for adversarial
training of kernel methods, under both Gaussian kernel and
inverse kernel. Comparison will be made with state-of-the-
art defence algorithms under effective attacks.

Datasets We tested on three datasets: MNIST,
Fashion-MNIST, and CIFAR10. The number of
training/validation/test examples for the three datasets are
54k/6k/10k, 54k/6k/10k, 45k/5k/10k, respectively. Each
image in MNIST and Fashion-MNIST is represented as
a 784-dimensional feature vector, with each feature/pixel
normalised to [0, 1]. For CIFAR10, we trained it on a
residual network to obtain a 512-dimensional feature
embedding, which were subsequently normalised to [0, 1].

Attacks To evaluate the robustness of the trained model,
we attacked them on test examples using the random ini-
tialized Projected Gradient Descent method with 100 steps
(PGD, Madry et al., 2018) under two losses: cross-entropy
and C&W loss (Carlini & Wagner, 2017). The perturbation
δ was constrained in an 2-norm or∞-norm ball. To eval-
uate robustness, we scaled the perturbation bound δ from
0.1 to 0.6 for ∞-norm norm, and from 1 to 6 for 2-norm
norm (when δ = 6, the average magnitude per coordinate is
0.214). We normalised gradient and fine-tuned the step size.

Algorithms We compared four training algorithms. The
Parseval network orthonormalises the weight matrices to
enforce the Lipschitz constant (Cisse et al., 2017). We
used three hidden layers of 1024 units and ReLU activation
(Par-ReLU). Also considered is the Parseval network with
MaxMin activations (Par-MaxMin), which enjoys much
improved robustness (Anil et al., 2019). Both algorithms
can be customised for 2-norm or∞-norm attacks, and were
trained under the corresponding norms. Using multi-class
hinge loss, they constitute strong baselines for adversarial
learning. We followed the code from LNets with β = 0.5,
which is equivalent to the first-order Bjorck algorithm. The
final upper bound of Lipschitz constant computed from
the learned weight matrices satisfied the orthogonality con-
straint as shown by Anil et al. (2019, Fig. 13).

Both Gaussian and inverse kernel machines applied Lip-
schitz regularisation by randomly and greedily selecting
{ws}, and they will be referred to as Gauss-Lip and
Inverse-Lip, respectively. In practice, Gauss-Lip with the
coordinate-wise Nyström approximation (λmax(P̃G) from
(10)) can approximate λmax(G>G) with a much smaller
number of sample than if using the holistic approximation
as in (8). Furthermore, we found an even more efficient
approach. Inside the iterative training algorithm, we used
L-BFGS to find the input that yields the steepest gradient
under the current solution, and then added it to the set {ws}

(which was initialized with 15 random points). Although
L-BFGS is only a local solver, this greedy approach em-
pirically reduces the number of samples by an order of
magnitude. See the empirical convergence results in §5.1.
Its theoretical analysis is left for future investigation. We
also applied this greedy approach to Inverse-Lip.

Extending binary kernel machines to multiclass The
standard kernel methods learn a discriminant function
f c def

=
∑
a γ

c
ak(xa, ·) for each class c ∈ [10], based

on which a large variety of multiclass classification
losses can be applied, e.g., CS (Crammer & Singer,
2001) which was used in our experiment. Since the
Lipschitz constant of the mapping from {f c} to a real-
valued loss is typically at most 1, it suffices to bound
the Lipschitz constant of x 7→ (f1(x), . . . , f10(x))>

via maxx λmax(G(x)G(x)>), where G(x) def
=

[∇f1(x), · · · ,∇f10(x)] = [
〈
gcj , k(x, ·)

〉
H]j∈[d],c∈[10].

As ‖k(x, ·)‖H = 1, we then enforce

max
‖φ‖H=1

λmax

(∑10

c=1
G>c φφ

>Gc

)
≤ L2, (11)

where Gc
def
= (gc1, · · ·, gcd).

The LHS of (11) is amenable to the same Nyström approxi-
mation as in the binary case. Further, the principle can be
extended to∞-norm attacks, whose details are in §D.1.

Parameter selection We used the same parameters as in
Anil et al. (2019) for training Par-ReLU and Par-MaxMin.
To defend against 2-norm attacks, we set L = 100 for
all algorithms. Gauss-Lip achieved high accuracy and
robustness on the validation set with bandwidth σ = 1.5 for
FashionMNIST and CIFAR-10, and σ = 2 for MNIST. To
defend against ∞-norm attacks, we set L = 1000 for all
the four methods as in Anil et al. (2019). The best σ for
Gauss-Lip is 1 for all datasets. Inverse-Lip used 5 layers.

Results Figures. 5 and 6 show how the test accuracy de-
cays as an increasing amount of perturbation (δ) in 2-norm
and∞-norm norm is added to the test images, respectively.
Clearly Gauss-Lip achieves higher accuracy and robustness
than Par-ReLU and Par-MaxMin on the three datasets, un-
der both 2-norm and∞-norm bounded PGD attacks with
C&W loss. In contrast, Inverse-Lip only performs similarly
to Par-ReLU. Interestingly, 2-norm based Par-MaxMin are
only slightly better than Par-ReLU under 2-norm attacks,
although the former does perform significantly better under
∞-norm attacks.

The results for cross-entropy PGD attacks are deferred to
Figures. 9 and 10 in §E.1. Here cross-entropy PGD attack-
ers find stronger attacks to Parseval networks but not to our
kernel models. Our Gauss-Lip again significantly outper-
forms Par-MaxMin on all the three datasets and under both
2-norm and∞-norm norms. The improved robustness of
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Figure 5: Test accuracy under PGD attacks on the C&W approximation with 2-norm norm bound
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Figure 6: Test accuracy under PGD attacks on the C&W approximation with∞-norm norm bound

Gauss-Lip does not seem to be attributed to the obfuscated
(masked) gradient (Athalye et al., 2018), because as shown
Figures. 5, 6, 9 and 10, increased distortion bound does
increase attack success, and unbounded attacks drive the
success rate to very low. In practice, we also observed that
random sampling finds much weaker attacks, and taking 10
steps of PGD is much stronger than one step.

Obfuscated gradient To further illustrate the property of
Gauss-Lip trained models, we visualised “large perturba-
tion” adversarial examples with the 2-norm norm bounded
by 8. Figure 11 in §E.2 shows the result of running PGD
attack for 100 steps on Gauss-Lip trained model using
(targeted) cross-entropy approximation. On a randomly
sampled set of 10 images from MNIST, PGD successfully
turned all of them into any target class by following the
gradient. We further ran PGD on C&W approximation in
Figure 12, and this untargeted attack succeeds on all 10
images. In both cases, the final images are quite consistent
with human’s perception.

5.1. Efficiency of enforcing Lipschitz constant

Figure 7 plots how fast the Lipschitz constant L(i) at it-
eration i is reduced by the variants 1a, 1c, 3a, and 3c in
Algorithm 1, when more and more points w are added to
the constraint set S. We used 400 random examples in the
MNIST dataset (200 images of digit 1 and 0 each) and set
L = 3 and RKHS norm ‖f‖H ≤ ∞ for all algorithms.

Clearly the Nyström algorithm is more efficient than the
brute-force algorithm, and the greedy method significantly
reduces the number of samples for both algorithms. In fact,
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Figure 7: Comparison of efficiency in enforcing Lipschitz
constant by various methods.

Nyström with greedy selection (3c) eventually fell slightly
below the pre-specified L, because of the gap in (7).

6. Conclusion
Risk minimisation can fail to be optimal when there is some
misspecification of the distribution, such as when, as we
always must, work with its empirical counterpart. Therefore
we must turn to other techniques in order to ensure stability
when learning a model. The robust Bayes framework pro-
vides a systematic approach to these problems, however it
leaves open the choice as to which uncertainty set is most
appropriate. We show that in many cases, the popular Lip-
schitz regularisation corresponds to robust Bayes with a
transportation-cost-based uncertainty set.
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Supplementary Material
All code and data are available anonymously, with no tracing, at

https://github.com/learndeep2019/DRobust.

A. Discussion of Theorems 1 and 2
The reason we are interested in studying identities like (L) in full generality is to demonstrate that these relationships,

which have been studied in particular specific cases by a number of authors (cf. Tables. 1 and 2) have a simple common
structure. In this manner our goal is to contribute to the understanding of distributional robustness and regularisation directly,
rather than the specific application articulated in the adversarial robustness literature. In particular, our choice of a separable
Banach space for X is primarily motivated by the work of Blanchet & Murthy (2019), wherein the authors consider a
Polish space. When X is a Polish space equipped with a linear structure (so that we can exploit identities from convex
analysis), this makes X a separable Fréchet space. Our analysis is only restricted to the Banach setting only by our use of
the generalised Euler identity (Yang & Wei, 2008, Thm. 3.2), however we feel that this restriction is elementary.

