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Abstract

In many structured prediction problems, complex relationships between variables
are compactly defined using graphical structures. The most prevalent graphical pre-
diction methods—probabilistic graphical models and large margin methods—have
their own distinct strengths but also possess significant drawbacks. Conditional
random fields (CRFs) are Fisher consistent, but they do not permit integration of
customized loss metrics into their learning process. Large-margin models, such as
structured support vector machines (SSVMs), have the flexibility to incorporate
customized loss metrics, but lack Fisher consistency guarantees. We present adver-
sarial graphical models (AGM), a distributionally robust approach for constructing
a predictor that performs robustly for a class of data distributions defined using
a graphical structure. Our approach enjoys both the flexibility of incorporating
customized loss metrics into its design as well as the statistical guarantee of Fisher
consistency. We present exact learning and prediction algorithms for AGM with
time complexity similar to existing graphical models and show the practical benefits
of our approach with experiments.

1 Introduction

Learning algorithms must consider complex relationships between variables to provide useful pre-
dictions in many structured prediction problems. These complex relationships are often represented
using graphs to convey the independence assumptions being employed. For example, chain structures
are used when modeling sequences like words and sentences [1], tree structures are popular for
natural language processing tasks that involve prediction for entities in parse trees [2–4], and lattice
structures are often used for modeling images [5]. The most prevalent methods for learning with
graphical structure are probabilistic graphical models (e.g., conditional random fields (CRFs) [6]) and
large margin models (e.g., structured support vector machines (SSVMs) [7] and maximum margin
Markov networks (M3Ns) [8]). Both types of models have unique advantages and disadvantages.
CRFs with sufficiently expressive feature representation are consistent estimators of the marginal
probabilities of variables in cliques of the graph [9], but are oblivious to the evaluative loss metric
during training. On the other hand, SSVMs directly incorporate the evaluative loss metric in the
training optimization, but lack consistency guarantees for multiclass settings [10, 11].

To address these limitations, we propose adversarial graphical models (AGM), a distributionally
robust framework for leveraging graphical structure among variables that provides both the flexibility
to incorporate customized loss metrics during training as well as the statistical guarantee of Fisher
consistency for a chosen loss metric. Our approach is based on a robust adversarial formulation
[12–14] that seeks a predictor that minimizes a loss metric in the worst-case given the statistical
summaries of the empirical distribution. We replace the empirical training data for evaluating our
predictor with an adversary that is free to choose an evaluating distribution from the set of distributions
that match the statistical summaries of empirical training data via moment matching constraints, as
defined by a graphical structure.
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Our AGM framework accepts a variety of loss metrics. A notable example that connects our
framework to previous models is the logarithmic loss metric. The conditional random field (CRF)
model [6] can be viewed as the robust predictor that best minimizes the logarithmic loss metric in
the worst case subject to moment matching constraints. In this paper, we focus on a family of loss
matrices that additively decomposes over each variable and is defined only based on the label values
of the predictor and evaluator. For examples, the additive zero-one (the Hamming loss), ordinal
regression (absolute), and cost sensitive metrics fall into this family of loss metrics. We propose
efficient exact algorithms for learning and prediction for graphical structures with low treewidth.
Finally, we experimentally demonstrate the benefits of our framework compared with the previous
models on structured prediction tasks.

2 Background and related works

2.1 Structured prediction, Fisher consistency, and graphical models

The structured prediction task is to simultaneously predict correlated label variables y ∈ Y—often
given input variables x ∈ X—to minimize a loss metric (e.g., loss : Y × Y → R) with respect
to the true label values ỹ. This is in contrast with classification methods that predict one single
variable y. Given a distribution over the multivariate labels, P (y), Fisher consistency is a desirable
characteristic that requires a learning method to produce predictions ŷ that minimize the expected loss
of this distribution, ŷ∗ ∈ argminŷ EY∼P̃ [loss(ŷ,Y)], under ideal learning conditions (i.e., trained
from the true data distribution using a fully expressive feature representation).

To reduce the complexity of the mappings from X to Y being learned, independence assumptions and
more restrictive representations are employed. In probabilistic graphical models, such as Bayesian
networks [15] and random fields [6], these assumptions are represented using a graph over the
variables. For graphs with arbitrary structure, inference (i.e., computing posterior probabilities or
maximal value assignments) requires exponential time in terms of the number of variables [16].
However, this run-time complexity reduces to be polynomial in terms of the number of predicted
variables for graphs with low treewidth (e.g., chains, trees, cycles).

