
Actor-Critic Alignment for Offline-to-Online Reinforcement Learning

Zishun Yu 1 Xinhua Zhang 1

Abstract

Deep offline reinforcement learning has recently
demonstrated considerable promises in leveraging
offline datasets, providing high-quality models
that significantly reduce the online interactions
required for fine-tuning. However, such a benefit
is often diminished due to the marked state-action
distribution shift, which causes significant boot-
strap error and wipes out the good initial policy.
Existing solutions resort to constraining the policy
shift or balancing the sample replay based on their
online-ness. However, they require online estima-
tion of distribution divergence or density ratio. To
avoid such complications, we propose deviating
from existing actor-critic approaches that directly
transfer the state-action value functions. Instead,
we post-process them by aligning with the offline
learned policy, so that the Q-values for actions
outside the offline policy are also tamed. As a
result, the online fine-tuning can be simply per-
formed as in the standard actor-critic algorithms.
We show empirically that the proposed method im-
proves the performance of the fine-tuned robotic
agents on various simulated tasks.

1. Introduction
Offline reinforcement learning (RL) provides a novel tool
that allows offline batch data to be leveraged by RL al-
gorithms without having to interact with the environment
(Levine et al., 2020). This opens up new opportunities for
important scenarios such as health care decision making,
and goal-directed dialog learning. Due to the limitation of
offline data, it generally remains beneficial and necessary to
fine-tune the learned model through online interactions, and
ideally the latter will enjoy a faster learning curve thanks to
the favorable initialization.
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Unfortunately, it has been long observed that a direct offline-
to-online (O2O) transfer often leads to catastrophic degra-
dation of performance in the online stage, which is unac-
ceptable in critical applications including medical treatment
and autonomous driving. A key cause lies in the signif-
icant shift of state distribution at online phase compared
with the offline data (Fujimoto et al., 2019; Kumar et al.,
2019; Fu et al., 2019; Kumar et al., 2020a). As a result, the
Bellman backup suffers a compounded error (Farahmand
et al., 2010; Munos, 2005), because the Q-value has not
been well estimated for the state-actions lying outside the
offline distribution.

A number of solutions have been developed to address this
issue. The most straightforward approach is importance
sampling (Laroche et al., 2019; Gelada & Bellemare, 2019;
Zhang et al., 2020; Huang & Jiang, 2020), which requires an
additional effort of estimating the behavior policy, and suf-
fers from high variance, especially when it differs markedly
from the learned policy (a more realistic issue for the offline
setting than the conventional off-policy setting). The model-
based approach, on the other hand, also suffers from the
distribution shift in state marginals and actions (Mao et al.,
2022; Kidambi et al., 2020; Yu et al., 2020; Janner et al.,
2019). It may exploit the model to pursue out-of-distribution
(OOD) states and actions where the model mis-believes to
yield a high return. So they also require detecting and quan-
tifying the shift. In addition, they suffer from standard
challenges plaguing model-based RL algorithms such as
long horizon and high dimensionality.

Dynamic programming proffers lower variance and directly
learns the value functions and policy. Several approaches
have been proposed to combat distribution shift. A natural
idea is to constrain the policy to the proximity of the behav-
ior policy, and this has been implemented with probability
divergences in AWAC (Nair et al., 2020) and Siegel et al.
(2020); Peng et al. (2019); Wu et al. (2019); Kumar et al.
(2019), or by behavior cloning regularization (Zhao et al.,
2021; Fujimoto & Gu, 2021). A second class of approaches
resort to pessimistic under-estimate of the state-action val-
ues (Kumar et al., 2020b; Kostrikov et al., 2021), especially
for OOD actions that could have an unjustified high value.
Conservative Q-learning (CQL, Kumar et al., 2020b) has
been shown to produce a relatively safer O2O transfer in bal-
anced replay (Lee et al., 2022), which further prioritizes the
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experience transitions that are closer to the current policy.

Unfortunately, all these methods require online estimation of
distribution divergence or density ratio (for priority score or
regularization weight). Excess conservatism can also slow
down the online fine-tuning. A third category of methods
avoid these complications by estimating the epistemic uncer-
tainty of the Q-function, so that OOD actions carry a larger
uncertainty which in turn yields conservative target values
for Bellman backup (Jaksch et al., 2010; O’Donoghue et al.,
2018; Osband et al., 2016; Kumar et al., 2019). However,
it is generally hard to find calibrated uncertainty estimates,
especially for deep neural nets (Fujimoto et al., 2019).

To resolve the aforementioned issues, we propose a novel
alignment step for actor-critic RL that can be flexibly in-
serted between offline and online training, dispensing with
any estimation of Q-function uncertainty, distribution diver-
gence, or density ratio. Our key insight is drawn from soft
actor-critic (SAC, Haarnoja et al., 2018), where the optimal
entropy-regularized policy is simply the softmax of the Q-
function. Now that the Q-function is generally problematic
for OOD actions while the policy learned offline is assumed
trustworthy (though still needs fine-tuning), it is natural to
align the critic to the actor upon the completion of offline
learning, so that the Q function is tamed to be consistent
with the policy under the softmax function, especially for
those actions that lie outside the behavior policy. As a result,
the online fine-tuning will only need to take the simple form
of the standard SAC, and empirically the proposed method
outperforms state-of-the-art fine-tuned robotic agents on
various simulated tasks.

Our contribution and novelty can be summarized as follows:

• We propose a novel O2O RL approach that outperforms
or matches the current SOTAs.

• Our approach does not rely on offline conservatism, al-
lowing it to transfer to a broader range of offline models.

• We propose, for the first time, discarding Q-values
learned offline as a means of combating distribution shift
in O2O RL. We also design a novel reconstruction of
Q-functions for online fine-tuning.

• When offline data is not available at online fine-tuning –
a very realistic scenario due to data privacy concerns, our
method remains applicable and stable, while strong com-
petitors such as balanced replay cease being applicable.

2. Related Work
Decision transformer (Chen et al., 2021) and trajectory trans-
former (Janner et al., 2021) have recently been shown ef-
fective for offline reinforcement learning, where the batch
trajectories’ likelihood is maximized auto-regressively to
model action sequences conditioned on a task. Zheng

et al. (2022) extended them to online decision transform-
ers (ODTs) by populating the replay buffer with online
ODT rollouts labeled with hindsight experience replay. As
a result, sequence modeling becomes effective for online
fine-tuning. Our method remains in the actor-critic frame-
work, and we demonstrate similar or superior empirical
performance to ODT.

Behavior cloning often plays an important role in effec-
tive O2O RL. It can take the form of constraining the pol-
icy around the behavior policy under certain probability
discrepancy measure, or simply imposing least square or
cross-entropy regularization to drive the policy to imitate
transitions (Zhao et al., 2021; Fujimoto & Gu, 2021). Such
a regularizer often requires delicate annealing, and to this
end, Zhao et al. (2021) designed heuristic rules based on
reward feedback. Recently, Kostrikov et al. (2022a) employ
behavior cloning to guide the extraction of policy from an
expectile-based implicit Q-learning (IQL).

It is noteworthy that behavior cloning is also commonly used
in imitation learning, where the goal is to imitate instead
of outperforming the demonstrator, differing from the O2O
setting. A number of efforts have been made to fuse it with
RL for improvement (Lu et al., 2021). A similar line of
research is to boost online learning from demonstration,
(e.g., Hester et al., 2018; Reddy et al., 2019). However, they
focus on accelerating online learning by utilizing offline
data, and are not concerned about the safety or performance
drop in porting the pre-trained policy to online.

In the area of robot learning, it is also of interest to initial-
ize RL agent from hand-engineered policies or traditional
controller such as model-predictive controllers (Silver et al.,
2018; Johannink et al., 2019; Bouton et al., 2019). In par-
ticular, Silver et al. (2018) discussed the “misalignment”
between an pre-specified actor and a critic that is potentially
initialized poorly. They propose to update the critic alone
for a “burn in” period during online fine-tuning until the
critic loss falls below certain threshold. This setting is quite
relevant to O2O RL although their actor and critic are not
trained via offline RL. We include further discussions on the
“burn in” solution in Appendix C.5.