A.1. Results related to Theorem 1

There are a number of similar results concerning identities of the form (L) and these are summarised in Table 1; the
result column refers to the relationship shown in (L). The assumptions necessary to show only inequality in Theorem 1 are
substantially weaker than the complete statement of the theorem (this is shown in the first paragraph of the proof on p. ) and
so we don’t include them in table. The weakest assumptions are highlighed with bold text, and any onerous assumptions
are highlighted with bold red text. In all cases our result is a strict generalisation, and no other works cited observe our
slackness bound using the lack of convexity parameter. The closest result to our slackness bound is not noted in — but can
be derived from — the work of Kuhn et al. (2019), which mention in Remark 3.
Remark 3. A similar slackness bound to (2) can be derived from Kuhn et al. (2019, Thms. 5,10), who show (under additional
assumptions)

sup
ν∈B‖ · ‖(µ,r)

∫
f dµ ≤

∫
f dµ+ r lip‖ · ‖(f)

and

sup
ν∈B‖ · ‖(µ,r)

∫
co f dµ =

∫
co f dµ+ r lip‖ · ‖(co f),

which, together with the observation co f ≤ f , implies the slackness bound

∀µ∈P(X) : ∆f,‖ · ‖,r(µ) ≤ r
(

lip‖ · ‖(f)− lip‖ · ‖(co f)
)

+ ρ(f). (A.1)

However, (A.1) neither enjoys the same tightness guarantee as (2) (as demonstrated by Example 1), nor is stated with our
level of generality.
Example 1. Let I def

= [−r0/2, r0/2] ⊆ R be an interval defined for some r0 > 0. Let f(x) def
= 1− (2x/r0)2 for x ∈ I and

f(x) = 0 for all other points x. Then f is upper semicontinuous, co f ≡ 0, ρ(f) = 1. Then

∀µ∈P(I) : cost| · |(µ, δ0) =

∫
I

|x|µ(dx) ≤ r0,

and δ0 ∈ Bc(µ, r0) for all µ ∈ P(I). The left hand side of (A.1) at any µ ∈ P(I) is∫
f dµ+ r0 lipc(f)− sup

ν∈Bc(µ,r0)

∫
f dν =

∫
f dµ+ r0 lipc(f)− 1

≤ 1 + r0 lipc(f)− 1,

= r0 lipc(f),

https://github.com/learndeep2019/DRobust


while the right hand side of (A.1) is

ρ(f) + r0(lipc(f)− lipc(co f)) = 1 + r0 lipc(f).

This shows that

sup
µ∈P(I)

∆f,‖ · ‖,r(µ) < ρ(f) + r0(lipc(f)− lipc(co f)).

Then, by the intermediate value theorem, there exists 0 ≤ r < r0 so that the bound (A.1) is not tight in the same way as (2).

B. Technical results on distributional robustness
For a topological vector space X we denote by X∗ its topological dual. These are in a duality with the pairing

〈 · , · 〉 : X ×X∗ → R. The weakest topology on X so that X∗ is its topological dual is denoted σ(X,X∗). The continuous
real functions on a topological space Ω are collected in C(Ω), and the subset of these that are bounded is Cb(Ω). For
a measure µ ∈ P(X) and a Borel mapping f : X → Y , the push-forward measure is denoted f#µ ∈ P(Y ) where
f#µ(A) def

= µ(f−1(A)) for every Borel A ⊆ Y .

The ε-subdifferential of a convex function f : X → R̄ at a point x ∈ X is

∂εf(x) def
= {x∗ ∈ X∗ | ∀y∈X : 〈y − x, x∗〉 − ε ≤ f(y)− f(x)},

where ε ≥ 0. The Moreau–Rockafellar subdifferential is ∂f(x) def
= ∂0f(x) and satisfies ∂f(x) =

⋂
ε>0 ∂εf(x). The

Legendre–Fenchel conjugate of a function f : X → R̄ is the function f∗ : X∗ → R̄ defined by

∀x∗∈X∗ : f∗(x∗) def
= sup
x∈X

(〈x, x∗〉 − f(x)),

and satisfies the following Fenchel–Young rule when f is closed convex

∀x∈f−1(R)∀x∗∈∂εf(x) : f(x) + f∗(x∗)− 〈x, x∗〉 ≤ ε. (B.1)

Finally the domains are dom ∂f
def
= {x ∈ X | ∂f(x) 6= ∅} and dom ∂εf

def
= {x ∈ X | ∂εf(x) 6= ∅}.

A coupling function c : X ×X → R̄ has an associated conjugacy operation with

f c(x) def
= sup
y∈X

(f(y)− c(x, y)),

for any function f : X → R̄. The indicator function of a set A ⊆ X is ιA(x) def
= 0 for x ∈ A and ιA(x) def

=∞ for x /∈ A.

When f : Rd → R̄ is minorised by an affine function, there is (cf. Hiriart-Urruty & Lemaréchal, 2010, Prop. X.1.5.4;
Benoist & Hiriart-Urruty, 1996)

co f(x) = inf

 ∑
i∈[n+1]

αif(xi)

∣∣∣∣∣∣ (α1, . . . , αn+1) ∈ ∆n, (xi)i∈[n+1] ⊆ Rd,
∑

i∈[n+1]

αixi = x


for all x ∈ Rd, where ∆n def

= {(α1, . . . , αn+1) ∈ Rn≥0 |
∑
i∈[n+1] αi = 1}. Consequentially it is well known that ρ(f) can

be computed via

ρ(f) = sup
(α1,...,αn+1)∈∆n+1

(x1,...,xn+1)∈(Rd)n+1

f
 ∑
i∈[n+1]

αixi

−∑
i∈[n+1]

αif(xi)

.



B.1. Proof of Theorem 1 and other technical results

Lemma 1 ((Blanchet & Murthy (2019, Thm. 1))). suppose Ω is a Polish space and fix µ ∈ P(Ω). Let c : Ω ×Ω → R̄≥0

be lower semicontinuous with c(ω, ω) = 0 for all ω ∈ Ω, and f : Ω → R is upper semicontinuous. Then for all r ≥ 0 there
is

sup
ν∈Bc(µ,r)

∫
f dν = inf

λ≥0

(
λr +

∫
fλc dµ

)
. (B.2)

Duality results like Lemma 1 have been the basis of a number of recent theoretical efforts in the theory of adversarial
learning (Sinha et al., 2018; Gao & Kleywegt, 2016; Blanchet et al., 2019; Shafieezadeh-Abadeh et al., 2019), the results of
Blanchet & Murthy (2019) being the most general to date. The necessity for such duality results like Lemma 1 is because
while the supremum on the left hand side of (B.2) is over a (usually) infinite dimensional space, the right hand side only
involves only a finite dimensional optimisation. The generalised conjugate in (B.2) also hides an optimisation, but when the
outcome space Ω is finite dimensional, this too is a finite dimensional problem.

We also require the following result of Yang & Wei (2008) to exploit the structure of k-homogenous functions.

Lemma 2 ((Yang & Wei (2008, Thm. 3.2))). Suppose X is a Banach space and c : X → R̄ is convex, k-positively
homogeneous for k > 0, and lower semicontinuous. Then for every x ∈ dom ∂c there is

∀x∗∈∂c(x) : c(x) = k−1〈x, x∗〉.

The following lemma is sometimes stated a consequence of, or in the proof of, the McShane–Whitney extension theorem
(McShane, 1934; Whitney, 1934), but it is immediate to observe.

Lemma 3. Let X be a set. Assume c : X ×X → R̄≥0 satisfies c(x, x) = 0 for all x ∈ X , f : X → R. Then

1 ≥ lipc(f) ⇐⇒ ∀y∈X : f(y) = sup
x∈X

(f(x)− c(x, y)).

Proof. Suppose 1 ≥ lipc(f). Fix y0 ∈ X . Then

∀x∈X : f(x)− c(x, y0) ≤ f(y0),

with equality when x = y0. Next suppose

∀y∈X : f(y) = sup
x∈X

(f(x)− c(x, y)),

then

∀x,y∈X : f(y) ≥ f(x)− c(x, y) ⇐⇒ ∀x,y∈X : f(x)− f(y) ≤ c(x, y)

⇐⇒ 1 ≥ lipc(f),

as claimed.

Lemma 4. Suppose X is a locally convex Hausdorff topological vector space and c : X → R̄≥0 satisfies c(0) = 0, and
f : X → R is convex. Then

1 ≥ lipc(f) ⇐⇒ ∀ε≥0 : ∂εf(X) ⊆ ∂εc(0).

Proof. Assume 1 ≥ lipc(f). Then f(x)− f(y) ≤ c(x− y) for all x, y ∈ X . Fix ε ≥ 0, x ∈ X and suppose x∗ ∈ ∂εf(x).
Then

∀y∈X : 〈y − x, x∗〉 − ε ≤ f(y)− f(x) ≤ c(y − x)

⇐⇒ ∀y∈X : 〈y, x∗〉 − ε ≤ f(y + x)− f(x) ≤ c(y)− c(0),

because c(0) = 0. This shows x∗ ∈ ∂εc(0).



Next assume ∂εf(x) ⊆ ∂εc(0) for all ε ≥ 0 and x ∈ X . Because f is not extended-real valued, it is continuous on all
of X (via Zălinescu, 2002, Cor. 2.2.10) and ∂f(x) is nonempty for all x ∈ X (via Zălinescu, 2002, Thm. 2.4.9). Fix an
arbitrary x ∈ X . Then ∅ 6= ∂f(x) ⊆ ∂c(0), and

∃x∗∈∂f(x)∀y∈X : f(x)− f(y) ≤ 〈x− y, x∗〉
=⇒ ∀y∈X : f(x)− f(y) ≤ 〈x− y, x∗〉 ≤ c(x− y),

(B.1)

where the implication is because x∗ ∈ ∂c(0) and c(0) = 0. Since the choice of x in (B.1) was arbitrary, the proof is
complete.

Lemma 5. Suppose X is a Banach space and c : X → R̄≥0 is convex, k-positively homogeneous. Then (i) c∗ ≥ ι 1
k ∂c(0),

and (ii) c∗(x∗) =∞ for any x∗ /∈ ∂c(0).