2.2 Conditional random fields as robust multivariate log loss minimization

Following ideas from robust Bayes decision theory [12, 13] and distributional robustness [17], the
conditional random field [6] can be derived as a robust minimizer of the logarithmic loss subject to
moment-matching constraints:

min
P̂ (·|x)

max
P̌ (·|x)

E X∼P̃;
Y̌|X∼P̌

[
−log P̂ (Y̌|X)

]
such that: E X∼P̃;

Y̌|X∼P̌

[
Φ(X, Y̌)

]
= EX,Y∼P̃ [Φ(X,Y)] , (1)

where Φ : X ×Y → Rk are feature functions that typically decompose additively over subsets of
variables. Under this perspective, the predictor P̂ seeks the conditional distribution that minimizes log
loss against an adversary P̌ seeking to choose an evaluation distribution that approximates training
data statistics, while otherwise maximizing log loss. As a result, the predictor is robust not only to
the training sample P̃ , but all distributions with matching moment statistics [13].

The saddle point for Eq. (1) is obtained by the parametric conditional distribution P̂θ(y|x) =

P̌θ(y|x) = eθ·Φ(x,y)
/∑

y′∈Y e
θ·Φ(x,y′) with parameters θ chosen by maximizing the data likelihood:

argmaxθ EX,Y∼P̃

[
log P̂θ(Y|X)

]
. The decomposition of the feature function into additive clique

features, Φi(x,y) =
∑
c∈Ci φc,i(xc,yc), can be represented graphically by connecting the variables

within cliques with undirected edges. Dynamic programming algorithms (e.g., junction tree) allow
the exact likelihood to be computed in run time that is exponential in terms of the treewidth of the
resulting graph [18].

Predictions for a particular loss metric are then made using the Bayes optimal prediction for the
estimated distribution: y∗ = argminy EŶ|x∼P̂θ [loss(y, Ŷ)]. This two-stage prediction approach can
create inefficiencies when learning from limited amounts of data since optimization may focus on
accurately estimating probabilities in portions of the input space that have no impact on the decision
boundaries of the Bayes optimal prediction. Rather than separating the prediction task from the
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learning process, we incorporate the evaluation loss metric of interest into the robust minimization
formulation of Eq. (1) in this work.

2.3 Structured support vector machines

Our approach is most similar to structured support vector machines (SSVMs) [19] and related
maximum margin methods [8], which also directly incorporate the evaluation loss metric into the
training process. This is accomplished by minimizing a hinge loss convex surrogate:

hingeθ(ỹ) = max
y

loss(y, ỹ) + θ · (Φ(x, ỹ)− Φ(x,y)) , (2)

where θ represents the model parameters, ỹ is the ground truth label, and Φ(x,y) is a feature function
that decomposes additively over subsets of variables.

Using a clique-based graphical representation of the potential function, and assuming the loss metric
also additively decomposes into the same clique-based representation, SSVMs have a computational
complexity similar to probabilistic graphical models. Specifically, finding the value assignment y
that maximizes this loss-augmented potential can be accomplished using dynamic programming in
run time that is exponential in the graph treewidth [18].

A key weakness of support vector machines in general is their lack of Fisher consistency; there
are distributions for multiclass prediction tasks for which the SVM will not learn a Bayes optimal
predictor, even when the models are given access to the true distribution and sufficiently expressive
features, due to the disconnection between the Crammer-Singer hinge loss surrogate [20] and the
evaluation loss metric (i.e., the 0-1 loss in this case) [11]. In practice, if the empirical data behaves
similarly to those distributions (e.g., P (y|x) have no majority y for a specific input x), the inconsistent
model may perform poorly. This inconsistency extends to the structured prediction setting except in
limited special cases [21]. We overcome these theoretical deficiencies in our approach by using an
adversarial formulation that more closely aligns the training objective with the evaluation loss metric,
while maintaining convexity.

2.4 Other related works

Distributionally robust learning. There has been a recent surge of interest in the machine learning
community for developing distributonally robust learning algorithms. The proposed learning algo-
rithms differ in the uncertainty sets used to provide robustness. Previous robust learning algorithms
have been proposed under the F-divergence measures (which includes the popular KL-divergence and
χ-divergence) [22–24], the Wasserstein metric uncertainty set [25–27], and the moment matching un-
certainty set [17, 28]. Our robust adversarial learning approach differs from the previous approaches
by focusing on the robustness in terms of the conditional distribution P (y|x) instead of the joint
distribution P (x,y). Our approach seeks a predictor that is robust to the worst-case conditional label
probability under the moment matching constraints. We do not impose any robustness to the training
examples x.

Robust adversarial formulation. There have been some investigations on applying robust adver-
sarial formulations for prediction to specific types of structured prediction problems (e.g., sequence
tagging [29], and graph cuts [30]). Our work differs from them in two key aspects: we provide a
general framework for graphical structures and any additive loss metrics, as opposed to the specific
structures and loss metrics (additive zero-one loss) previously considered; and we also propose
a learning algorithm with polynomial run-time guarantees, in contrast with previously employed
algorithms that use double/single oracle constraint generation techniques [31] lacking polynomial
run-time guarantees.