3. Preliminary
We follow the standard protocol that formulates a RL en-
vironment as a Markov decision process (MDP). An MDP
M is often described as a 5-tuple (S,A,P, r, γ), where S
is the state-space,A is the action space, P : S ×A → ∆(S)
is the transition function, R : S × A → R is the reward
function, and γ ∈ [0, 1) is a discount factor. A policy is a
distribution π(a|s) ∈ ∆(A), and the agent aims to find a
policy that maximizes the expected return Eπ[

∑∞
t=0 γ

trt].
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Figure 1: Online performance vs. number of updates initial-
ized from pre-trained SAC+ML policy and Q-function. (a):
updating all learnable parameters and interacting with en-
vironment to collect data online; (b): controlled actor-only
experiment with SAC actor and temperature updates.

Soft actor-critic To learn from offline data generated by a
behavior policy, we will focus on off-policy RL methods. In
particular, the soft actor-critic method (SAC, Haarnoja et al.,
2017; 2018) learns a Q-function Qµ(s, a) with parameter µ,
and a Gaussian policy πθ(a|s) whose sufficient statistics are
determined by a neural network with parameter θ. Let d be
the empirical distribution corresponding to the replay buffer,
and we intentionally left it flexible on state, state-action, or
transition. Then SAC alternates between updating the critic
and actor by minimizing the following respective objectives:

LSAC
π (θ,d) := E

s∼d
E

a∼πθ(·|s)
[α log πθ(a|s)−Qµ(s, a)] ,

LSAC
Q (µ,d) := E

(s,a,r,s′)∼d

[(
Qµ(s, a)− y(r, s′)

)2
]
, (1)

where y(r, s′) :=r+γ E
a′∼πθ(·|s′)

[Qµ̄(s
′, a′)−α log πθ(a

′|s′)] .

Here, α > 0 and µ̄ is the delayed Q-function parameter. If
πθ is based on a universal neural network, its optimal value
that minimizes LSAC

π (θ,d) admits a closed form:

πθ(a|s) = exp ( 1
αQµ(s, a))

/ ∑
a∈A

exp ( 1
αQµ(s, a)). (2)

In practice, one simply performs gradient descent steps on
LSAC
π because even if the network is universal, the value of

θ that corresponds to the optimal solution (2) is hard to find.

It is important to note that adding a baseline functionZ(s) to
Qµ(s, a) does not change the optimal πθ in (2). Therefore,
given πθ, Qµ(s, a) can be recovered as

Qµ(s, a) = Z(s) + α log πθ(a|s), (3)

where Z(s) provides additional freedom to fit other aspects
of the problem; see Section 5.2.

Our inspiration is drawn from (3), where the critic Q is
aligned with the actor πθ. Although such a connection is
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Figure 2: Actor-only experiments: (a) SAC-style actor-
only updates initialized from pre-trained CQL policy and
Q-function; (b) AWAC-style actor-only updates initialized
from pre-trained AWAC policy and Q-function.

derived from the opposite direction in (2), it allows us to
initialize the online critic in line with the offline learned actor.
This means, the actor that minimizes the entropy-regularized
loss LSAC

π based on such an aligned Q-function will be
exactly the offline learned actor. As a result, compared
with just encoding the policy within the actor, additional
protection is now provided against drifting rapidly from
offline trained policy. We will first overview this motivation
in Section 4, and then detail the approach in Section 5.

4. Challenges in O2O RL and Motivation
Behind Actor-Critic Alignment

We first show the challenges in O2O RL on the hopper-
medium-v2 dataset, and then preview the effectiveness of
aligning online critic with offline actor. Figure 1a shows
significant performance drop if online fine-tuning is directly
applied to an offline trained model, a phenomenon observed
by many prior works. Here the offline method is SAC+ML
which will be introduced in Section 5.1, but similar perfor-
mance was observed with other offline methods.

To further demonstrate such an issue in a controlled fashion,
we designed an actor-only experiment in order to illustrate
how offline trained Q-functions impact online fine-tuning
on OOD data. We first trained offline on hopper-medium-v2,
and then used hopper-random-v2 as OOD data , to ablate the
factor of online data collection. Subsequent updates were
applied on actor only. The distribution shift is presented
in Appendix B.1. As confirmed by Figure 1b, because of
applying offline trained Q-function to OOD data, running
actor-only updates suffers a drop from offline score.

To investigate whether this problem is unique to the
SAC+ML method chosen for offline learning, we next tested
with CQL and AWAC. Figure 2a used the Q-function from
CQL offline training followed by SAC fine-tuning for ac-
tor only on OOD data, and it again failed to keep up the
offline score. Figure 2b shows even more severe drop for
AWAC. Combined with the SAC+ML result in Figure 1, one
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Figure 3: Comparison of actor-only updates between
aligned Q-function (orange) and offline Q-function (blue).

may postulate that this issue plagues offline RL in general,
although it could be alleviated by conservative estimation.

4.1. Preview of actor-critic alignment performance

Interestingly, our alignment step (to be introduced in Sec-
tion 5.2) manages to resolve this issue under SAC+ML
offline training as shown in Figure 3a. Since we only update
the actor here, it is expected that no improvement can be
achieved upon the offline score. Similarly, Figure 3b shows
that the decay of performance is much slowed down thanks
to the alignment. In Appendix B.2, we show actor-only
experiment results on more tasks where our alignment step
allows offline scores to be retained for most of tasks while
SAC+ML and CQL failed.

As a first step towards understanding the impact of align-
ment, we visualize in Figure 4 how the offline Q-functions
deviate from the actor over OOD states, and how the align-
ment operation restores the consistency. Here the plot is
based on two randomly sampled states, and more compre-
hensive results on a larger population are relegated to Ap-
pendix F.1. We trained SAC+ML on hopper-medium, and
sampled in-distribution states from it. To sample OOD
states, we resorted to the hopper-random dataset.

The top row of Figure 4 compares the offline learned Q-
values and our aligned/reconstructed Q-values for an in-
distribution sample. The bottom row shows a similar com-
parison, but on an OOD sample. The actions have 3 di-
mensions, and for the i-th column, we perturbed the i-th
dimension in [−1, 1], with all the other dimensions fixed.
Clearly, the offline learned Q-values are often inconsistent
with the policy’s choice, even for in-distribution samples.
But our alignment much improves the consistency, which
encourages the policy to stay close to the offline policy,
safeguarding the process of transfer.

5. Aligning Critics with Actors for O2O RL
We now detail our method that consists of three phases:
offline, actor-critic (AC) alignment, and online. The whole
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Figure 4: SAC+ML Q-values (left y-axis) v.s. aligned Q-
values (right y-axis) for in-distribution sample (top row) and
OOD sample (bottom row). Since only the trend of each
curve matters, we omit the y-axis tick values.

procedure is summarized in Table 5 in Appendix A.

5.1. Offline Training

Since our contribution lies in O2O transfer, the offline train-
ing method can be general indeed. To be self-contained,
we now describe an offline actor-critic approach using SAC
with maximum likelihood (ML) regularization, noting that
other methods are also applicable and will be used in our
experiment (e.g., CQL in Section 6.3), provided that it pro-
duces a stochastic policy. However, TD3+BC (Fujimoto
& Gu, 2021) runs TD3 (Fujimoto et al., 2018) offline with
a behaviour cloning regularization (BC, Bain & Sammut,
1995). It is not applicable in our setting because its pol-
icy is deterministic. So we replaced TD3 with SAC whose
policy is stochastic, akin to SAC+BC (Nair et al., 2020).
Moreover, since the online phase uses an ML regularizer
(see Section 5.3), we also adopted ML for offline, hence the
name SAC+ML. We will compare SAC+ML with TD3+BC
in Appendix C.1, where their performances appear compa-
rable.

Actor update. Let d be the empirical distribution of a mini-
batch sampled from the offline dataset D. The actor update
of TD3+BC and SAC+ML aims to minimize the following
respective objectives:

LTD3+BC
π (θ,d) = E

(s,a)∼d

[
−λQµ(s, πθ(s)) + (πθ(s)−a)2

]
,

LSAC+ML
π (θ,d) = E

(s,a)∼d
E

b∼πθ(·|s)

[
− log πθ(a|s) (4)

− λ
(
Qµ(s, b)− α log πθ(b|s)

)]
,

where the hyperparameter λ balances Q values with the BC
or ML regularization. In practice, we employed the clipped
double Q-learning technique (Hasselt, 2010) to train two
Q-networks Qµ1 and Qµ2 . It is beneficial for both offline
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and online training (Fujimoto et al., 2018). λ is then set to

λ := ω / E
(s,a)∼d

|Qµ(s, a)|, where Qµ := min{Qµ1
, Qµ2

},

and ω is a hyper-parameter. So λ is recomputed after every
critic update, requiring almost no additional computation.