Proof. Fix an arbitrary x ∈ X . Then, for ε ≥ 0, there is x∗ ∈ ∂εc(x) if and only if

〈y − x, x∗〉 ≤ c(y)− c(x) + ε ⇐⇒ 〈y − x, x∗〉 ≤ c(y)− c(x) + ε

⇐⇒ 〈y, x∗〉 − 〈x, x∗〉︸ ︷︷ ︸
kc(x)

≤ c(y)− c(x) + ε

⇐⇒ 〈y, x∗〉 ≤ c(y) + (k − 1)c(x) + ε,

holds for every y ∈ X . Then, so long as k ≥ 1, we have ∂εc(x) = ∂(k−1)c(x)+εc(0) ⊇ ∂εc(0). Setting ε = 0 we find

∀x∈dom(∂c) : ∂c(x) ⊇ ∂c(0). (B.1)

Fix an arbitrary x∗0 ∈ X∗. Then because c is convex and real-valued, dom ∂c = X and

c∗(x∗0) = sup
x∈dom(∂c)

(〈x, x∗0〉 − c(x))

L2
= sup
x∈dom(∂c)

sup
x∗∈∂c(x)

(
〈x, x∗0〉 − k−1〈x, x∗〉

)
(B.1)
≥ sup

x∈dom(∂c)

sup
x∗∈∂c(0)

(
〈x, x∗0〉 − k−1〈x, x∗〉

)
= sup
x∈dom(∂c)

sup
x∗∈∂c(0)

〈
x, x∗0 − k−1x∗

〉
≥ sup
x∈dom(∂c)

f(x, x∗0), (B.2)

where

f(x, x∗) def
=

{
0 kx∗ ∈ ∂c(0)

〈x, x∗〉 kx∗ /∈ ∂c(0).

If kx∗0 /∈ ∂c(0) then there is x0 ∈ X with

k〈x0, x
∗
0〉 > c(x0) =⇒ ∞ > 〈x0, x

∗
0〉 >

1

k
c(x0) ≥ 0,

and x0 ∈ dom f . Therefore for any x∗0 /∈ ∂c(0),

sup
x∈dom(∂c)

f(x, x∗0) = sup
x∈dom(c)

f(x, x∗0) ≥ sup
a>0

a〈x0, x
∗
0〉 =∞. (B.3)

In the first equality we used the fact that cl dom(∂c) = cl dom(c). This shows

c∗(x∗0)
(B.2)
≥ sup

x∈dom(∂c)

f(x, x∗0)
(B.3)
= ι 1

k ∂c(0),



and proves (i).

Suppose x∗0 /∈ ∂c(0). Then there exists y ∈ X so that 〈y, x∗0〉 > c(y). Let a0
def
= p−1

√
p. Then a0 > 0, ap0

a0k
= 1, and

〈y, x∗0〉 > c(y) ⇐⇒ 〈y, x∗0〉 >
ak0
a0p

c(y)

⇐⇒ 〈a0y, kx
∗
0〉 > ak0c(y)

⇐⇒ 〈a0y, kx
∗
0〉 > c(a0y),

where in the last line we used the k-positive homogeneity of c. This shows that kx∗0 /∈ ∂c(0). Using (i) we obtain

x∗0 /∈ ∂c(0) =⇒ kx∗0 /∈ ∂c(0) =⇒ ι∂c(0)(x
∗
0) =∞ L5 (i)

=⇒ c∗(x∗0) =∞,

which completes the proof of (ii).

Lemma 6. AssumeX is a Banach space. SupposeX is a Banach space and c : X → R̄ is convex, k-positively homogeneous,
and lower semicontinuous. Then there is

∀y∈X : sup
x∈X

(
f(x)− c(x− y)

)
=

{
f(y) 1 ≥ lipc(f)

∞ otherwise.

Proof. Fix an arbitrary y0 ∈ X . From Lemma 4 we know

1 ≥ lipc(f) ⇐⇒ ∀ε≥0 : ∂εf(X) ⊆ ∂εc(0).

Assume ∂εf(X) ⊆ ∂εc(0) for all ε ≥ 0. Consequentially ∂εf(y0) ⊆ ∂εc(0) = ∂εc( · − y0)(y0) for every ε ≥ 0.
From the usual difference-convex global ε-subdifferential condition (Hiriart-Urruty, 1989, Thm. 4.4) it follows that

inf
x∈X

(
c(x− y0)− f(x)

)
= c(y0 − y0)︸ ︷︷ ︸

0

−f(y0) = −f(y0),

where we note that c(y0 − y0) = c(0) = 0 because c is sublinear.

Assume ∂εf(X) 6⊆ ∂εc(0) for some ε ≥ 0. By hypothesis there exists ε0 ≥ 0, x0 ∈ X , and x∗0 ∈ X∗ with

x∗0 ∈ ∂ε0f(x0) and x∗0 6∈ ∂ε0c(0).

Using the Toland (1979) duality formula (viz. Hiriart-Urruty, 1986, Cor. 2.3) and the usual calculus rules for the Fenchel
conjugate (e.g. Zălinescu, 2002, Thm. 2.3.1) we have

inf
x∈X

(
c(x− y0)− f(x)

)
= inf
x∗∈X∗

(
f∗(x∗)− (c( · − y0))∗(x∗)

)
= inf
x∗∈X∗

(
f∗(x∗)− c∗(x∗) + 〈y0, x

∗〉
)

≤ f∗(x∗0)− c∗(x∗0) + 〈y0, x
∗
0〉

(B.1)
≤ ε0 + 〈x0, x

∗
0〉 − f(x0)− c∗(x∗0) + 〈y0, x

∗
0〉

= ε0 + 〈x0 + y0, x
∗
0〉 − f(x0)︸ ︷︷ ︸

<∞

−c∗(x∗0), (B.1)

where the second inequality is because x∗0 ∈ ∂ε0f(x0).

We have assumed x∗0 /∈ ∂εc(0) ⊇ ∂c(0). Because c convex k-positively homogeneous, c∗(x∗0) =∞ (via Lemma 5(ii)).
Then (B.1) yields

inf
x∈X

(
c(x− y0)− f(x)

)
≤ −∞,

which completes the proof.



Theorem (1). Suppose X is a separable Banach space and fix µ ∈ P(X). Suppose c : X → R̄≥0 is closed convex,
k-positively homogeneous, and f ∈ L1(X,µ) is upper semicontinuous with lipc(f) <∞. Then for all r ≥ 0, there exists
∆f,c,r(µ) ≥ 0 so that

sup
ν∈Bc(µ,r)

∫
f dν +∆f,c,r(µ) =

∫
f dµ+ r lipc(f),

and

∆f,c,r(µ) ≤ r lipc(f)−
max{0, r lipc(co f)− Eµ[f − co f ]}.

Proof. (1): Since c is k-positively homogeneous, there is c(x, x) = c(x− x) = c(0) = 0 for all x ∈ X . Therefore we can
apply Lemma 1 and Lemma 3 to obtain

sup
ν∈Bc(µ,r)

∫
f dν

L1
= inf
λ≥0

(
rλ+

∫
fλc dµ

)
≤ inf
λ≥lipc(f)

(
rλ+

∫
fλc dµ

)
L3
= r lipc(f) +

∫
f dµ,

(B.2)

and therefore ∆f,c,r(µ) ≥ 0.

(2): Observing that co f ≤ f , from Lemma 6 we find for all x ∈ X

sup
λ∈[0,∞)

(f(x)− fλc(x)− rλ)

= sup
λ∈[0,∞)

(f(x)− sup
y∈X

(f(y)− λc(x− y))− rλ)

= sup
λ∈[0,∞)

inf
y∈X

(f(x)− f(y) + λc(x− y)− rλ)

≤ sup
λ∈[0,∞)

inf
y∈X

(f(x)− co f(y) + λc(x− y)− λr)

L6
= sup
λ∈[0,∞)

{
f(x)− co f(x)− λr lipc(co f) ≤ λ
−∞ lipc(co f) > λ

= f(x)− co f(x)− r lipc(co f). (B.3)

Similarly, for all x ∈ X there is

sup
λ∈[0,∞)

(
f(x)− fλc(x)− rλ

)
≤ sup
λ∈[0,∞)

(
f(x)− fλc(x)

)
+ sup
λ∈[0,∞)

(
−rλ

)
= sup
λ∈[0,∞)

(
f(x)− fλc(x)

)
= sup
λ∈[0,∞)

inf
y∈X

(
f(x)− f(y) + λc(x− y)

)
≤ inf
y∈X

sup
λ∈[0,∞)

(
f(x)− f(y) + λc(x− y)

)
= inf
y∈X

{
∞ c(x− y) > 0

0 c(x− y) = 0

= 0. (B.4)



Together, (B.3) and (B.4) show∫
sup

λ∈[0,∞)

(f − fλc − rλ) dµ

≤ min

{∫
(f − co f) dµ− r lipc(co f), 0

}
. (B.5)

Then

∆f,c,r(µ) =

(
r lipc(f) +

∫
f dµ

)
− sup
ν∈Bc(µ,r)

∫
f dν

(B.2)
=

(
r lipc(f) +

∫
f dµ

)
− inf
λ∈[0,∞)

(
rλ−

∫
fλc dµ

)
= r lipc(f) + sup

λ∈[0,∞)

∫ (
f − fλc − λr

)
dµ

≤ r lipc(f) +

∫
sup

λ∈[0,∞)

(
f − fλc − λr

)
dµ

(B.5)
≤ r lipc(f) + min

{∫
(f − co f) dµ− r lipc(co f), 0

}
,

which implies (2).