Consistent methods. A notable research interest in consistent methods for structured prediction
tasks has also been observed. Ciliberto et al. [32] proposed a consistent regularization approach that
maps the original structured prediction problem into a kernel Hilbert space and employs a multivariate
regression on the Hilbert space. Osokin et al. [33] proposed a consistent quadratic surrogate for
any structured prediction loss metric and provide a polynomial sample complexity analysis for the
additive zero-one loss metric surrogate. Our work differs from these line of works in the focus on the
structure. We focus on the graphical structures that model interaction between labels, whereas the
previous works focus on the structure of the loss metric itself.
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3 Approach

We propose adversarial graphical models (AGMs) to better align structured prediction with evaluation
loss metrics in settings where the structured interaction between labels are represented in a graph.

3.1 Formulations

We construct a predictor that best minimizes a loss metric for the worst-case evaluation distribution
that (approximately) matches the statistical summaries of empirical training data. Our predictor is
allowed to make a probabilistic prediction over all possible label assignments (denoted as P̂ (ŷ|x)).
However, instead of evaluating the prediction with empirical data (as commonly performed by
empirical risk minimization formulations [34]), the predictor is pitted against an adversary that also
makes a probabilistic prediction (denoted as P̌ (y̌|x)). The adversary is constrained to select its
conditional distributions to match the statistical summaries of the empirical training distribution
(denoted as P̃ ) via moment matching constraints on the features functions Φ.
Definition 1. The adversarial prediction method for structured prediction problems with graphical
interaction between labels is:

min
P̂ (ŷ|x)

max
P̌ (y̌|x)

E X∼P̃ ;

Ŷ|X∼P̂ ;

Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
such that: E X∼P̃ ;

Y̌|X∼P̌

[
Φ(X, Y̌)

]
= Φ̃, (3)

where the vector of feature moments, Φ̃ = EX,Y∼P̃ [Φ(X,Y)], is measured from sample training
data. The feature function Φ(X,Y) contains features that are additively decomposed over cliques in
the graph, e.g. Φ(x,y) =

∑
c φ(x,yc).

This follows recent research in developing adversarial prediction for cost-sensitive classification
[14] and multivariate performance metrics [35], and, more generally, distributionally robust decision
making under moment-matching constraints [17]. In this paper, we focus on pairwise graphical
structures where the interactions between labels are defined over the edges (and nodes) of the graph.
We also restrict the loss metric to a family of metrics that additively decompose over each yi variable,
i.e., loss(ŷ, y̌) =

∑n
i=1 loss(ŷi, y̌i). Directly solving the optimization in Eq. (3) is impractical

for reasonably-sized problems since P (y|x) grows exponentially with the number of predicted
variables. Instead, we utilize the method of Lagrange multipliers and the marginal formulation of the
distributions of predictor and adversary to formulate a simpler dual optimization problem as stated in
Theorem 1.
Theorem 1. For the adversarial structured prediction with pairwise graphical structure and an
additive loss metric, solving the optimization in Definition 1 is equivalent to solving the following
expectation of maximin problems over the node and edge marginal distributions parameterized by
Lagrange multipiers θ:

min
θe,θv

EX,Y∼P̃ max
P̌ (y̌|x)

min
P̂ (ŷ|x)

[∑n
i

∑
ŷi,y̌i

P̂ (ŷi|x)P̌ (y̌i|x)loss(ŷi, y̌i) (4)

+
∑

(i,j)∈E
∑
y̌i,y̌j

P̌ (y̌i, y̌j |x) [θe · φ(x, y̌i, y̌j)]−
∑

(i,j)∈E θe · φ(x, yi, yj)

+
∑n
i

∑
y̌i
P̌ (y̌i|x) [θv · φ(x, y̌i)]−

∑n
i θv · φ(x, yi)

]
,

where φ(x, yi) is the node feature function for node i, φ(x, yi, yj) is the edge feature function for the
edge connecting node i and j, E is the set of edges in the graphical structure, and θv and θe are the
Lagrange dual variables for the moment matching constraints corresponding to the node and edge
features, respectively. The optimization objective depends on the predictor’s probability prediction
P̂ (ŷ|x) only through its node marginal probabilities P̂ (ŷi|x). Similarly, the objective depends on the
adversary’s probabilistic prediction P̌ (y̌|x) only through its node and edge marginal probabilities,
i.e., P̌ (y̌i|x), and P̌ (y̌i, y̌j |x).