Critic update. SAC+ML follows the same critic update as
SAC in (1), except for the double Q part:

LSAC+ML
Q (µi,d) := E

(s,a,r,s′)∼d

[
(Qµi

(s, a)− y(r, s′))2
]

(5)

with y(r, s′) :=r+γ E
a′∼πθ(·|s′)

[Qµ̄(s
′, a′)−α log πθ(a

′|s′)],

and µ̄ is a delayed version of µ, a.k.a. target network, with
Qµ̄(s, a) = mini∈{1,2}Qµ̄i

(s, a), akin to Qµ. The temper-
ature update tries to reduce the following term over α > 0:

LSAC+ML
temp (α,d) := −α E

s∼d
E

a∼πθ(·|s)

[
log πθ(a|s)− H̄

]
.(6)

Here, H̄ > 0 is the target entropy value, a hyper-parameter
specified a priori. The Lagrange multiplier α is automati-
cally tuned in (6), lower bounding the entropy of πθ by H̄.
The pseudo-code of SAC+ML is relegated to Appendix A.

5.2. Actor-critic Alignment

At the end of offline learning, the learned policy πθ0 often
performs reasonably well, and is ready for online fine-tuning.
So we denote the policy with index 0. In conventional actor-
critic, the critic is supposed to be updated frequently enough
to accurately pursue the state-action values for the current
policy. However, even if such updates are conducted proac-
tively, the distribution shift problem in O2O still plagues the
critic under deep net approximation, because the Q-values
are not trustworthy beyond what has been visited under the
behavior policy. So the over-estimated Q-values can rapidly
destroy the learned actor and critic through Bellman backup.

In order to avoid this issue, we propose taming the out-of-
distribution Q-values by directly aligning the critics with
the actors, as a post-processing step for offline learning,
or an initialization step for online learning. In particular,
inspired by (3), we choose to discard the Qµi

learned from
the offline phase, and reset them into1

Qi(s, a) = log πθ0(a|s) + Zψi
(s). (7)

The baseline Zψi
(s) can be naturally calibrated by minimiz-

1Compared with (3), it appears that we have set α there to 1,
while its value at the end of offline learning is generally much
smaller than 1. This creates no contradiction, however, because
log πθ0 will be used to parameterize the online Q-function as in
(10), and the α for online phase SAC is initialized to 1. So their
product, passed through the softmax, will recover πθ0 .

ing the Bellman residual on offline data:

LSAC+ML
Z (ψi,d) := E

(s,a,r,s′)∼d
[(log πθ0(a|s)

+Zψi(s)− y(r, s′))2
]
,

(8)

where y(r, s′) :=r+γ E
a′∼πθ0

(·|s′)
[log πθ0(a

′|s′)+Zψ(s′)],

Zψ := min{Zψ1
, Zψ2

}. (9)

The standard semi-gradient is employed on Zψ in (9). This
optimization is simply a regression problem and can be
solved by Adam. The details are deferred to Appendix A.1,
where the pseudo-code is also given in Algorithm 1.

Flexibility in offline training. Thanks to this alignment
step that disregards the Q-function learned offline, the of-
fline learning algorithm is not limited to SAC+ML. In Sec-
tion 6.3, we will show that our alignment approach can be
well applied to the offline policy learned from CQL.

5.3. Online Training

During the online fine-tuning, we restore the full flexibility
of Q-functions by using the following parameterization:

Qϕi
(s, a) := log πθ0(a|s) +Rϕi

(s, a),

where Rϕi
(s, a) is initialized with Zψi

(s).
(10)

Such an initialization can be simply implemented by loading
the weights of Zψi

and setting the weights corresponding to
action to zeros. It is noteworthy that one should refrain from
constraining Q to closed-form manifold induced by the lat-
est πθ throughout the online phase, i.e., setting Qϕi

(s, a) to
log πθ(a|s) + Zϕi(s) for some trainable baseline Zϕi . This
is because it would lead to no improvement of the policy.
As such, we only leverage the closed-form for initialization.

The update on temperature is exactly the same as (6), and
the update on critic resembles that of the offline phase in (5),
except that the training variable is now only Rϕi

(s, a). In
particular, we adapt SAC critic update to ourQϕ, along with
standard tricks of target network and double Q-clipping:

LQ(ϕi,d) := E
d

[(
log πθ0(a|s) +Rϕi(s, a)− y(r, s′)

)2
]
,

where y(r, s′) := r + γ E
a′∼πθ(·|s′)

[log πθ0(a
′|s′)

+Rϕ̄(s
′, a′)− α log πθ(a

′|s′)
]
.

The first expectation is over (s, a, r, s′) ∼ d. The actor’s
objective follows from the vanilla SAC, and can be written
as follows withRϕ := mini∈{1,2}Rϕi ,Qϕ := log πθ0+Rϕ,
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and d being a mini-batch sampled from the replay buffer:

Lπ(θ,d) := − E
s∼d

E
a∼πθ(·|s)

[Qϕ(s, a)− α log πθ(a|s)] ,

= − E
s∼d

E
a∼πθ(·|s)

[Rϕ(s, a)− α log πθ(a|s)]

− E
s∼d

E
a∼πθ(·|s)

[log πθ0(a|s)]︸ ︷︷ ︸
penalizing deviation of πθ from πθ0

. (11)

Behavior cloning in (11). Naturally unfolding from SAC
using the parameterization (10) is the expectation of log-
likelihood of πθ0 under πθ in (11), a maximum-likelihood
term that enforces the actions favored by the new policy
πθ to also enjoy a high log-likelihood under the offline pol-
icy πθ0 . Different from AdaBC (Zhao et al., 2021), we
sidestepped an ad-hoc introduction of behavior cloning reg-
ularization and tweaking of its weight. This regularization
is not applied on the offline data, but on the policy πθ0
achieved by offline learning. To be consistent, we also used
the maximum-likelihood regularization in offline training.

One might argue that this interpretation is artificial because,
after all, the log πθ0 term can be subsumed into the free
variable Rϕi

in (10), obliterating this BC regularizer in (11).
This in fact makes sense if the entire optimization is convex
and the range of Rϕi

as a function set is closed under addi-
tion with log πθ0 . However, since Rϕi

is a neural net , such
conditions do not hold true. As a result, the composite form
in (10) does play a crucial role in the empirical performance,
which is manifested in our ablation study in Section 6.5.

In practice, we also introduced two techniques to stabilize
online learning. The first β-clipping trick addresses the ex-
cessively large magnitude of log πθ0 by capping its absolute
values. The second critic interpolation gives the flexibility
to balance between safety transfer and policy improvement.
For the sake of space, they are deferred to Appendix A.2.

6. Experiments
We next compared our actor-critic alignment method (ACA)
with a number of state-of-the-art methods as summarized
in Table 1. Although CQL was not developed for O2O
transfer, we still included it due to its strong performance.
The implementation of our ACA algorithm can be found at
https://github.com/ZishunYu/ACA.

Our experiments aim to demonstrate:

• SAC→ACA matches or outperforms SOTAs such as bal-
anced replay (BR, Lee et al., 2022), advantage weighted
actor critic (AWAC, Nair et al., 2020), and online decision
transformer (ODT, Zheng et al., 2022);

• Direct transfer such as SAC→SAC and CQL→SAC suf-
fers significant performance drop;

• Transfer from offline method significantly outperforms
training SAC online from scratch. We will present abla-
tion studies to examine various components of ACA.

6.1. Comparison with baseline methods

We used the HalfCheetah, Hopper, and Walker2d environ-
ments from the D4RL-v2 datasets (Fu et al., 2020). Each of
them has five levels. All offline/online experiments ran 5 ran-
dom seeds. We ran all offline methods for 500 episodes with
1000 mini-batches each, except for halfcheetah-medium-
expert, halfcheetah-expert, and hopper-expert where we ran
CQL for 1500 episodes to converge. All online experiments
were run for 100 episodes with 1000 environment interac-
tions each. This protocol is quite commonly used, and more
implementation details are deferred to Appendix E.