The extension of Theorem 1 for robust classification in the absence of label noise is straight-forward.

Corollary 1. Assume X is a separable Banach space and Y is a topological space. Fix µ ∈ P(X × Y ). Assume
c : (X × Y )× (X × Y )→ R̄ satisfies

c((x, y), (x′, y′)) =

{
c0(x− x′) y = y′

∞ y 6= y′,
(B.6)

where c0 : X → R̄ satisfies the conditions of Theorem 1, and f ∈ L1(X ×Y, µ) is upper semicontinuous and has lipc(f) <

∞. Then for all r ≥ 0 there is (1) and (2), where the closed convex hull is interpreted co(f)(x, y) def
= co(f( · , y))(x).

Proposition (1). Suppose X is a separable Banach space. Suppose c : X → R̄≥0 satisfies the conditions of Theorem 1,
and f ∈

⋂
µ∈P(X0) L1(X,µ) is upper semicontinuous, has lipc(f) <∞, and attains its maximum on X0 ⊆ X . Then for

all r ≥ 0

supµ∈P(X0)∆f,c,r(µ)

= r lipc(f)−max
{

0, r lipc(co f)− ρ(f)
}
.

Proof. Let x0 ∈ X0 be a point at which f(x0) = sup f(X0). Then costc(δx0 , δx0) = 0 ≤ r, and supν∈Bc(δx0 ,r)

∫
f dν =

f(x0). Therefore

∆f,c,r(δx0) = r lipc(f) + f(x0)− f(x0) = r lipc(f). (B.2)

And so we have

r lipc(f)
(B.2)
≤ sup

µ∈P(X0)

∆f,c,r(µ)

T1
≤ r lipc(f)−max

{
r lipc(co f)− ρ(f), 0

}
≤ r lipc(f),

which implies the claim.



B.2. Proof of Theorem 2

Lemma 7 will be used to show an equality result in Theorem 2.
Lemma 7. Assume (Ω, c) is a compact Polish space and µ ∈ P(Ω) is non-atomic. For r > 0 and ν? ∈ Bc(µ, r) there is a
sequence (fi)i∈N ⊆ Aµ(r) def

=
{
f ∈ L0(Ω,Ω)

∣∣ ∫ cd(Id, f)#µ ≤ r
}

with (fi)#µ converging at ν? in σ(P(Ω),C(Ω)).

Proof. Let P (µ, ν) def
= {f ∈ L0(X,X) | f#µ = ν}. Since µ is non-atomic and c is continuous we have (via Pratelli, 2007,

Thm. B)

∀ν∈P(Ω) : inf
f∈P (µ,ν)

∫
cd(Id, f)#µ = costc(µ, ν).

Let r? def
= costc(µ, ν

?), obviously r? ≤ r. Assume r? > 0, otherwise the lemma is trivial. Fix a sequence (εk)k∈N ⊆ (0, r?)

with εk → 0. For u ≥ 0 let ν(u) def
= µ+ u(ν? − µ). Then

costc(µ, ν(0)) = 0 and costc(µ, ν(1)) = r?,

and because costc metrises the σ(P(Ω),C(Ω))-topology on P(Ω) (Villani, 2009, Cor. 6.13), the mapping u 7→
costc(µ, ν(u)) is σ(P(Ω),C(Ω))-continuous. Then by the intermediate value theorem for every k ∈ N there is some
uk > 0 with costc(µ, ν(uk)) = r? − εk, forming a sequence (uk)k∈N ⊆ [0, 1]. Then for every k there is a sequence
(fjk)j∈N ⊆ P (µ, ν(uk)) so that (fjk)#µ→ ν(k) in σ(P(Ω),C(Ω)) and

lim
j∈N

∫
cd(Id, fjk)#µ = inf

f∈P (µ,ν(k))

∫
cd(Id, fk)#µ

= costc(µ, ν(k))

= r? − εk.

Therefore for every k ∈ N there exists jk ≥ 0 so that for every j ≥ jk∫
cd(Id, fjk)#µ ≤ r?. (B.2)

Let us pass directly to this subsequence of (fjk)j∈N for every k ∈ N so that (B.2) holds for all j, k ∈ N. Next by construction
we have ν(uk) → ν?. Therefore (fjk)j,k∈N has a subsequence in k so that (fjk)#µ → ν? in in σ(P(Ω),C(Ω)). By
ensuring (B.2) is satisfied, the sequences (fjk)j∈N ⊆ Aµ(r) for every k ∈ N.

We can now prove our main result Theorem 2. When (X, c) is a normed space, the closed ball of radius r ≥ 0, centred
at x ∈ X is denoted Bc(x, r)

def
= {y ∈ X | c(x− y) ≤ r}.

Theorem (2). Suppose (X, c0) is a separable Banach space. Fix µ ∈ P(X) and for r ≥ 0 let Rµ(r) def
= {g ∈ L0(X,R≥0) |∫

g dµ ≤ r}. Then for f ∈ L0(Ω, R̄) and r ≥ 0 there is

sup
g∈Rµ(r)

∫
µ(dω) sup

ω′∈Bc0 (ω,g(ω))

f(ω′) ≤ sup
ν∈Bc0 (µ,r)

∫
f dν,

If f is continuous and µ is non-atomically concentrated with compact support, then (4) is an equality.

Proof. For convenience of notation let c def
= c0.

When r = 0, the set Rµ(r) consists of the set of functions g which are 0 µ-almost everywhere, in which case
Bc(x, g(x)) = {0} for µ-almost all x ∈ X . Thus (5) is equal to

∫
f(x)µ(dx). Since c is a norm, c(0) = 0, and by a similar

argument there is equality with the right hand side. We now complete the proof for the cases where r > 0.

Inequality: For g ∈ Rµ(r), let Γg : X → 2X denote the set-valued mapping with Γg(x) def
= Bc(x, g(x)). Let L0(X,Γg)

denote the set of Borel a : X → X so that a(x) ∈ Γg(x) for µ-almost all x ∈ X . Let Aµ(r) def
=
⋃
g∈Rµ(r) L0(X,Γg).

Clearly for every a ∈ Aµ(r) there is

r ≥
∫
c(x, a(x)) dµ =

∫
cd(Id, a)#µ,



which shows {a#µ | a ∈ Aµ(r)} ⊆ Bc(µ, r). Then if there is equality in (B.3), we have

sup
g∈Rµ(r)

∫
sup

x′∈Γg(x)

f(x) = sup
g∈Rµ(r)

sup
a∈L0(X,Γg)

∫
f da#µ (B.3)

= sup
a∈Aµ(r)

∫
f da#µ

≤ sup
ν∈Bc(µ,r)

∫
f dν,

which proves the inequality.

To complete the proof we will now justify the exchange of integration and supremum in (B.3). The set L0(X,Γg) is
trivially decomposable (Giner, 2009, see the remark at the bottom of p. 323, Def. 2.1). By assumption f is Borel measurable.
Since f is measurable, any decomposable subset of L0(X,X) is f -decomposable (Giner, 2009, Prop. 5.3) and f -linked
(Giner, 2009, Prop. 3.7 (i)). Giner (2009, Thm. 6.1 (c)) therefore allows us to exchange integration and supremum in (B.3).

Equality: Under the additional assumptions there exists ν? ∈ P(Ω) with (via Blanchet & Murthy, 2019, Prop. 2)∫
f dν? = sup

ν∈Bc(µ,r)

∫
f dν.

The compact subset where µ is concentrated and non-atomic is a Polish space with the Banach metric. Therefore using
Lemma 7 there is a sequence (fi)i∈N ⊆ Aµ(r) so that

lim
i∈N

∫
fi dµ =

∫
f dν? = sup

ν∈Bc(µ,r)

∫
f dν,

proving the desired equality.

C. Proofs and additional results on the Lipschitz regularisation of kernel methods
C.1. Random sampling requires exponential cost

The most natural idea of leveraging the samples is to add the constraints ‖g(ws)‖ ≤ L. For Gaussian kernel, we may
sample from N (0, σ2I) while for inverse kernel we may sample uniformly from B. This leads to our training objective:

min
f∈H

1

l

l∑
i=1

loss(f(xi), yi) +
λ

2
‖f‖2H s.t. ‖g(ws)‖ ≤ L, ∀s ∈ [n].

Unfortunately, this method may require O( 1
εd

) samples to guarantee
∑
j ‖gj‖

2
H ≤ L

2 + ε w.h.p. This is illustrated in
Figure 8, where k is the polynomial kernel with degree 2 whose domain X is the unit ball B, and f(x) = 1

2 (v>x)2. We
seek to test whether the gradient g(x) = (v>x)v has norm bounded by 1 for all x ∈ B, and we are only allowed to test
whether ‖g(ws)‖ ≤ 1 for samples ws that are drawn uniformly at random from B. This is equivalent to testing ‖v‖ ≤ 1,
and to achieve it at least one ws must be from the ε ball around v/ ‖v‖ or −v/ ‖v‖, intersected with B. But the probability
of hitting such a region decays exponentially with the dimensionality d.