Proof sketch. From Eq. (3) we use the method of Langrange multipliers to introduce dual variables
θv and θe that represent the moment-matching constraints over node and edge features, respectively.
Using the strong duality theorem for convex-concave saddle point problems [36, 37], we swap the
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(a) (b)

Figure 1: An example tree structure with five nodes and four edges with the corresponding marginal
probabilities for predictor and adversary (a); and the matrix and vector notations of the probabilities
(b). Note that we introduce a dummy variable Q0,1 to match the constraints in Eq. (5).

optimization order of θ, P̂ (ŷ|x), and P̂ (y̌|x) as in Eq. (4). Then, using the additive property of the
loss metric and feature functions, the optimization over P̂ (ŷ|x) and P̂ (y̌|x) can be transformed into
an optimization over their respective node and edge marginal distributions.1

Note that the optimization in Eq. (4) over the node and edge marginal distributions resembles the
optimization of CRFs [38]. In terms of computational complexity, this means that for a general
graphical structure, the optimization above may be intractable. We focus on families of graphical
structures in which the optimization is known to be tractable. In the next subsection, we begin with
the case of tree-structured graphical models and then proceed with the case of graphical models with
low treewidth. In both cases, we formulate the corresponding efficient learning algorithms.

3.2 Optimization

We first introduce our vector and matrix notations for AGM optimization. Without loss of generality,
we assume the number of class labels k to be the same for all predicted variables yi,∀i ∈ {1, . . . , n}.
Let pi be a vector with length k, where its a-th element contains P̂ (ŷi = a|x), and let Qi,j be a
k-by-k matrix with its (a, b)-th cells store P̌ (y̌i = a, y̌j = b|x). We also use a vector and matrix
notation to represent the ground truth label by letting zi be a one-hot vector where its a-th element
z

(a)
i = 1 if yi = a or otherwise 0, and letting Zi,j be a one-hot matrix where its (a, b)-th cell

Z
(a,b)
i,j = 1 if yi = a ∧ yj = b or otherwise 0. For each node feature φl(x, yi), we denote wi,l as a

length k vector where its a-th element contains the value of φl(x, yi = a). Similarly, for each edge
feature φl(x, yi, yj), we denote Wi,j,l as a k-by-k matrix where its (a, b)-th cell contains the value
of φl(x, yi = a, yj = b). For a pairwise graphical model with tree structure, we rewrite Eq. (4) using
our vector and matrix notation with local marginal consistency constraints as follows:

min
θe,θv

EX,Y∼P̃ max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i − Zpt(i);i,

∑
l θ

(l)
e Wpt(i);i;l

〉
(5)

+ (QT
pt(i);i1− zi)

T(
∑
l θ

(l)
v wi;l)

]
subject to: QT

pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n},

where pt(i) indicates the parent of node i in the tree structure, Li stores a loss matrix corresponding
to the portion of the loss metric for node i, i.e., L

(a,b)
i = loss(ŷi = a, y̌i = b), and 〈·, ·〉 denotes

the Frobenius inner product between two matrices, i.e., 〈A,B〉 =
∑
i,j Ai,jBi,j . Note that we also

employ probability simplex constraints (∆) to each Qpt(i);i and pi. Figure 1 shows an example tree
structure with its marginal probabilities and the matrix notation of the probabilities.

1More detailed proofs for Theorem 1 and 2 are available in the supplementary material.
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3.2.1 Learning algorithm

We first focus on solving the inner minimax optimization of Eq. (5). To simplify our notation, we
denote the edge potentials Bpt(i);i =

∑
l θ

(l)
e Wpt(i);i;l and the node potentials bi =

∑
l θ

(l)
v wi;l. We

then rewrite the inner optimization of Eq. (5) as:

max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(6)

subject to: QT
pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n}.

To solve the optimization above, we use dual decomposition technique [39, 40] that decompose the
dual version of the optimization problem into several sub-problem that can be solved independently.
By introducing the Lagrange variable u for the local marginal consistency constraint, we formulate
an equivalent dual unconstrained optimization problem as shown in Theorem 2.
Theorem 2. The constrained optimization in Eq. (6) is equivalent to an unconstrained Lagrange
dual problem with an inner optimization that can be solved independently for each node as follows:

min
u

n∑
i

[
max
Qi∈∆

〈
Qpt(i);i,Bpt(i);i+1bT

i −ui1
T+
∑
k∈ch(i) 1uT

k

〉
+ min

pi∈∆
piLi(Q

T
pt(i);i1)

]
, (7)

where ui is the Lagrange dual variable associated with the marginal constraint of QT
pt(pt(i));pt(i)1 =

Qpt(i);i1, and ch(i) represent the children of node i.

Proof sketch. From Eq. (6) we use the method of Langrange multipliers to introduce dual variables
u. The resulting dual optimization admits dual decomposability, where we can rearrange the variables
into independent optimizations for each node as in Eq. (7).