Figure 5 shows the average return as a function of training
episodes, achieved at each offline model (left half of the
subplots) and online model (right half). Since SAC→ACA
and SAC→SAC share the same offline method, their curves
coincide on the left of the subplots, with the green curve
shown only (no blue) on the left. A similar situation occurs
to CQL→BR and CQL→SAC, and only the purple curve is
shown on the left half (no pink).

In Figure 5, CQL→SAC (purple→pink) drops significantly
on the expert level (fifth row) and medium-expert level
(fourth row). SAC→SAC (green→blue) drops in almost all
cases, except random (first row) and medium-replay (third
row). It is clear that our SAC→ACA (green) barely suffers
performance drop. The only exception is Hopper-medium-
expert, but all other methods (except AWAC) also suffer
a drop there, while ours recover most rapidly. Besides,
ours offers comparable policy improvement to the strongest
baseline, which is CQL→BR.

Since different baselines in Table 1 employ different of-
fline methods, we emphasize that it is insufficient to base
the comparison of fine-tuning methods only on their final
online performance. Therefore, we provided in Table 2—
via numbers in round brackets—the increase (δ) of return
achieved by fine-tuning on top of the final offline policy.
CQL→BR appears the best among all baseline methods,
scoring an increase of 190.94 in total. However, it is signifi-
cantly outperformed by our SAC→ACA, which achieves a
total improvement of 278.31, while also being the highest
in the final score. As Nair et al. (2020) also reports fine-
tuning results at 500k online steps, we will provide further
comparisons with their results in Appendix C.2.

Besides the numerical advantage, ACA also offers addi-
tional methodological benefits by accommodating different
offline methods for initialization (Section 6.3), and learning
online without accessing offline data (Section 6.4).
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Table 1: Baseline algorithms for O2O RL. See acronyms below.

Flag Name Offline Online Description

→ SAC→ACA (Ours) SAC+ML Algorithm 3 Our method init from SAC+ML
→ SAC→SAC SAC+ML SAC SAC init from SAC+ML
→ CQL→BR CQL SAC w/ BR Balanced replay init from CQL
→ CQL→SAC CQL SAC SAC init from CQL
→ AWAC AWAC AWAC AWAC init from AWAC

SAC - SAC SAC from scratch
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Figure 5: Comparing SAC→ACA (ours) with other baselines for offline-to-online RL. The shaded areas stand for the
standard deviation. Refer to Table 1 for legend meanings.

6.2. Comparison with online decision transformer

Since ODT is not based on dynamic programming, we com-
pared it with SAC→ACA in this separate section. As Zheng
et al. (2022) experimented using 200k online samples and
averaged over 10 seeds, we ran SAC+ML with 5 additional
seeds and ran 200k online steps for all 10 SAC+ML runs,
to make the comparison fair. In addition, we included IQL
for comparison, with both ODT and IQL results duplicated
from Zheng et al. (2022). As shown in Table 3, for al-

most all medium and medium-replay tasks, our SAC→ACA
outperforms ODT and IQL in both final performance and
performance increase (δ) by a large margin.

In addition, we conducted comparisons on the AntMaze-v2
environments, and observed that the AntMaze environment
could benefit from i) standard Gaussian policy parameteri-
zation rather than squashed Gaussian, and ii) less stochastic
policy by using a lower value of H̄. Further details can be
found in Appendix E. We also report offline scores, stan-
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Table 2: Average normalized D4RL scores of various O2O methods. Outside parenthesis: scores at the end of 100k online
steps. Inside parenthesis: the increase of that score upon the end of offline training.

Dataset Env Score(δ)
SAC→SAC CQL→SAC AWAC CQL→BR SAC→ACA (ours)

Random
HalfCheetah 54.60(37.31) 54.00(28.70) 34.26(18.94) 84.36(59.06) 72.60(55.31)

Hopper 17.62(9.69) 1.37(0.72) 16.85(3.03) 29.80(29.15) 81.85(73.92)
Walker2d 3.86(0.50) 3.91(3.25) 4.15(-0.58) 10.05(9.39) 12.42(9.06)

Medium
HalfCheetah 75.20(28.86) 69.52(21.10) 50.48(1.54) 82.95(34.52) 66.58(20.25)

Hopper 73.39(19.08) 89.77(16.30) 97.53(24.48) 98.14(24.67) 96.54(42.24)
Walker2d 79.63(-1.53) 81.78(-0.70) 1.93(-0.54) 76.36(-6.11) 74.66(-6.50)

Med.-Replay
HalfCheetah 68.90(26.37) 63.91(18.01) 46.84(2.42) 78.36(32.46) 59.03(16.50)

Hopper 74.04(25.22) 92.01(-3.95) 95.98(0.00) 97.25(1.28) 85.54(36.72)
Walker2d 85.40(23.21) 79.28(0.89) 80.81(2.97) 100.06(21.68) 85.17(22.98)

Med.-Expert
HalfCheetah 82.15(-11.38) 93.94(28.75) 68.75(32.30) 96.35(31.17) 93.74(0.21)

Hopper 65.44(-27.64) 80.46(-13.26) 73.13(47.50) 78.51(-15.22) 98.02(4.94)
Walker2d 87.18(-20.95) 107.03(-2.63) 45.21(4.45) 104.43(-5.22) 110.54(2.42)

Expert
HalfCheetah 38.17(-55.42) 94.88(-0.98) 21.23(14.83) 97.67(1.82) 93.14(-0.46)

Hopper 28.20(-82.68) 94.56(-13.95) 57.97(-12.85) 79.32(-29.19) 110.21(-0.67)
Walker2d 67.76(-40.45) 81.92(-27.24) 110.68(0.80) 110.65(1.50) 109.59(1.38)

Total 901.54(-69.80) 1088.33(55.03) 805.80(139.29) 1224.26(190.94) 1249.65(278.31)

Table 3: Comparing SAC→ACA with ODT and IQL. HC =
HalfCheetah, H = Hopper, W = Walker2d, AM=AntMaze.

Dataset Env IQL(200k) δIQL ODT(200k) δODT ACA(200k) δACA

Medium
HC 47.41 0.04 42.16 -0.56 72.67 26.28
H 66.79 2.98 97.54 30.59 99.32 42.39
W 80.33 0.44 76.79 4.60 76.05 -3.30

Med.-Replay
HC 44.14 0.04 40.42 0.43 64.29 22.11
H 96.23 4.10 88.89 2.25 103.17 53.92
W 70.55 -3.12 76.86 7.94 82.09 18.89

Locomotion total 405.45 4.48 422.66 45.25 497.58 160.27

AM-umaze 89.50 2.40 88.50 35.40 93.0 35.0
AM-umaze-diverse 56.80 -7.60 56.00 7.99 67.0 27.0

AntMaze total 146.30 -5.20 144.50 43.39 160.0 62.0

dard deviations, in addition to Table 3, in Table 8 along with
AntMaze training curves in Figure 12 in Appendix C.3.

6.3. Initialization from different offline methods

A key advantage of our alignment method lies in the flexibil-
ity of utilizing any offline RL method, as long as it outputs
a stochastic policy because the Q-function is reset anyway.
In contrast, SOTA methods sometimes require certain prop-
erties in the offline method such as pessimism. For example,
BR’s performance depends critically on the use of CQL.

To demonstrate our flexibility, we adopted CQL for offline
learning and made a simple change to the alignment step
which, in (8), clips log πθ0 to 0 when it is negative. In
comparison, we also tested BR by using SAC+ML as the
offline learner. Figure 6 shows the results of ACA/BR
initialized from SAC+ML/CQL. While the performance
of our approach does not change much when initializing
from different offline models, BR shows significant per-

0 200 400 0 50 100
0

1000

2000

3000

4000
Hopper-medium-v2

SAC+ML BR
CQL BR
SAC+ML ACA
CQL ACA

Figure 6: ACA could achieve similar performance while
initializing from both SAC+ML/CQL. BR requires CQL.

formance drops when it is initialized from SAC+ML, i.e.
non-pessimistic offline training. Further comparison is de-
ferred to Appendix D.3.