The key insight from the above counter-example is that in fact ‖v‖ can be easily computed by
∑d
s=1(v>w̃s)

2, where
{w̃s}ds=1 is the orthonormal basis computed from the Gram–Schmidt process on d random samples {ws}ds=1 (n = d).
With probability 1, n samples drawn uniformly from B must span Rd as long as n ≥ d, i.e., rank(W ) = d where
W = (w1, . . . , wn). The Gram–Schmidt process can be effectively represented using a pseudo-inverse matrix (allowing
n > d) as

‖v‖2 =
∥∥∥(W>W )−1/2W>v

∥∥∥
2
,

where (W>W )−1/2 is the square root of the pseudo-inverse of W>W . This is exactly the intuition underlying the Nyström
approximation that we will leveraged.
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Figure 8: Suppose we use a polynomial kernel with degree 2, and f(x) = 1
2 (v>x)2 for x ∈ B. Then g(x) = (v>x)v. If

we want to test whether supx∈B ‖g(x)‖2 ≤ 1 by evaluating ‖g(w)‖2 on w that is randomly sampled from B such as w1

and w2, we must sample within the ε balls around the intersection of B and the ray along v (both directions). See the blue
shaded area. The problem, however, becomes trivial if we use the orthonormal basis {w̃1, w̃2}.

C.2. Spectrum of Kernels

Let k be a continuous kernel on a compact metric space X , and µ be a finite Borel measure on X with supp[µ] = X .
We will re-describe the following spectral properties in a more general way than in §4. Recall Steinwart & Christmann
(2008, §4) that the integral operator for k and µ is defined by

Tk = Ik ◦ Sk : L2(X,µ)→ L2(X,µ)

where Sk : L2(X,µ)→ C(X), (Skf)(x) =

∫
k(x, y)f(y)dµ(y), f ∈ L2(X,µ),

Ik : C(X) ↪→ L2(X,µ), inclusion operator.

By the spectral theorem, if Tk is compact, then there is an at most countable orthonormal set (ONS) {ẽj}j∈J of L2(X,µ)
and {λj}j∈J with λ1 ≥ λ2 ≥ . . . > 0 such that

Tf =
∑
j∈J

λj 〈f, ẽj〉L2(X,µ) ẽj , f ∈ L2(X,µ).

In particular, we have 〈ẽi, ẽj〉L2(X,µ) = δij (i.e., equals 1 if i = j, and 0 otherwise), and T ẽi = λiẽi. Since ẽj is an
equivalent class instead of a single function, we assign a set of continuous functions ej = λ−1

j Skẽj ∈ C(X), which clearly
satisfies

〈ei, ej〉L2(X,µ) = δij , T ej = λjej .

We will call λj and ej as eigenvalues and eigenfunctions respectively, and {ej}j∈J clearly forms an ONS. By Mercer’s
theorem,

k(x, y) =
∑
j∈J

λjej(x)ej(y), (C.1)

and all functions inH can be represented by
∑
j∈J ajej where {aj/

√
λj} ∈ `2(J). The inner product inH is equivalent

to
〈∑

j∈J ajej ,
∑
j∈J bjej

〉
H

=
∑
j∈J ajbj/λj . Therefore it is easy to see that

ϕj
def
=
√
λjej , j ∈ J



is an orthonormal basis ofH, with Moreover, for all f ∈ H with f =
∑
j∈J ajej , we have 〈f, ej〉H = aj/λj , 〈f, ϕj〉H =

aj/
√
λj , and

f =
∑
j

〈f, ϕj〉H ϕj =
∑
j

√
λj 〈f, ej〉H ϕj =

∑
j

λj 〈f, ej〉H ej .

Most kernels used in machine learning are infinite dimensional, i.e., J = N. For convenience, we define Φm
def
= (ϕ1, . . . , ϕm)

and Λm = diag(λ1, . . . , λm).

C.3. General sample complexity and assumptions on the product kernel

In this section, we first consider kernels k0 with scalar input, i.e., X0 ⊆ R. Assume there is a measure µ0 on X0. This
will serve as the basis for the more general product kernels in the form of k(x, y) =

∏d
j=1 k0(xj , yj) defined over Xd

0 .

With Assumptions 1 and 2, we now state the formal version of Theorem 3 by first providing the sample complexity for
approximating the partial derivatives. In the next subsection, we will examine how three different kernels satisfy/unsatisfy
the Assumptions 1 and 2, and what the value of Nε is. For each case, we will specify µ0 on X0, and the measure on Xd

0 is
trivially µ = µd0.

Theorem 5. Suppose {ws}ns=1 are drawn iid from µ0 on X0, where µ0 is the uniform distribution on [−v/2, v/2] for
periodic kernels or periodized Gaussian kernels. Let Z def

= (k0(w1, ·), k0(w2, ·), . . . , k0(wn, ·)), and g1 = 1
l

∑l
a=1 γag

a
1 :

Xd
0 → R, where ‖γ‖∞ ≤ c1 and

ga1 (y) = ∂0,1k(xa, y) = ha1(y1)

d∏
j=2

k0(xaj , yj) with ha1(·) def
= ∂0,1k0(xa1 , ·).

Given ε ∈ (0, 1], let Φm = (ϕ1, . . . ϕm) where m = Nε. Then with probability 1− δ, the following holds when the sample
size n = max(Nε,

5
3ε2NεQ

2
ε log 2Nε

δ ):

‖g1‖2H ≤
1

l2
γ>K1γ + 3c1

(
1 + 2

√
NεMε

)
ε, (C.2)

where (K1)a,b = (ha1)>Z(Z>Z)−1Z>hb1

d∏
j=2

k0(xaj , x
b
j).

Then we obtain the formal statement of sample complexity, as stated in the following corollary, by combining all the
coordinates from Theorem 5.

Corollary 2. Suppose all coordinates share the same set of samples {ws}ns=1. Applying the results in (C.2) for coordinates
from 1 to d and using the union bound, we have that with sample size n = max(Nε,

5
3ε2NεQ

2
ε log 2Nε

δ ), the following holds
with probability 1− dδ,

λmax(G>G) ≤ λmax(P̃G) + 3c1

(
1 + 2

√
NεMε

)
ε. (C.3)

Equivalently, ifNε,Mε andQε are constants or poly-log terms of ε which we treat as constant, then to ensure λmax(G>G) ≤
λmax(P̃G) + ε with probability 1− δ, the sample size needs to be

n =
15

ε2
c21

(
1 + 2

√
NεMε

)2

NεQ
2
ε log

2dNε
δ

.

Remark 4. The first term on the right-hand side of (C.3) is explicitly upper bounded by L2 in our training objective. In
the case of Theorem 6, the values of Qε, Nε, and Mε lead to a Õ( 1

ε2 ) sample complexity. If we further zoom into the
dependence on the period v, then note that Nε is almost a universal constant while Mε =

√
2π
v (Nε − 1). So overall, n

depends on v by 1
v2 . This is not surprising because smaller period means higher frequency, hence more samples are needed.

Remark 5. Corollary 2 postulates that all coordinates share the same set of samples {ws}ns=1. When coordinates differ in
their domains, we can draw different sets of samples for them. The sample complexity hence grows by d times as we only
use a weak union bound. More refined analysis could save us a factor of d as these sets of samples are independent of each
other.



Proof of Theorem 5. Let ε′ def
= (1 + 2

√
mMε)ε. Since

〈
ga1 , g

b
1

〉
H =

〈
ha1 , h

b
1

〉
H0

d∏
j=2

k0(xaj , x
b
j)

and
∣∣k0(xaj , x

b
j)
∣∣ ≤ 1, it suffices to show that for all a, b ∈ [l],∣∣∣〈ha1 , hb1〉H0

− (ha1)>Z(Z>Z)−1Z>hb1

∣∣∣ ≤ 3ε′.

Towards this end, it is sufficient to show that for any h(·) = θx∂
0,1k0(x, ·) + θy∂

0,1k0(y, ·) where x, y ∈ X0 and
|θx|+ |θy| ≤ 1, we have ∣∣∣h>Z(Z>Z)−1Z>h− ‖h‖2H0

∣∣∣ ≤ ε′. (C.4)

This is because, if so, then∣∣∣〈ha1 , hb1〉H0
− (ha1)>Z(Z>Z)−1Z>hb1

∣∣∣
=
∣∣∣1
2

(∥∥ha1 + hb1
∥∥2

H0
− ‖ha1‖

2
H0
−
∥∥hb1∥∥2

H0

)
− 1

2

[
(ha1 + hb1)>Z(Z>Z)−1Z>(ha1 + hb1)

− (ha1)>Z(Z>Z)−1Z>ha1 − (hb1)>Z(Z>Z)−1Z>hb1

]∣∣∣
≤ 1

2
(4ε′ + ε′ + ε′)

= 3ε′.

The rest of the proof is devoted to (C.4). Since n ≥ m, the SVD of Λ−1/2
m Φ>mZ can be written as UΣV >, where

UU> = U>U = V >V = Im (m-by-m identity matrix), and Σ = diag(σ1, . . . , σm). Define

α = n−1/2V U>Λ−1/2
m Φ>mh.

Consider the optimization problem o(α) def
= 1

2 ‖Zα− h‖
2
H0

. It is easy to see that its minimal objective value is o∗ def
=

1
2 ‖h‖

2
H0
− 1

2h
>Z(Z>Z)−1Z>h. So

0 ≤ 2o∗ = ‖h‖2H0
− h>Z(Z>Z)−1Z>h ≤ 2o(α).

Therefore to prove (C.4), it suffices to bound o(α) = ‖Zα− h‖H0
. Since

√
nΦmΛ

1/2UV >α = ΦmΦ
>
mh, we can

decompose ‖Zα− h‖H0
by

‖Zα− h‖H0
≤
∥∥(Z − ΦmΦ>mZ)α

∥∥
H0

+
∥∥∥(ΦmΦ

>
mZ −

√
nΦmΛ

1/2
m UV >)α

∥∥∥
H0

+
∥∥ΦmΦ>mh− h∥∥H0

.