We denote matrix Apt(i);i , Bpt(i);i+1bT
i −ui1

T+
∑
k∈ch(i) 1uT

k to simplify the inner optimization
in Eq. (7). Let us define ri , QT

pt(i);i1 and ai be the column wise maximum of matrix Apt(i);i, i.e.,

a
(l)
i = maxl Al;i. Given the value of u, each of the inner optimizations in Eq. (7) can be equivalently

solved in terms of our newly defined variable changes ri and ai as follows:

max
ri∈∆

[
aT
i ri + min

pi∈∆
piLiri

]
. (8)

Note that this resembles the optimization in a standard adversarial multiclass classification problem
[14] with Li as the loss matrix and ai as the class-based potential vector. For an arbitrary loss matrix,
Eq. (8) can be solved as a linear program. However, this is somewhat slow and more efficient
algorithms have been studied in the case of zero-one and ordinal regression metrics [41, 42]. Given
the solution of this inner optimization, we use a sub-gradient based optimization to find the optimal
Lagrange dual variables u∗.

To recover our original variables for the adversary’s marginal distribution Q∗pt(i);i given the optimal
dual variables u∗, we use the following steps. First, we use u∗ and Eq. (8) to compute the value of
the node marginal probability r∗i . With the additional information that we know the value of r∗i (i.e.,
the adversary’s node probability), Eq. (6) can be solved independently for each Qpt(i);i to obtain the
optimal Q∗pt(i);i as follows:

Q∗pt(i);i = argmax
Qpt(i);i∈∆

〈
Qpt(i);i,Bpt(i);i

〉
subject to: QT

pt(i);i1 = r∗i , Qpt(i);i1 = r∗pt(i). (9)

Note that the optimization above resembles an optimal transport problem over two discrete distribu-
tions [43] with cost matrix −Bpt(i);i. This optimal transport problem can be solved using a linear
program solver or a more sophisticated solver (e.g., using Sinkhorn distances [44]).

For our overall learning algorithm, we use the optimal adversary’s marginal distributions Q∗pt(i);i
to compute the sub-differential of the AGM formulation (Eq. (5)) with respect to θv and θe. The
sub-differential for θ(l)

v includes the expected node feature difference EX,Y∼P̃
∑n
i (Q∗Tpt(i);i1 −

zi)
Twi;l, whereas the sub-differential for θ(l)

e includes the expected edge feature difference

EX,Y∼P̃
∑n
i

〈
Q∗pt(i);i − Zpt(i);i,Wpt(i);i;l

〉
. Using this sub-differential information, we employ a

stochastic sub-gradient based algorithm to obtain the optimal θ∗v and θ∗e .
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3.2.2 Prediction algorithms

We propose two different prediction schemes: probabilistic and non-probabilistic prediction.

Probabilistic prediction. Our probabilistic prediction is based on the predictor’s label probability
distribution in the adversarial prediction formulation. Given fixed values of θv and θe, we solve
a minimax optimization similar to Eq. (5) by flipping the order of the predictor and adversary
distribution as follows:

min
p∈∆

max
Q∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,

∑
l θ

(l)
e Wpt(i);i;l

〉
+ (QT

pt(i);i1)T(
∑
l θ

(l)
v wi;l)

]
subject to: QT

pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n}. (10)

To solve the inner maximization of Q we use a similar technique as in MAP inference for CRFs. We
then use a projected gradient optimization technique to solve the outer minimization over p and a
technique for projecting to the probability simplex [45].

Non-probabilistic prediction. Our non-probabilistic prediction scheme is similar to SSVM’s
prediction algorithm. In this scheme, we find ŷ that maximizes the potential value, i.e., ŷ =
argmaxy f(x,y), where f(x,y) = θTΦ(x,y). This prediction scheme is faster than the probabilis-
tic scheme since we only need a single run of a Viterbi-like algorithm for tree structures.

3.2.3 Runtime analysis

Each stochastic update in our algorithm involves finding the optimal u and recovering the optimal
Q to be used in a sub-gradient update. Each iteration of a sub-gradient based optimization to solve
u costs O(n · c(L)) time where n is the number of nodes and c(L) is the cost for solving the
optimization in Eq. (8) for the loss matrix L. Recovering all of the adversary’s marginal distributions
Qpt(i);i using a fast Sinkhorn distance solver has the empirical complexity of O(nk2) where k is the
number of classes [44]. The total running time of our method depends on the loss metric we use.
For example, if the loss metric is the additive zero-one loss, the total complexity of one stochastic
gradient update is O(nlk log k + nk2) time, where l is the number of iterations needed to obtain the
optimal u and O(k log k) time is the cost for solving Eq. (8) for the zero-one loss [41]. In practice,
we find the average value of l to be relatively small. This runtime complexity is competitive with the
CRF, which requires O(nk2) time to perform message-passing over a tree to compute the marginal
distribution of each parameter update, and also with structured SVM where each iteration requires
computing the most violated constraint, which also costs O(nk2) time for running a Viterbi-like
algorithm over a tree structure.