6.4. Online training without offline data

When the application precludes the accessibility of offline
data during online fine-tuning, we re-ran the benchmarks for
medium-replay, medium-expert, expert. There is obviously
no reason to replay offline data at random level, and empiri-
cally, we observed that online fine-tuning already performed
well on medium when no offline data was replayed.

Figure 13 in Appendix C.4 shows the online performance of
our method without using offline data, compared with other
baselines which also do not access offline data during online
fine-tuning. The BR algorithm requires offline data. So
compared with Figure 5, we no longer have the purple line
that corresponds to CQL→BR. It turns out that all the other
baselines retain similar online performance as in Figure 5,
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Figure 7: Ablation study: we changed the critic update to
show that the re-parameterization of Q-function is crucial.

which had been shown inferior to our SAC→ACA. Table 4
further highlights that ACA does not exhibit significant
change in online performance in the absence of offline data.

Table 4: Scores for SAC→ACA at 100k online steps, and
its increase from offline result (in parenthesis). Comparison
is made between with or without offline data.

Dataset Env Score(δ)
w/ offline data w/o offline data

Med.-Replay
HalfCheetah 59.03(16.50) 59.48(16.95)

Hopper 85.54(36.72) 77.19(28.37)
Walker2d 85.17(22.98) 84.27(22.08)

Med.-Expert
HalfCheetah 93.74(0.21) 93.81(0.28)

Hopper 98.02(4.94) 105.67(12.59)
Walker2d 110.54(2.42) 110.93(2.81)

Expert
HalfCheetah 93.14(-0.46) 90.76(-2.83)

Hopper 110.21(-0.67) 109.22(-1.66)
Walker2d 109.59(1.38) 110.52(2.31)

Total 844.98(84.02) 841.84(80.88)

6.5. Ablation Study

Choice of Rϕ initialization As mentioned in Section 5.3,
log πθ0 in (11) can be considered as a “behaviour cloning”
regularization. One may wonder whether this, instead of
actor-critic alignment, is the primary contributor to the em-
pirical effectiveness. We therefore conducted the following
ablation study, which answers this question in the negative.

In contrast to the parameterization of online Q-function in
(10), we designed two alternatives where Rϕ is initialized
through offline critic Qµ instead of Zψ, and the actor up-
date was kept intact as in (11). Ablation 1 (BC only): we
used regular SAC critic updates without our parameteriza-
tion. The term log πθ0 now only appears in the actor up-
date, which could be seen a SAC framework with behaviour
cloning regularized actor update. Ablation 2 (Rϕ init by
Qµ): we adopt the same decomposed parameterization as in
(10), but initialize Rϕi

with the offline learned Qµi
, instead

of Zψi , to show the importance of Zψi . The objectives of
the two ablations are relegated to Appendix D.1.

20 40 60 80 100

0
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1000
1500
2000
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3000
3500

Hopper-medium-v2
offline score

= 0.0005
= 0.003
= 0.005
= 0.007

Figure 8: Online fine-tuning with delayed πθ− instead of
πθ0 . The delayed parameter θ− is updated by θ− ← τθ− +
(1− τ)θ with different values of τ .

Figure 7 shows that the two ablation alternatives suffer clear
performance drop due to the attributed error in the offline
trained Q-functions. See Appendix D.1 for more compari-
son.

Choice of log πθ0 Reparameterzing Qϕ with Qϕ =
log πθ +Rϕ and Qϕ = log πθ0 +Rϕ are technically equiv-
alent at initialization. However, online updates of Qϕ might
benefit from using a static log πθ0 , as Qϕ = log πθ0 + Rϕ
has only one moving part Rϕ, leading to potential better
training stability.

We now verify our hypothesis and our choice of πθ0 by
testingQϕ = log πθ−+Rϕ, where θ− is the delayed version
of θ. Figure 8 shows that it fails in the hopper-medium
task regardless the choice of τ . It is noteworthy that the
smallest τ = 0.0005 performs the best among all values of
τ , consistent with the good performance achieved by our
choice πθ0 (which corresponds to τ = 0). Intuitively, when
the policy experiences a performance drop, hard-wiring Q
towards the delayed πθ− will amplify this negative effect.

7. Conclusion and Future Work
We proposed an actor-critic alignment method that allows
safe offline-to-online RL and achieves strong empirical per-
formance. To combat distribution shift, we designed a novel
approach that disregards offline learned Q-functions, and re-
constructs it based on the learned policy using a closed-form
that is motivated from the entropy-regularized actor update.
Since it does not need an offline critic, online actor-critic
fine-tuning is made possible for offline supervised methods,
e.g. decision transformer and RvS (Emmons et al., 2022).

Acknowledgements
We thank the reviewers for their constructive comments.
This work is supported by NSF grant RI:1910146 and NIH
grant R01CA258827.

9



Actor-Critic Alignment for Offline-to-Online Reinforcement Learning

References
Bain, M. and Sammut, C. A framework for behavioural

cloning. In Machine Intelligence 15, pp. 103–129, 1995.

Bouton, M., Julian, K. D., Nakhaei, A., Fujimura, K.,
and Kochenderfer, M. J. Decomposition methods with
deep corrections for reinforcement learning. Autonomous
Agents and Multi-Agent Systems, 33:330–352, 2019.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S.
RvS: What is essential for offline RL via supervised learn-
ing? In International Conference on Learning Represen-
tations (ICLR), 2022.
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A. Algorithm Details
The pseudo-code of the offline, alignment, and online phases is provided in Algorithm 1, 2, and 3, respectively.

Table 5: Learning in three phases for offline-to-online RL with actor-critic alignment

Phase
Learnable

Component Description

Offline
training

πθ(a|s), Qµ(s, a)
Zψ(s) (practically), α

i) Run offline RL to train πθ(a|s) and Qµ(s, a) .

ii) Fit the baseline function Zψ(s) with Eq. (8).

Actor-critic
alignment Zψ(s) (conceptually)

Initialize Rϕ(s, a) with Zψ(s) , online critic is

parameterized as Qϕ(s, a) := log πθ0(a|s) +Rϕ(s, a).

Online
training πθ(a|s), Rϕ(s, a), α

Run ACA (Algorithm 3) with offline trained policy πθ(a|s)
and aligned critic Qϕ(s, a) := log πθ0(a|s) +Rϕ(s, a) .

Although the baseline function Zψ(s) is introduced in the step of actor-critic alignment that follows offline training, in
practice, we interlace its update with the offline training updates for improved optimization and efficiency.

Algorithm 1 Offline SAC+ML

Initialize parameters θ, α, ψi, µi, µ̄i for i ∈ {1, 2}
for each iteration do

sample mini-batch from dataset D
update α with Eq. (6)
update µi with Eq. (5) for i ∈ {1, 2}
update θ with Eq. (4)
update ψi with Eq. (8) for i ∈ {1, 2}
µ̄i ← τµi + (1− τ)µ̄i for i ∈ {1, 2}

end for

Algorithm 2 Actor-critic Alignment

Require: θ, α, ψi, µi, µ̄i, for i ∈ {1, 2}
Initialize parameters ϕi, ϕ̄i, for i ∈ {1, 2}
Set Rϕi(s, a)← Zψi(s), for i ∈ {1, 2}
Copy ϕ̄i ← ϕi
Copy θ0 ← θ
Reset α← 1
Delete µi and µ̄i, for i ∈ {1, 2}

A.1. Optimization of Zψi

Since the alignment objective (8) needs to access offline data, we blended it into the offline training as shown in the second
last step of Algorithm 1. It is noteworthy that this is only for the convenience of implementation, and the ψi values do not
have any influence on SAC+ML training itself. Conversely, the optimized value of ψi provides a good initialization for a
standalone optimization of objective (8). In practice, we observed that the ψi found from offline training is good enough,
and we just directly used them to initialize the online critic Rϕi .

A.2. Techniques to Stabilize Online Learning

We propose β-clipping trick and critic interpolation to achieve better empirical performance. As log πθ0 is unbounded below,
the training can be numerically unstable, β-clipping trick bounds the term to stabilize training. And critic interpolation gives
the flexibility to balance between safety transfer and policy improvement.