(C.5)

The last term
∥∥ΦmΦ>mh− h∥∥H0

is clearly below ε because by Assumption 1 and m = Nε∥∥ΦmΦ>mh− h∥∥H0
≤ |θx|

∥∥ΦmΦ>m∂0,1k0(x, ·)− ∂0,1k0(x, ·)
∥∥
H0

+ |θy|
∥∥ΦmΦ>m∂0,1k0(y, ·)− ∂0,1k0(y, ·)

∥∥
H0

≤ (|θx|+ |θy|)ε
≤ ε.



We will next bound the first two terms on the right-hand side of (C.5).

(i) By Assumption 1,
∥∥k0(ws, ·)− ΦmΦ>mk0(ws, ·)

∥∥
H0
≤ ε, hence∥∥(Z − ΦmΦ>mZ)α
∥∥
H0
≤ ε
√
n ‖α‖2 .

To bound ‖α‖2, note all singular values of V U> are 1, and so Assumption 2 implies that for all i ∈ [m],∣∣∣λ−1/2
j 〈ϕj , h〉H0

∣∣∣ =
∣∣∣〈ej , h〉H0

∣∣∣
=
∣∣∣〈ej , θx∂0,1k0(x, ·) + θy∂

0,1k0(y, ·)
〉
H0

∣∣∣
≤ sup
x∈X

∣∣∣〈ej , ∂0,1k(x, ·)
〉
H0

∣∣∣
≤Mε. (C.6)

As a result, ∥∥(Z − ΦmΦ>mZ)αj
∥∥
H0
≤ εn1/2 · n−1/2

∥∥∥Λ−1/2
m Φ>mh

∥∥∥ ≤ ε√mMε.

(ii) We first consider the concentration of the matrix

R def
=

1

n
Λ−1/2
m Φ>mZZ

>ΦmΛ
−1/2
m ∈ Rm×m.

Clearly,

E
{ws}

[Rij ] = E
{ws}

[
1

n

n∑
s=1

ei(ws)ej(ws)

]
=

∫
ei(x)ej(x) dµ(x) = δij .

By matrix Bernstein theorem (Tropp, 2015, Theorem 1.6.2), we have

Pr
(
‖R− Im‖sp ≤ ε

)
≥ 1− δ

when n ≥ O(.). This is because

‖(e1(x), . . . , em(x))‖2 ≤ mQ2
ε ,

∥∥E{ws}[RR>]
∥∥
sp
≤ mQ2

ε/n,

and

Pr
(
‖R− Im‖sp ≤ ε

)
≥ 1− 2m exp

(
−ε2

mQ2
ε

n

(
1 + 2

3ε
))

≥ 1− 2m exp

(
−ε2

5mQ2
ε

3n

)
≥ 1− δ,

where the last step is by the definition of n. SinceR = 1
nUΣ

2U>, this means with probability 1−δ,
∥∥ 1
nUΣ

2U> − Im
∥∥
sp
≤

ε. So for all i ∈ [m], ∣∣∣∣ 1nσ2
i − 1

∣∣∣∣ ≤ ε =⇒
∣∣∣∣ 1√
n
σi − 1

∣∣∣∣ < ε

∣∣∣∣ 1√
n
σi + 1

∣∣∣∣−1

≤ ε. (C.7)



Moreover, λ1 ≤ 1 since k0(x, x) = 1. It then follows that∥∥∥(ΦmΦ
>
mZ −

√
nΦmΛ

1/2
m UV >)α

∥∥∥
H0

=

∥∥∥∥ΦmΛ1/2
m UΣV >

1√
n
V U>Λ−1/2

m Φ>mh−
√
nΦmΛ

1/2
m UV >

1√
n
V U>Λ−1/2

m Φ>mh

∥∥∥∥
H0

=

∥∥∥∥Λ1/2
m U

(
1√
n
Σ − Im

)
U>Λ−1/2

m Φ>mh

∥∥∥∥
2

(because Φ>mΦm = Im)

≤
√
λ1 max

i∈[m]

∣∣∣∣ 1√
n
σi − 1

∣∣∣∣ ∥∥∥Λ−1/2
m Φ>mh

∥∥∥
2

≤ε
√
mMε (by (C.7), (C.6), and λ1 ≤ 1).

Combining (i) and (ii), we arrive at the desired bound in (C.2).

Proof of Corollary 2. Since P̃G approximates G>G only on the diagonal, P̃G−G>G is a diagonal matrix which we denote
as diag(δ1, . . . , δd). Let u ∈ Rd be the leading eigenvector of P̃G. Then

λmax(P̃G)− λmax(G>G) ≤ u>P̃Gu− u>G>Gu = u>(P̃G −G>G)u =
∑
j

δju
2
j

(by (C.2)) ≤ 3c1

(
1 + 2

√
NεMε

)
ε.

The proof is completed by applying the union bound and rewriting the results.

C.4. Case 1: Checking Assumptions 1 and 2 on periodic kernels

Periodic kernels on X0
def
= R are translation invariant, and can be written as k0(x, y) = κ(x− y) where κ : R→ R is a)

periodic with period v; b) even, with κ(−t) = κ(t); and c) normalized with κ(0) = 1. A general treatment was given by
(Williamson et al., 2001), and an example was given by David MacKay in (MacKay, 1998):

k0(x, y) = exp

(
− 1

2σ2
sin
(π
v

(x− y)
)2
)
. (C.8)

We define µ0 to be a uniform distribution on [−v2 ,
v
2 ], and let ω0 = 2π/v.

Since κ is symmetric, we can simplify the Fourier transform of κ(t)δv(t), where δv(t) = 1 if t ∈ [−v/2, v/2], and 0
otherwise:

F (ω) =
1√
2π

∫ v/2

−v/2
κ(t) cos(ωt) dt.

It is now easy to observe that thanks to periodicity and symmetry of κ, for all j ∈ Z,

1

v

∫ v/2

−v/2
k0(x, y) cos(jω0y) dy =

1

v

∫ v/2

−v/2
κ(x− y) cos(jω0y) dy

=
1

v

∫ x+v/2

x−v/2
κ(z) cos(jω0(x− z)) dz (note cos(jω0(x− z)) also has period v)

=
1

v

∫ v/2

−v/2
κ(z)[cos(jω0x) cos(jω0z) + sin(jω0x) sin(jω0z)) dz (by periodicity)

=
1

v
cos(jω0x)

∫ v/2

−v/2
κ(z) cos(jω0z) dz (by symmetry of κ)

=

√
2π

v
F (jω0) cos(jω0x).



And similarly,

1

v

∫ v/2

−v/2
k0(x, y) sin(jω0y) dy =

√
2π

v
F (jω0) sin(jω0x).

Therefore the eigenfunctions of the integral operator Tk are

e0(x) = 1, ej(x) def
=
√

2 cos(jω0x), e−j(x) def
=
√

2 sin(jω0x) (j ≥ 1)

and the eigenvalues are λj =
√

2π
v F (jω0) for all j ∈ Z with λ−j = λj . An important property our proof will rely on is that

e′j(x) = −jω0e−j(x), for all j ∈ Z.

Applying Mercer’s theorem in (C.1) and noting κ(0) = 1, we derive
∑
j∈Z λj = 1.

Checking the Assumptions 1 and 2. The following theorem summarizes the assumptions and conclusions regarding the
satisfaction of Assumptions 1 and 2. Again we focus on the case of X ⊆ R.

Theorem 6. Suppose the periodic kernel with period v has eigenvalues λj that satisfies

λj(1 + j)2 max(1, j2)(1 + δ(j ≥ 1)) ≤ c6 · c−j4 , for all j ≥ 0, (C.9)

where c4 > 1 and c6 > 0 are universal constants. Then Assumption 1 holds with

Nε = 1 + 2 bnεc , where nε
def
= logc4

(
2.1c6
ε2

max

(
1,

v2

4π2

))
. (C.10)

In addition, Assumption 2 holds with Qε =
√

2 and Mε = 2
√

2π
v bnεc =

√
2π
v (Nε − 1).

For example, if we set v = π and σ2 = 1/2 in the kernel in (C.8), elementary calculation shows that the condition (C.9)
is satisfied with c4 = 2 and c6 = 1.6.

Proof of Theorem 6. First we show that h(x) def
= ∂0,1k0(x0, x) is in H0 for all x0 ∈ X0. Since k0(x0, x) =∑

j∈Z λjej(x0)ej(x), we derive

h(x) =
∑
j∈Z

λjej(x0)∂1ej(x) =
∑
j∈Z

λjej(x0)(−jω0e−j(x)) = ω0

∑
j∈Z

λjje−j(x0)ej(x). (C.11)

h(x) is inH if the sequence λjje−j(x0)/
√
λj is square summable. This can be easily seen by (C.9):

ω−2
0 ‖h‖

2
H0

=
∑
j

λjj
2e2
−j(x0) =

∑
j∈Z

λjj
2e2
−j(x0)

=
∑
j∈Z

λjj
2e2
−j(x0) = λ0 + 2

∑
j≥1

j2λj ≤
2c4c5
c4 − 1

.

Finally to derive Nε, we reuse the orthonormal decomposition of h(x) in (C.11). For a given set of j values A where
A ⊆ Z, we denote as ΦA the “matrix” whose columns enumerate the ϕj over j ∈ A. Let us choose

A def
=

{
j : λj max(1, j2)(1 + j2)(1 + δ(j ≥ 1)) ≥ min(1, w−2

0 )
ε2

2.1

}
.