3.2.4 Learning algorithm for graphical structure with low treewidth

Our algorithm for tree-based graphs can be easily extended to the case of graphical structures with
low treewidth. Similar to the case of the junction tree algorithm for probabilistic graphical models,
we first construct a junction tree representation for the graphical structure. We then solve a similar
optimization as in Eq. (5) on the junction tree. In this case, the time complexity of one stochastic
gradient update of the algorithm is O(nlwk(w+1) log k + nk2(w+1)) time for the optimization with
an additive zero-one loss metric, where n is the number of cliques in the junction tree, k is the number
of classes, l is the number of iterations in the inner optimization, and w is the treewidth of the graph.
This time complexity is competitive with the time complexities of CRF and SSVM which are also
exponential in the treewidth of the graph.

3.3 Fisher consistency analysis

A key theoretical advantage of our approach over the structured SVM is that it provides Fisher
consistency. This guarantees that under the true distribution P (x,y), the learning algorithm yields a
Bayes optimal prediction with respect to the loss metric [10, 11]. In this setting, the learning algorithm
is allowed to optimize over all measurable functions, or similarly, it has a feature representation of
unlimited richness. We establish the Fisher consistency of our AGM approach in Theorem 3.

Theorem 3. The AGM approach is Fisher consistent for all additive loss metrics.
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Proof. As established in Theorem 1, pairwise marginal probabilities are sufficient statistics of the
adversary’s distribution. An unlimited access to arbitrary rich feature representation constrains the
adversary’s distribution in Eq. (3) to match the marginal probabilities of the true distribution, making
the optimization in Eq. (3) equivalent to minŷ EX,Y∼P [loss(ŷ,Y)], which is the Bayes optimal
prediction for the loss metric.

4 Experimental evaluation

To evaluate our approach, we apply AGM to two different tasks: predicting emotion intensity from a
sequence of images, and labeling entities in parse trees with semantic roles. We show the benefit of
our method compared with a conditional random field (CRF) and a structured SVM (SSVM).

4.1 Facial emotion intensity prediction

Table 1: The average loss metrics for the emotion
intensity prediction. Bold numbers indicate the
best or not significantly worse than the best results
(Wilcoxon signed-rank test with α = 0.05).

Loss metrics AGM CRF SSVM

zero-one, unweighted 0.34 0.32 0.37
absolute, unweighted 0.33 0.34 0.40
squared, unweighted 0.38 0.38 0.40
zero-one, weighted 0.28 0.32 0.29
absolute, weighted 0.29 0.36 0.29
squared, weighted 0.36 0.40 0.33
average 0.33 0.35 0.35
# bold 4 2 2

We evaluate our approach in the facial emo-
tion intensity prediction task [46]. Given a se-
quence of facial images, the task is to predict
the emotion intensity for each individual im-
age. The emotion intensity labels are catego-
rized into three ordinal categories: neutral <
increasing < apex, reflecting the degree of
intensity. The dataset contains 167 sequences
collected from 100 subjects consisting of six
types of basic emotions (anger, disgust, fear,
happiness, sadness, and surprise). In terms of
the features used for prediction, we follow an
existing feature extraction procedure [46] that
uses Haar-like features and the PCA algorithm
to reduce the feature dimensionality.

In our experimental setup, we combine the data from all six different emotions and focus on predicting
the ordinal category of emotion intensity. From the whole 167 sequences, we construct 20 different
random splits of the training and the testing datasets with 120 sequences of training samples and 47
sequences of testing samples. We use the training set in the first split to perform cross validation to
obtain the best regularization parameters and then use the best parameter in the evaluation phase for
all 20 different splits of the dataset.

In the evaluation, we use six different loss metrics. The first three metrics are the average of zero-one,
absolute and squared loss metrics for each node in the graph (where we assign label values: neutral
= 1, increasing = 2, and apex = 3). The other three metrics are the weighted version of the
zero-one, absolute and squared loss metrics. These weighted variants of the loss metrics reflect the
focus on the prediction task by emphasizing the prediction on particular nodes in the graph. In this
experiment, we set the weight to be the position in the sequence so that we focus more on the latest
nodes in the sequences.

We compare our method with CRF and SSVM models. Both the AGM and the SSVM can incorporate
the task’s customized loss metrics in the learning process. The prediction for AGM and SSVM is
done by taking an arg-max of potential values, i.e., argmaxy f(x,y) = θ · Φ(x,y). For CRF, the
training step aims to model the conditional probability P̂θ(y|x). The CRF’s predictions are computed
using the Bayes optimal prediction with respect to the loss metric and CRF’s conditional probability,
i.e., argminy EŶ|x∼P̂θ [loss(y, Ŷ)].