A.2.1. β-CLIPPING TRICK

As in the course of online learning, the magnitude of | log πθ0 | can sometimes be an/several order larger than Rϕ, which
leads to very instable critic training. Given πθ0(a|s) is parameterized by squashed Gaussian distribution N(µs, σ

2
s), we clip

the log πθ0 term, as follows

CLIPβ(log πθ0(a|s)) := SoftPlus
(
log πθ0(a|s)− Cβ(s)

)
+ Cβ(s) (12)

where Cβ(s) = min {log πθ0(µs − βσs|s), log πθ0(µs + βσs|s)} . (13)
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Algorithm 3 Online training

Require: θ, θ0, α, ϕi, ϕ̄i from Algo. 2
if D is accessible then

Initialize replay buffer B with top N trajectories
else

Initialize replay buffer B ← ∅
end if
for each iteration do

sample a mini-batch from buffer B
update α with Eq. (6)
update ϕi with Eq. (21) for i ∈ {1, 2}
update θ with Eq. (20)
ϕ̄i ← τϕi + (1− τ)ϕ̄i

end for

Here, β is a hyper-parameter, and SoftPlus(x) = log(1 + exp(x)). Essentially it clips log πθ0(a|s) at Cβ(s). This CLIPβ(·)
operator bounds the log πθ0 term in a reasonable range, and also requires minimal tuning of hyper-parameter, see Section D.4
for details. Using CLIPβ , we define Qβϕ as

Qβϕ(s, a) := CLIPβ(log πθ0(a|s)) +Rϕ(s, a). (14)

Now, the clipped online actor/critic updates can be summarized by

Lβπ(θ,d) = Es∼dEa∼πθ

[
α log πθ(a|s)−Qβϕ(s, a)

]
, (15)

LβQ(ϕi,d) = E(s,a,r,s′,d)∼d

[(
Qβϕi

(s, a)− y(r, s′, d)
)2

]
, (16)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

[
Qβϕ(s

′, a′)− α log πθ(a
′|s′)

]
. (17)

A.2.2. CRITIC INTERPOLATION

At the initial phase of online training, CLIPβ(log πθ0(a|s)) dominates the actor update, safeguarding the policy. As training
proceeds, Rϕ grows to overcome the barrier and starts to improve the policy. Ideally, we wish to finely control such a
junction so that the safety of O2O transition does not excessively slow down the policy improvement. To this end, we
introduce an interpolation between closed-form initialized critic and restriction-free critic. We call it critic interpolation,
which can be written as

Qk,βϕ (s, a) := k
(

CLIPβ
(
log πθ0(a|s)

)
+Rϕ(s, a)︸ ︷︷ ︸

closed-from initialized critic

)
+ (1− k) Rϕ(s, a)︸ ︷︷ ︸

restriction-free critic

(18)

= k × CLIPβ
(
log πθ0(a|s)

)
+Rϕ(s, a). (19)

We set k = 1 at t = 0 to assert closed-form initialization. Then we linearly decay k during the course of online training,
allowing a transition from closed-form initialization to free SAC update. The detailed decaying rate can be found in
Appendix E.5.

A.3. Concluded Online Training

Our final online update rules are summarized as follows:

Lonline
π (θ,d) = Es∼dEa∼πθ

[
α log πθ(a|s)−Qk,βϕ (s, a)

]
(20)

Lonline
Q (ϕi,d) = E(s,a,r,s′,d)∼d

[(
Qk,βϕ (s, a)− y(r, s′, d)

)2
]

(21)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

[
Qk,βϕ (s′, a′)− α log πθ(a

′|s′)
]
. (22)
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B. Demonstration of Motivation
B.1. Illustration Distribution Shift

Figure 9 shows the histogram of the ℓ1 norm of state vectors from the hopper-random-v2, hopper-medium-v2 and hopper-
expert-v2 datasets. Clearly, there is a distribution shift. So we can obtain out-of-distribution samples (with respect to the
medium/expert dataset trained models) by sampling from random dataset.

The distributional shift justifies the design of our actor-only experiments where we used another offline dataset to simulate
distributional shift so that one could ablate the factor of data collection.

0 5 10 15 20 25 30 35 400

10000

20000

30000

40000
random
medium
expert

Figure 9: Histogram of ℓ1 norm of state vectors in hopper random, medium and expert datasets.

B.2. More Actor-Only Experiments

We show the same actor-only experiments, that were presented in Sec 4, with more tasks. As a reminder, the actor-only
experiments details are

• Load SAC+ML/CQL models (actor π and critic Q) pre-trained on medium/expert level

• Disable critic update, data collecting, etc. (In other words, only keep actor and temperature update)

• Use SAC style actor/temperature updates for actor-only updates

• Run actor-only updates on random dataset to simulate OOD data

• Run total 10k steps and evaluate its performance every 100 steps

to test how different offline/aligned Q-functions affects the actor update.
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Figure 10: Actor only experiments with aligned Q-function vs. SAC+ML Q-function. Sub-title indicates where π and Q are
loaded from, i.e. Hopper-expert-v2 means π and Q are loaded from model pre-trained from Hopper-expert-v2 dataset, while
all actor-only online updates are made on random level dataset to simulate OOD data.
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Figure 11: Actor only experiments with aligned Q-function vs. CQL Q-function. Sub-title indicates where π and Q are
loaded from, i.e. Hopper-expert-v2 means π and Q are loaded from model pre-trained from Hopper-expert-v2 dataset, while
all actor-only online updates are made on random level dataset to simulate OOD data.

It can be observed that, in our controlled actor-only experiments, our aligned Q-functions are able to retain offline scores for
most of tasks while CQL/SAC+ML Q-function failed.

C. Additional Comparisons
C.1. SAC+ML vs. TD3+BC

We would like to emphasize that our goal is not to propose a stronger offline RL method. Table 6 is presented to show that
our SAC+ML modification performs comparably to the original offline method, TD3+BC.

TD3+BC results in Table 6 were copied from Appendix C.3 of their paper (Fujimoto & Gu, 2021). The evaluation protocol
is identical to theirs: (1) all experiments were done in D4RL-v2 datasets; (2) and the results reported were from the last
evaluation step, averaged over 5 random seeds.

Table 6: SAC+ML vs. TD3+BC

Dataset Environment TD3+BC SAC+ML

Random
HalfCheetah 11.0±1.1 17.3±2.7

Hopper 8.5±0.6 7.9±0.3

Walker2d 1.6±1.7 3.4±2.1

Medium
HalfCheetah 48.3±0.3 46.3±0.2

Hopper 59.3±4.2 54.3±3.4

Walker2d 83.7±2.1 81.2±1.6

Medium-Replay
HalfCheetah 44.6±0.5 42.5±1.7

Hopper 60.9±18.8 48.8±20.4

Walker2d 81.8±5.5 62.2±4.9

Medium-Expert
HalfCheetah 90.7±4.3 93.5±4.0

Hopper 98.0±9.4 93.1±7.8

Walker2d 110.1±0.5 108.1±1.6

Expert
HalfCheetah 96.7±1.1 93.6±0.8

Hopper 107.8±7 110.9±1.6

Walker2d 110.2±0.3 108.2±0.3

Total 1013.2 971.3
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C.2. Additional Comparison with AWAC

Nair et al. (2020) reported their online fine-tuning results with 500k online steps. Due to time constraint, we ran all
experiments with 100k online steps. We however trained SAC→ACA for 500k steps to enable further comparison with the
results reported by Nair et al. (2020).

As shown in Table 7, ACA achieves higher final scores at 500k online episodes and has similar improvement δ compared to
AWAC, while AWAC has more room for improvement as AWAC (offline) generally under-performs to SAC+ML, especially
on medium-expert and expert level datasets.

Table 7: Additional comparison with AWAC. * indicates numbers duplicated from Nair et al. (2020).