If j ∈ A, then −j ∈ A. LettingN0 = {0, 1, 2, . . .}, we note
∑
j∈N0

1
1+j2 ≤ 2.1. So∥∥h− ΦAΦ>Ah∥∥2

H0
= w2

0

∑
j∈Z\A

λjj
2e2
−j(x0)

= w2
0

∑
j∈N0\A

λjj
2
[
(e2
j (x) + e2

−j(x))δ(j ≥ 1) + δ(j = 0)
]

= w2
0

∑
j∈N0\A

λjj
2(1 + δ(j ≥ 1))

= w2
0

∑
j∈N0\A

{
λjj

2(1 + j2)(1 + δ(j ≥ 1))
1

1 + j2

}

≤ ε2

2.1

∑
j∈N0

1

1 + j2
=

ε2

2.1

∑
j∈N0

1

1 + j2
≤ ε2.

Similarly, we can bound
∥∥k0(x0, ·)− ΦAΦ>Ak0(x0, ·)

∥∥
H0

by∥∥k0(x0, ·)− ΦAΦ>Ak0(x0, ·)
∥∥2

H0

=
∑
j∈Z\A

λje
2
j (x0) ≤

∑
j∈Z\A

λj max(1, j2)e2
j (x0)

=
∑

j∈N0\A

λαmax(1, j2)[
(
e2
j (x) + e2

−j(x)
)
δ(j ≥ 1) + δ(j = 0)]

=
∑

j∈N0\A

{
λj max(1, j2)(1 + j2)(1 + δ(j ≥ 1))

1

1 + j2

}
≤ 1

2.1
ε2
∑
j∈N0

1

1 + j2

≤ ε2.

To upper bound the cardinality of A, we consider the conditions for j /∈ A. Thanks to the conditions in (C.9), we know
that any j satisfying the following relationship cannot be in A:

c6 · c−|j|4 < min(1, w−2
0 )

ε2

2.1
⇐⇒ c

−|j|
4 <

1

2.1 · c6
min

(
1,

4π2

v2

)
ε2.

So A ⊆ {j : |j| ≤ nε}, which yields the conclusion (C.10). Finally Qε ≤
√

2, and to bound Mε, we simply reuse (C.11).
For any j with |j| ≤ nε, ∣∣〈h, ej〉H∣∣ ≤ ω0 |je−j(x0)| ≤ 2π

v

√
2 bnεc =

√
2π

v
(Nε − 1).

C.5. Case 2: Checking Assumptions 1 and 2 on Gaussian kernels

Gaussian kernels k(x, y) = exp(−‖x− y‖2 /(2σ2)) are obviously product kernels with k0(x1, y1) = κ(x1 − y1) =
exp(−(x1 − y1)2/(2σ2)). It is also translation invariant. The spectrum of Gaussian kernel k0 on R is known; see, e.g.,
Chapter 4.3.1 of (Rasmussen & Williams, 2006) and Section 4 of (Zhu et al., 1998). Let µ be a Gaussian distribution
N (0, σ2). Setting ε2 = α2 = (2σ2)−1 in Eq 12 and 13 of (E Fasshauer, 2011), the eigenvalue and eigenfunctions are (for
j ≥ 0):

λj = c
−j−1/2
0 , where c0 =

1

2
(3 +

√
5)

ej(x) =
51/8

2j/2
exp

(
−
√

5− 1

4

x2

σ2

)
1√
j!
Hj

(
4
√

1.25
x

σ

)
,



where Hj is the Hermite polynomial of order j.

Although the eigenvalues decay exponentially fast, the eigenfunctions are not uniformly bounded in the L∞ sense.
Although the latter can be patched if we restrict x to a bounded set, the above closed-form of eigen-pairs will no longer hold,
and the analysis will become rather challenging.

To resolve this issue, we resort to the period-ization technique proposed by (Williamson et al., 2001). Consider
κ(x) = exp(−x2/(2σ2)) when x ∈ [−v/2, v/2], and then extend κ to R as a periodic function with period v. Again let µ
be the uniform distribution on [−v/2, v/2]. As can be seen from the discriminant function f = 1

l

∑l
i=1 γik(xi, ·), as along

as our training and test data both lie in [−v/4, v/4], the modification of κ outside [−v/2, v/2] does not effectively make
any difference. Although the term ∂0,1k0(xa1 , w

1
1) in (10) may possibly evaluate κ outside [−v/2, v/2], it is only used for

testing the gradient norm bound of κ.

With this periodized Gaussian kernel, it is easy to see that Qε =
√

2. If we standardize by σ = 1 and set v = 5π as an
example, it is not hard to see that (C.9) holds with c4 = 1.25 and c6 = 50. The expressions of Nε and Mε then follow from
Theorem 6 directly.

C.6. Case 3: Checking Assumptions 1 and 2 on non-product kernels

The above analysis has been restricted to product kernels. But in practice, there are many useful kernels that are
not decomposable. A prominent example is the inverse kernel: k(x, y) = (2 − x>y)−1. In general, it is extremely
challenging to analyze eigenfunctions, which are commonly not bounded (Zhou, 2002; Lafferty & Lebanon, 2005), i.e.,
supi→∞ supx |ei(x)| = ∞. The opposite was (incorrectly) claimed in Theorem 4 of Williamson et al. (2001) by citing
an incorrect result in König (1986, p. 145), which was later corrected by Zhou (2002) and Steve Smale. Indeed, uniform
boundedness is not known even for Gaussian kernels with uniform distribution on [0, 1]d (Lin et al., 2017), and Minh et al.
(2006, Theorem 5) showed the unboundedness for Gaussian kernels with uniform distribution on the unit sphere when
d ≥ 3.

Here we only present the limited results that we have obtained on the eigenvalues of the integral operator of inverse
kernels with a uniform distribution on the unit ball. The analysis of eigenfunctions is left for future work. Specifically, in
order to drive the eigenvalue λi below ε, i must be at least ddlog2

1
ε e+1. This is a quasi-quadratic bound if we view d and 1/ε

as two large variables.

It is quite straightforward to give an explicit characterization of the functions in H. The Taylor expansion of z−1 at
z = 2 is 1

2

∑∞
i=0(− 1

2 )ixi. Using the standard multi-index notation with α = (α1, . . . , αd) ∈ (N ∪ {0})d, |α| =
∑d
i=1 αi,

and xα = xα1
1 . . . xαdd , we derive

k(x,y) =
1

2− x>y

=
1

2

∞∑
k=0

(
−1

2

)k
(−x>y)k

=

∞∑
k=0

2−k−1
∑

α:|α|=k

Ckαx
αyα

=
∑
α

2−|α|−1C |α|α xαyα,

where Ckα = k!∏d
i=1 αi!

. So we can read off the feature mapping for x as

φ(x) = {wαxα : α}, where wα = 2−
1
2 (|α|+1)C |α|α ,

and the functions inH are

H =

{
f =

∑
α

θαwαx
α : ‖θ‖`2 <∞

}
. (C.12)

Note this is just an intuitive “derivation” while a rigorous proof for (C.12) can be constructed in analogy to that of
Theorem 1 in Minh (2010).



C.7. Background of eigenvalues of a kernel

We now use (C.12) to find the eigenvalues of inverse kernel.

Now specializing to our inverse kernel case, let us endow a uniform distribution over the unit ball B: p(x) = V −1
d where

Vd = πd/2Γ (d2 + 1)−1 is the volume of B, with Γ being the Gamma function. Then λ is an eigenvalue of the kernel if there
exists f =

∑
α θαwαx

α such that
∫
y∈B k(x,y)p(y)f(y) dy = λf(x). This translates to

V −1
d

∫
y∈B

∑
α

w2
αx

αyα
∑
β

θβwβy
β dy = λ

∑
α

θαwαx
α, ∀ x ∈ B.

Since B is an open set, that means

wα
∑
β

wβqα+βθβ = λθα, ∀ α,

where

qα = V −1
d

∫
y∈B

yα dy =


2
∏d
i=1 Γ

(
1
2αi+

1
2

)
Vd·(|α|+d)·Γ

(
1
2 |α|+

d
2

) if all αi are even

0 otherwise

.

In other words, λ is the eigenvalue of the infinite dimensional matrix Q = [wαwβqα+β]α,β,

C.8. Bounding the eigenvalues

To bound the eigenvalues of Q, we resort to the majorization results in matrix analysis. Since k is a PSD kernel, all its
eigenvalues are nonnegative, and suppose they are sorted decreasingly as λ1 ≥ λ2 ≥ . . .. Let the row corresponding to α
have `2 norm rα, and let them be sorted as r[1] ≥ r[2] ≥ . . .. Then by (Schneider, 1953; Shi & Wang, 1965), we have

n∏
i=1

λi ≤
n∏
i=1

r[i], ∀ n ≥ 1.

So our strategy is to bound rα first. To start with, we decompose qα+β into qα and qβ via Cauchy-Schwartz:

q2
α+β = V −2

d

(∫
y∈B

yα+β dy

)2

≤ V −2
d

∫
y∈B

y2α dy ·
∫
y∈B

y2β dy = q2αq2β.

To simplify notation, we consider without loss of generality that d is an even number, and denote the integer b def
= d/2. Now

Vd = πb/b!. Noting that there are
(
k + d− 1

k

)
values of β such that |β| = k, we can proceed by (fix below by changing(

k + d
k

)
into

(
k + d− 1

k

)
, or no need because the former upper bounds the latter)

r2
α = w2

α

∑
β

w2
βq

2
α+β ≤ w2

αq2α

∑
β

w2
βq2β = w2

αq2α

∞∑
k=0

2−k−1
∑

β:|β|=k

Ckβq2β

≤ w2
αq2α

∞∑
k=0

2−k−1

(
k + d
d

)
max
|β|=k

Ckβq2β

= w2
αq2α

∞∑
k=0

2−k−1

(
k + d
d

)
max
|β|=k

k!∏d
i=1 βi!