We report the loss metrics averaged over the dataset splits as shown in Table 1. We highlight the
result that is either the best result or not significantly worse than the best result (using Wilcoxon
signed-rank test with α = 0.05). The result shows that our method significantly outperforms CRF in
three cases (absolute, weighted zero-one, and weighted absolute losses), and statistically ties with
CRF in one case (squared loss), while only being outperformed by CRF in one case (zero-one loss).
AGM also outperforms SSVM in three cases (absolute, squared, and weighted zero-one losses), and
statistically ties with SSVM in one case (weighted absolute loss), while only being outperformed
by SSVM in one case (weighted squared loss). In the overall result, AGM maintains advantages
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compared to CRFs and SSVMs in both the overall average loss and the number of “indistinguishably
best” performances on all cases. These results may reflect the theoretical benefit that AGM has over
CRF and SSVM mentioned in Section 3 when learning from noisy labels.

4.2 Semantic role labeling

But isIt uncertain thesewhether institutions takewill those steps

CC
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JJ

DT

IN

NNS

VB
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DT NNS
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O

O

O

O
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O

OO

A0

RAM-MOD

Figure 2: Example of a syntax tree with semantic
role labels as bold superscripts. The dotted and
dashed lines show the pruned edges from the tree.
The original label AM-MOD is among class R in our
experimental setup.

We evaluate the performance of our algorithm
on the semantic role labeling task for the CoNLL
2005 dataset [47]. Given a sentence and its syn-
tactic parse tree as the input, the task is to rec-
ognize the semantic role of each constituent in
the sentence as propositions expressed by some
target verbs in the sentence. There are a to-
tal of 36 semantic roles grouped by their types
of: numbered arguments, adjuncts, references
of numbered and adjunct arguments, continua-
tion of each class type and the verb. We prune
the syntactic trees according to Xue and Palmer
[48], i.e., we only include siblings of the nodes
which are on the path from the verb (V) to the
root and also the immediate children in case that
the node is a propositional phrase (PP). Follow-
ing the setup used by Cohn and Blunsom [49],
we extract the same syntactic and contextual
features and label non-argument constituents and children nodes of arguments as "outside" (O).
Additionally, in our experiment we simplify the prediction task by reducing the number of labels.
Specifically, we choose the three most common labels in the WSJ test dataset, i.e., A0,A1,A2 and
their references R-A0,R-A1,R-A2, and we combine the rest of the classes as one separate class R.
Thus, together with outside O and verb V, we have a total of nine classes in our experiment.

Table 2: The average loss metrics for the semantic
role labeling task.

Loss metrics AGM CRF SSVM

cost-sensitive loss 0.14 0.19 0.14

In the evaluation, we use a cost-sensitive loss
matrix that reflects the importance of each label.
We use the same cost-sensitive loss matrix to
evaluate the prediction of all nodes in the graph.
The cost-sensitive loss matrix is constructed by
picking a random order of the class label and
assigning an ordinal loss based on the order of
the labels. We compare the average cost-sensitive loss metric of our method with the CRF and the
SSVM as shown in Table 2. As we can see from the table, our result is competitive with SSVM, while
maintaining an advantage over the CRF. This experiment shows that incorporating customized losses
into the training process of learning algorithms is important for some structured prediction tasks.
Both the AGM and the SSVM are designed to align their learning algorithms with the customized
loss metric, whereas CRF can only utilize the loss metric information in its prediction step.

5 Conclusion

In this paper, we introduced adversarial graphical models, a robust approach to structured prediction
that possesses the main benefits of existing methods: (1) it guarantees the same Fisher consistency
possessed by CRFs [6]; (2) it aligns the target loss metric with the learning objective, as in maximum
margin methods [19, 8]; and (3) its computational run time complexity is primarily shaped by the
graph treewidth, which is similar to both graphical modeling approaches. Our experimental results
demonstrate the benefits of this approach on structured prediction tasks with low treewidth.

For more complex graphical structures with high treewidth, our proposed algorithm may not be
efficient. Similar to the case of CRFs and SSVMs, approximation algorithms may be needed to solve
the optimization in AGM formulations for these structures. In future work, we plan to investigate the
optimization techniques and applicable approximation algorithms for general graphical structures.

Acknowledgement. This work was supported, in part, by the National Science Foundation under
Grant No. 1652530, and by the Future of Life Institute (futureoflife.org) FLI-RFP-AI1 program.
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A Supplementary Materials

A.1 Proof of Theorem 1

Proof of Theorem 1.

min
P̂ (ŷ|x)

max
P̌ (y̌|x)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
(11)

subject to: EX∼P̃ ;Y̌|X∼P̌
[
Φ(X, Y̌)

]
= EX,Y∼P̃ [Φ(X,Y)]

(a)
= max

P̌ (y̌|x)
min
P̂ (ŷ|x)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
(12)

subject to: EX∼P̃ ;Y̌|X∼P̌
[
Φ(X, Y̌)

]
= EX,Y∼P̃ [Φ(X,Y)]