Env Dataset AWAC∗ AWAC∗
δawac

SAC→ACA SAC→ACA
δours(offline) (online) (offline) (online)

HalfCheetah

Random 2.2 52.9 50.7 17.29 96.42±3.11 79.13
Medium 37.4 41.1 3.7 46.33 87.55±2.33 41.22

Med.-Expert 36.8 41.0 4.2 93.53 94.83±0.51 1.30
Expert 78.5 105.6 27.1 93.59 94.46±0.87 0.87

Hopper

Random 9.6 62.8 53.2 7.93 94.69±23.90 86.76
Medium 72.0 91.0 19.0 54.31 103.35±0.23 49.05

Med.-Expert 80.9 111.9 31.0 93.08 109.09±2.25 16.01
Expert 85.2 111.8 26.6 110.88 111.02±0.58 0.14

Walker2d

Random 5.1 11.7 6.6 3.36 76.34±8.18 72.98
Medium 30.1 79.1 49.0 81.16 88.65±3.22 7.49

Med.-Expert 42.7 78.3 35.6 108.12 112.10±0.71 3.98
Expert 57.0 103.0 46.0 108.21 105.82±7.92 -2.39

Total 537.5 890.2 352.7 817.79 1174.33 356.53

C.3. Results versus ODT and IQL

Table 8: Comparing SAC→ACA with online decision transformer (ODT) and implicit Q-learning (IQL).

Dataset Environment IQL(offline) IQL(200k) δIQL ODT(offline) ODT(200k) δODT SAC+ML ACA(200k) δACA

Medium
HalfCheetah 47.37±0.29 47.41±0.15 0.04 42.72±0.46 42.16±1.48 -0.56 46.40±0.30 72.67±3.01 26.28

Hopper 63.81±9.15 66.79±4.07 2.98 66.95±3.26 97.54±2.10 30.59 56.93±4.12 99.32±7.82 42.39
Walker2d 79.89±3.06 80.33±2.33 0.44 72.19±6.49 76.79±2.30 4.60 79.36±2.25 76.05±20.57 -3.30

Med.-Replay
HalfCheetah 44.10±1.14 44.14±0.3 0.04 39.99±0.68 40.42±1.61 0.43 42.18±0.53 64.29±2.97 22.11

Hopper 92.13±10.43 96.23±4.35 4.10 86.64±5.41 88.89±6.33 2.25 49.25±6.08 103.17±3.08 53.92
Walker2d 73.67±6.37 70.55±5.81 -3.12 68.92±4.79 76.86±4.04 7.94 63.20±10.12 82.09±27.66 18.89

Total (w/o hopper-mr) 308.84 309.22 0.38 290.77 333.77 43.00 288.06 394.41 106.35
Locomotion Total (all) 400.97 405.45 4.48 377.41 422.66 45.25 337.31 497.58 160.27

antmaze-umaze 87.1±2.81 89.5±5.43 2.4 53.1±4.21 88.5±5.88 35.4 58.0±14.70 93.0±11.87 35.0
antmaze-umaze-diverse 64.4±8.95 56.8±6.42 -7.6 50.2±5.69 56.0±5.69 7.99 40.0±11.83 67.0±30.68 27.0

AntMaze Total 151.5 146.3 -5.2 103.3 144.5 43.39 98.0 160.0 62.0

Locomotion. As shown in Table 8, for almost all medium and medium-replay tasks, our SAC→ACA outperforms ODT and
IQL in both final performance and performance increase (δ). We also note that ODT(offline) and IQL(offline) outperform
SAC+ML in the hopper-medium-replay task by a large margin, which leaves our approach more room to improve. Therefore,
we made the same comparison by excluding the hopper-medium-replay task. In this case, ODT, IQL and ours were
initialized from roughly the same performance, and ours still outperforms ODT/IQL in both total final performance and total
performance increase.

AntMaze. Overall, SAC→ACA outperforms ODT and IQL on AntMaze although ACA shows higher standard deviation,
especially in umaze-diverse. Figure 12 shows the training curves of our SAC→ACA on AntMaze.
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Figure 12: D4RL scores of AntMaze tasks.

C.4. Online Training without Offline Data

The distributional shift issue would clearly be severer when offline data are not accessible during the online phase. To be
more conservative, we therefore set βw/o = 1.5βw/ for experiments without offline data, excluding random and medium
levels as both used no offline data for our main results already. (βw/ denotes the hyper-parameter we used for our main
results, see Table 10 for details.) All other hyper-parameters remained unchanged.
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Figure 13: When offline data are not accessible, vs. other baselines
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C.5. Fine-tuning with Burn in Period

In addition, we run SAC→SAC and CQL→SAC with 50k “burn in” episodes (Silver et al., 2018), where the agent interacts
with the environment but only updates the critic, following in our experiment settings in Section 6. We observed that the
initial performance drop upon finetuning is still noticeable in Figure 14 and Figure 15.

Hypothesis: Note that Silver et al. (2018) considers initialization from a hand-engineered policy or model-predictive
controller. So the initial Q-function is not learned from offline data. Therefore it could admit high Bellman error. A “burn-in”
phase will help improving the initial Q-function in terms of Bellman error with additional data collected online, as they
terminate the burn-in phase when the Bellman error falls below a certain threshold. However, in the offline RL setting,
there are already plenty offline data to allow the critic to reach convergence with considerably low Bellman error. And low
Bellman error on offline data does not guarantee smooth O2O transfer as the key obstacle in O2O setting is the distributional
shift. Additional online samples collected during “burn-in” are likely to be in-distribution, which might not contribute to
tackling the distributional shift problem.
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Figure 14: SAC→SAC with 50k “burn in” episodes.
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Figure 15: CQL→SAC with 50k “burn in” episodes.
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D. Ablation Studies
D.1. Alternative Q Reparameterizations

Here we write out the detailed formula of the critic objective in the two ablation studies in Section 6.5.

Ablation 1: BC only

Lablation1
Q (ϕi,d) = E(s,a,r,s′,d)∼d

[(
Rϕ(s, a)− y(r, s′, d)

)2
]

(23)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

(
Rϕ(s

′, a′)− α log πθ(a
′|s′)

)
(24)

where log πθ0 is no longer part of the critic update but still exists in actor update as Eq. (11) and Rϕ is initialized by offline
critic Qµ, therefore, one could consider it is regular SAC style actor-critic with a behaviour cloning regularizer in actor
update.

Ablation 2: Rϕ init by Qµ

Lablation2
Q (ϕi,d) = E(s,a,r,s′,d)∼d

[(
Qk,βϕ (s, a)− y(r, s′, d)

)2
]

(25)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

(
Qk,βϕ (s′, a′)− α log πθ(a

′|s′)
)

(26)

where actor-critic updates are identical to our proposal, however Rϕ is initialized by offline critic Qµ instead of baseline Zψ
to show the importance of the baseline Zψ .

In addition, we show our ablation study with all medium-level tasks
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Figure 16: Ablation study: We keep the actor update same as Eq (11), we however change the critic update to show that
the re-parameterized Q-function is critical. BC only (ablation 1): Rϕ is seen as the online critic and is initialized by Qµ.
Critic updates are made as regular SAC critic update without our re-parameterization. It therefore can be seen as SAC with
behavior cloning regularized actor update. Rϕ init by Qµ (ablation 2): We keep the ACA framework but initialize Rϕ by
Qµ instead of Zψ to show the importance of the baseline.

Figure 16 shows that on tasks vulnerable to transfer risk such as hopper-medium and walker-medium (second and third
subplots), the two ablation alternatives suffer clear performance drop due to the attributed error in the offline trained
Q-functions. However, some tasks can be less vulnerable. For example, on halfcheetah-medium, Figure 5 shows that
SAC→SAC (green→blue) only suffers a small amount of drop, although it employs no mechanism to combat distribution
shift. In such a task, the two ablation alternatives remain competitive to no surprise (first subplot).
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D.2. Reparameterization with θ− (delayed parameters)

We in addition tested the alternative choice ofQϕ = log πθ− +Rϕ on all medium-level tasks. It still fails in all medium-level
task regardless the choice of τ and the smallest τ = 0.0005 still performs the best, supporting our choice πθ0 over the
alternative.

20 40 60 80 100

0

2000

4000

6000

HalfCheetah-medium-v2

20 40 60 80 100

0

500

1000

1500

2000

2500

3000

3500
Hopper-medium-v2

20 40 60 80 100
0

1000

2000

3000

4000

Walker2d-medium-v2
offline score

= 0.0005
= 0.003
= 0.005
= 0.007

Online fine-tuning with delayed log . Delayed parameters  are updated by + (1 )  with different .

Figure 17: Online fine-tuning with delayed log πθ− instead of log πθ0 . Delayed parameters θ− are updated by θ− ←
τθ− + (1− τ)θ with different values of τ .