·
2
∏d
i=1 Γ (βi + 1

2 )

Vd · (2k + d) · Γ (k + d
2 )

= w2
αq2αV

−1
d

∞∑
k=0

2−k
(
k + d
d

)
k!

(2k + d)Γ (k + d
2 )
· max
|β|=k

d∏
i=1

Γ (βi + 1
2 )

βi!

< w2
αq2α ·

b!

πbd!
·
∞∑
k=0

2−k−1 (k + d)!

(k + b)!
,



since Γ (βi + 1
2 ) < Γ (βi + 1) = βi!. The summation over k can be bounded by

∞∑
k=0

2−k−1 (k + d)!

(k + b)!
=

1

2
b!

(
2d +

(
d
b

))
≤ 1

2

(
b!2d + 2b

)
≤ b!2d,

where the first equality used the identity
∑∞
k=1 2−k

(
d+ k
b

)
= 2d. Letting l def

= |α|, we can continue by

r2
α < w2

αq2α ·
b!

πbd!
b!2d = 2−l−1 l!∏d

i=1 αi!

2
∏d
i=1 Γ

(
αi + 1

2

)
Vd · (2l + d) · Γ (l + b)

(b!)22d

πbd!

≤ 2−l+dπ−2b l!(b!)3

d!(l + b− 1)!(2l + d)
(since Γ (αi + 1

2 ) < Γ (αi + 1) = αi!)

≤ 2−l+b−1π−2b

(
l + b
l

)−1

(since
(b!)2

d!
≤ 2−b).

This bound depends on α, not directly on α. Letting nl =

(
l + d− 1

l

)
and NL =

∑L
l=0 nl =

(
d+ L
L

)
, it

follows that

L∑
l=0

lnl =

L∑
l=1

l(l + d)!

d! · l!
= (d+ 1)

L∑
l=1

(l + d)!

(d+ 1)!(l − 1)!

=(d+ 1)

L∑
l=1

(
l + d
d+ 1

)
= (d+ 1)

(
L+ d+ 1
d+ 2

)
.

Now we can bound λNL by

λNLNL ≤
NL∏
i=1

λi ≤
L∏
l=0

(
2−l+b−1π−2b

(
l + b
l

)−1
)nl

=⇒ log λNL ≤ N−1
L

L∑
l=0

nl

(
−(l − b+ 1) log 2− 2b log π − log

(
l + b
l

))

≤ −N−1
L · log 2 ·

L∑
l=0

lnl

since log 2 < 2 log π as the coefficients of b

= −
(
d+ L+ 1
d+ 1

)−1

· log 2 · (d+ 1)

(
d+ L+ 1
d+ 2

)
= −d+ 1

d+ 2
L log 2

≈ −L log 2

=⇒ λNL ≤ 2−L.

This means that the eigenvalue λi ≤ ε provided that i ≥ NL where L =
⌈
log2

1
ε

⌉
. Since NL ≤ dL+1, that means it

suffices to choose i such that

i ≥ ddlog2
1
ε e+1.

This is a quasi-polynomial bound. It seems tight because even in Gaussian RBF kernel, the eigenvalues follow the order
of λα = O(c−|α|) for some c > 1 (Fasshauer & McCourt, 2012, p.A742).



D. Algorithm for training a Lipschitz binary SVMs
The pseudo-code of training binary SVMs by enforcing Lipschitz constant is given in Algorithm 1.

Finding the exact arg maxx∈X
∥∥∇f (i)(x)

∥∥ is intractable, so we used a local maximum found by L-BFGS with 10
random initialisations as the Lipschitz constant of the current solution f (i) (L(i) in step 6). The solution found by L-BFGS
is also used as the new greedy point added in step 5b.

Furthermore, the kernel expansion f(x) = 1
l

∑l
a=1 γak(xa, ·) can lead to high cost in optimisation (our experiment

used l = 54000), and therefore we used another Nyström approximation for the kernels. We randomly sampled 1000
landmark points, and based on them we computed the Nyström approximation for each k(xa, ·), denoted as φ̃(xa) ∈ R1000.
Then f(x) can be written as 1

l

∑l
a=1 γaφ̃(xa)>φ̃(x). Defining w = 1

l

∑l
a=1 γaφ̃(xa), we can equivalently optimise over

w, and the RKHS norm bound on f can be equivalently imposed as the `2-norm bound on w.

To summarise, Nyström approximation is used in two different places: one for approximating the kernel function, and
one for computing ‖gj‖H either holistically or coordinate wise. For the former, we randomly sampled 1000 landmark points;
for the latter, we used greedy selection as option b in step 5 of Algorithm 1.

D.1. Detailed algorithm for multiclass classification

It is easy to extend Algorithm 1 to multiclass. For example, with MNIST dataset, we solve the following optimisation
problem to defend `2 attacks:

minimise
γ1,...,γ10

n∑
i=1

`(F (x),y), where F def
=

[
n∑
i=1

γ1
i k(xi, ·); . . . ;

n∑
i=1

γ10
i k(xi, ·)

]

subject to sup
‖φ‖H≤1

λmax

(
10∑
c=1

G>c φφ
>Gc

)
≈ sup
‖v‖2≤1

λmax

(
10∑
c=1

G̃>c vv
>G̃c

)
≤ L2,

where `(F (x),y) is the Crammer & Singer loss, and the constraint is derived from (11) by using its Nyström approximation
G̃c = [g̃c1, . . . , g̃

c
d], which depends on {γ1, . . . ,γ10} linearly. Note that the constraint itself is a supremum problem:

sup
‖v‖2≤1

λmax

(
10∑
c=1

G̃>c vv
>G̃c

)
= sup
‖v‖2≤1,‖u‖2≤1

u>

(
10∑
c=1

G̃>c vv
>G̃c

)
u.

Since there is only one constraint, interior point algorithm is efficient. It requires the gradient of the constraint, which
can be computed by Danskin’s theorem. In particular, we alternates between updating v and u, until they converge to the
optimal v∗ and u∗. Finally, the derivative of the constraint with respect to {γc} can be calculated from

∑10
c=1(u>∗ G̃

>
c v∗)

2,
as a function of {γc}.

To defend∞-norm attacks, we need to enforce the∞-norm of the Jacobian matrix:

sup
x∈X

∥∥∥[g1(x), . . . , g10(x)
]>∥∥∥

∞
= sup
x∈X

max
1≤c≤10

‖gc(x)‖1

= max
1≤c≤10

sup
x∈X
‖gc(x)‖1

≤ max
1≤c≤10

sup
‖φ‖2≤1,‖u‖∞≤1

u>G̃>c φ,

where the last inequality is due to

sup
x∈X
‖g(x)‖1 = sup

x∈X
sup
‖u‖∞≤1

u>g(x) ≤ sup
‖v‖2≤1,‖u‖∞≤1

u>G̃>v.

Therefore, the overall optimisation problem for defense against∞-norm attacks is

minimise
γ1,...,γ10

n∑
i=1

`(F (x),y),

subject to ∀c∈[10] : sup
‖v‖2≤1,‖u‖∞≤1

u>G̃>c v ≤ L
(D.1)



For each c, we alternatively update v and u in (D.1), converging to the optimal v∗ and u∗. Finally, the derivative of
sup‖v‖2≤1,‖u‖∞≤1 u

>G̃>c v with respect to γc can be calculated from u>∗ G̃
>
c v∗, as a function of γc.

E. More experiments
All code and data are available anonymously, with no tracing, at

https://github.com/learndeep2019/DRobust.

E.1. More results on Cross-Entropy attacks
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Figure 9: Test accuracy under PGD attacks on cross-entropy approximation with `2 norm bound
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(c) CIFAR10

Figure 10: Test accuracy under PGD attacks on cross-entropy approximation with∞-norm bound

E.2. Visualization of attacks

In order to verify that the robustness of Gauss-Lip is not due to obfuscated gradient, we randomly sampled 10 images
from MNIST, and ran targeted PGD for 100 steps with cross-entropy objective and the `2 norm upper bounded by 8. For
example, in Figure 11, the row corresponding to class 4 tries to promote the likelihood of the target class 4. Naturally the
diagonal is not meaningful, hence left empty. At the end of attack, PDG turned 89 out of 90 images into the target class by
following the gradient of the defense model.

Please note that despite the commonality in using the cross-entropy objective, the setting of targeted attack in Figure 11
is not comparable to that in Figure 9, where to enable a batch test mode, an untargeted attacker was employed by increasing
the cross-entropy loss of the correct class, i.e., decreasing the likelihood of the correct class. This is a common practice.

We further ran PGD for 100 steps on C&W approximation (an untargeted attack used in Figure 5), and the resulting
images after every 10 iterations are shown in Figure 12. Here all 10 images were eventually turned into a different but
untargeted class, and the final images are very realistic.

https://github.com/learndeep2019/DRobust
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Figure 11: (a) perturbed images at the end of 100-step PGD attack using the (targeted) cross-entropy approximation. The
top row shows 10 random images, one sampled from each class. The 10 rows below correspond to the target class. (b)
classification on the perturbed image given by the trained Gauss-Lip. The left images are quite consistent with human’s
perception.



Figure 12: Perturbed images at the end of 100-step PGD attack using the (untargeted) C&W approximation. The top row
shows 10 random images, one sampled from each class. The 10 rows below show the images after 10, 20, ..., 100 steps of
PGD.