(b)
= max
P̌ (y̌|x)

min
θ

min
P̂ (ŷ|x)

EX,Y∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(13)

(c)
= min

θ
max
P̌ (y̌|x)

min
P̂ (ŷ|x)

EX,Y∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(14)

(d)
= min

θ
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

EŶ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(15)

(e)
= min
θe,θv

EX,Y∼P̃ max
P̌ (y̌|x)

min
P̂ (ŷ|x)

EŶ|X∼P̂ ;Y̌|X∼P̌

[∑n
i loss(Ŷi, Y̌i) (16)

+ θe ·
∑

(i,j)∈E
[
φ(X, Y̌i, Y̌j)− φ(X, Yi, Yj)

]
+ θv ·

∑n
i

[
φ(X, Y̌i)− φ(X, Yi)

] ]
(f)
= min

θe,θv
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

∑
ŷ,y̌

P̂ (ŷ|x)P̌ (y̌|x)
[∑n

i loss(ŷi, y̌i) (17)

+ θe ·
∑

(i,j)∈E [φ(x, y̌i, y̌j)− φ(x, yi, yj)] + θv ·
∑n
i [φ(x, y̌i)− φ(x, yi)]

]
(g)
= min

θe,θv
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

[∑n
i

∑
ŷi,y̌i

P̂ (ŷi|x)P̌ (y̌i|x)loss(ŷi, y̌i) (18)

+
∑

(i,j)∈E
∑
y̌i,y̌j

P̌ (y̌i, y̌j |x) [θe · φ(x, y̌i, y̌j)]−
∑

(i,j)∈E θe · φ(x, yi, yj)

+
∑n
i

∑
y̌i
P̌ (y̌i|x) [θv · φ(x, y̌i)]−

∑n
i θv · φ(x, yi)

]
.

The transformation steps above are described as follows:

(a) We flip the min and max order using minimax duality [36]. The domains of P̂ (ŷ|x) and
P̌ (y̌|x) are both compact convex sets and the objective function is bilinear, therefore, strong
duality holds.

(b) We introduce the Lagrange dual variable θ to directly incorporate the equality constraints
into the objective function.

(c) The domain of P̌ (y̌|x) is a compact convex subset of Rn, while the domain of θ is Rm. The
objective is concave on P̌ (y̌|x) for all θ (a non-negative linear combination of minimums
of affine functions is concave), while it is convex on θ for all P̌ (y̌|x). Based on Sion’s
minimax theorem [37], strong duality holds, and thus we can flip the optimization order of
P̌ (y̌|x) and θ.

(d) Since the expression is additive in terms of P̌ (y̌|x) and P̂ (ŷ|x), we can push the expectation
over the empirical distribution X, Y ∼ P̃ outside and independently optimize each P̌ (y̌|x)

and P̂ (ŷ|x).

(e) We apply our description of loss metrics which is additively decomposable into the loss for
each node, and the features that can be decomposed into node and edge features. We also
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separate the notation for the Lagrange dual variable into the variable for the constraints on
node features (θv) and and the variable for the edge features (θe).

(f) We rewrite the expectation over P̂ (ŷ|x) and P̌ (y̌|x) in terms of the probability-weighted
average.

(g) Based on the property of the loss metrics and feature functions, the sum over the exponen-
tially many possibilities of ŷ and y̌ can be simplified into the sum over individual nodes and
edges values, resulting in the optimization over the node and edge marginal distributions.

A.2 Proof of Theorem 2

Proof of Theorem 2.

max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(19)

subject to: QT
pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n}

(a)
= max

Q∈∆
min

u
min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(20)

+

n∑
i

uT
i

(
QT
pt(pt(i));pt(i)1−Qpt(i);i1

)
(b)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(21)

+

n∑
i

uT
i

(
QT
pt(pt(i));pt(i)1−Qpt(i);i1

)
(c)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+
〈
Qpt(i);i,1bT

i

〉 ]
(22)

+

n∑
i

[ 〈
Qpt(pt(i));pt(i),1uT

i

〉
−
〈
Qpt(i);i,ui1

T
〉 ]

(d)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i+1bT

i −ui1
T+
∑
k∈ch(i) 1uT

k

〉]
.

(23)

The transformation steps above are described as follows:

(a) We introduce the Lagrange dual variable u, where ui is the dual variable associated with
the marginal constraint of QT

pt(pt(i));pt(i)1 = Qpt(i);i1.

(b) Similar to the analysis in Theorem 1, strong duality holds due to Sion’s minimax theorem.
Therefore we can flip the optimization order of Q and u.

(c) We rewrite the vector multiplication over Qpt(i);i1 or QT
pt(i);i1 with the corresponding

Frobenius inner product notations.

(d) We regroup the terms in the optimization above by considering the parent-child relations in
the tree for each node. Note that ch(i) represents the children of node i.
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