D.3. Different Initialization

Similarly to our experiments in Section 6.3, we show additional results on halfcheetah-medium and walker2d-medium. It
can be observed that ACA’s performance does not affected much by different offline training approaches. While BR admits
huge performance drop when initializing from SAC+ML in hopper and walker2d.
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Figure 18: ACA and BR initialized from different offline methods. ACA could achieve similar performance while initializing
from both SAC+ML/CQL. BR requires CQL initialization.

D.4. Sensitivity on β

Figure 19 shows that the performance of SAC→ACA is not very sensitive to the choice of β.

Figure 19: Results for different β
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E. Implementations
Overall, all our implementations are from or based on d3rlpy (Takuma Seno, 2021), a popular RL library that specialized for
offline RL. Using the same lib helps us to minimize the impact of implementation difference. Many of our baselines (see
Table 11) are implemented upon SAC, with changes proposed in their original papers, respectively.

E.1. General implementation details

Evaluation protocol: All offline/online experiments ran 5 random seeds. We ran all offline algorithms for 500 episodes
with 1000 mini-batches each, and all online experiments for 100 episodes with 1000 environment interactions each. After
each episode, we conducted 10 evaluations and computed the average return. Results reported are mean and std of average
returns, over 5 random seeds.

Choice of offline checkpoints: Evaluating in the offline phase, in fact, requires online interactions. Therefore we do not
pick the best-performed checkpoints. Instead, we use the last checkpoints as our initialization models, for online.

Squashed Gaussian: For all methods with stochastic policies, we parameterized their policies by unimodal Gaussian, and
applied the squashed Gaussian trick (Haarnoja et al., 2018) to bound the range of action to [−1, 1].

One exception is ACA on AntMaze, where we used Gaussian parameterization rather than Squashed Gaussian with a
state-independent standard deviation. This choice is same as Kostrikov et al. (2022b) and AntMaze tasks might benefit from
this parameterization as discussed in this GitHub issue: https://github.com/takuseno/d3rlpy/issues/171.

Buffer initialization: We followed the instructions in AWAC and BR papers on initializing online replay buffers. For
AWAC, we added all transitions in D to the buffer B. And for BR, we refer to their original implementation at this URL
for details. For SAC→SAC and CQL→SAC, we added all transitions in D to the buffer B as well, as there is no explicit
instructions or common protocols. All replay buffer sizes were set to be 1e6, unless specified in the Appendix E.5.

E.2. Offline

AWAC and CQL: We used d3rlpy implementations for AWAC and CQL.

SAC+ML: Our SAC+ML implementation was adapted from d3rlpy’s TD3+BC implementation, with changing the actor
update rule to Eq. (4), and adding the learning of baseline Zψ .

E.3. Online

Training details for online: For all methods, we made a temperature (if applicable), a critic, and an actor update after
every environmental interaction, if there were enough transitions (i.e. more than batch size) in the replay buffer. Target
networks were all updated in a Polyak averaging fashion, where the step size τ = 0.005 for all experiments. See Section E.5
for more hyper-parameter details. And online results, reported in tables, were also using the last checkpoints instead of
best-performed ones.

SAC: We used d3rlpy implementation for SAC.

SAC→SAC and CQL→SAC: We simply loaded offline-trained SAC+ML and CQL, respectively, and then ran SAC online.

BR: We adapted all parts that related to the prioritized replay from the official BR implementation, to a d3rlpy SAC
implementation base, as the original BR paper also run SAC online.

ACA (ours:) Implementation of our approach can be found at https://github.com/ZishunYu/ACA. In addition to Algorithm 3,
we also did gradient norm clipping to actor updates, which is commonly used in RL implementations.

E.4. AntMaze

Following the experimental details of Kostrikov et al. (2022b) we subtract 1 from rewards for all AntMaze tasks.
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E.5. Hyper-parameters

Table 9: Specific hyper-parameters for different baselines. Please
refer to the original paper for the meaning of hyper-parameter names.

Algo. Hyper-param name Value

SAC+ML ω 30
AWAC λ 1.0

CQL conservative weight 10
# of actions sampled 10

BR

offline buffer size 2.5e6
online buffer size 2.5e5

density ratio estimation network arch. [|S|+ |A|, 256, 256, 1]
density ratio estimation network temp 5

ρ 0.75
ACA π grad norm clip 0.25

Table 10: Hyper-params used for our main results re-
ported in section 6.1. x

y−→ z represents that k decays
from x to z using y episodes.

hyper-param HalfCheetah Hopper Walker2d

Random
N (# of init trajs) 0
β (β-clipping) 7

k (interpolation) 1
10−→ 0

Medium
N 0
β 7
k 1

20−→ 0.5

Medium-replay
N 50
β 7
k 1

20−→ 0.5

Medium-expert
N 50
β 15
k 1

N/A−−→ 1

Expert
N 50
β 15
k 1

N/A−−→ 1

umaze and umaze-diverse

AntMaze
N 0
β 3
k 1

100−−→ 0.5

Table 11: General hyper-parameters. ACA and BR stand for SAC→ACA and CQL→BR, respectively.
CQL SAC+ML ACA SAC→SAC BR CQL→SAC SAC (scratch) AWAC (off) AWAC (on)

Phase offline online offline online
Based on SAC? Yes No

General hyper-params

π Arch. [|S|+ |A|, 256, 256, 1]
Q Arch. [|S|+ |A|, 256, 256, 1]
Z Arch. [|S|, 256, 256, 1] N/A for online
# Q nets 2
# Z nets 2 N/A
τ (Polyak avg.) 0.005
Activation ReLU
Optimizer Adam for all
Adam params betas = (0.9, 0.999), eps = 1e-8, weight decay = 0
π lr 1e-4 3e-4 3e-4
Q lr 3e-4 3e-4 3e-4
α lr 1e-4 3e-4 3e-4 N/A
Z lr 3e-4 3e-4 N/A for online
# episodes 500 100
# it/ep 1000
# batch/it 1
Batch size 256

Hyper-params for the base SAC impl. (Locomotion)

Entropy target H̄ |A| N/A
Squashed Gaussian Yes N/A

Hyper-params for the base SAC impl. (AntMaze)

H̄ N/A 0.5|A| N/A
Squashed Gaussian N/A No N/A
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F. Further Discussions
F.1. Averaged Version of Figure 4

Figures 21a and 21b provide averaged versions of Figure 4 for in-distribution and out-of-distribution samples, respectively.
The approach used to generate these two figures is illustrated in Figure 20.

(a) Perturb action (b) Centralization (c) Multiple samples (d) Aggregation
Figure 20: Demonstration of how Figure 21a and Figure 21b are created. (a) Given a sample (s, a), we perturb a along a
dimension to plot Q(s, ã) and compare Q(s, ã) to Q(s, π(s)); (b) We plot Q(s, ã) with its deviation from Q(s, π(s)), so
that Q(s, π(s)) is centered at y = 0 and π(s) is centered at x = 0; (c) Such a centralization allows us to place multiple
samples (different s) in the same plot, where points above the x-axis correspond to ”over-estimated” perturbations; (d) We
aggregate multiple samples by counting how many points are above 0. This way, the height of the red part in the bar plot
quantifies the fraction of points that are ”over-estimated”. For an ”over-estimated” point (s, a), its x-coordinate stands for
the distance between a and the policy favored action π(s).

TL;DR: Area of red region represents the fraction of Q-value “over-estimation” compared to Q(π(s)).

Note: By “over-estimation”, we mean for some a ̸= π(s) such that Q(s, a) > Q(s, π(s)), which in a certain degree means
that the critic Q is ”disagreeing” with the policy π.

1000

500

0

500

al
ig

ne
d

action dim 0

2.17%

action dim 1

6.55%

action dim 2

7.90%

1000

500

0

500

sa
cm

l

45.99% 41.76% 37.28%

1000

500

0

500

cq
l

7.76% 9.58% 9.38%

2 0 2
1000

500

0

500

aw
ac

42.02%

2 0 2

38.91%

2 0 2

34.53%
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(b) out-of-distribution states

Figure 21: Quantifying fraction of over-estimated perturbations for in-distribution and out-of-distribution states.

Details: All agents are trained on hopper-medium-v2 dataset. By in-distribution samples, we refer to states drawn from
the hopper-medium-v2 dataset. By out-of-distribution samples, we use samples from the hopper-random-v2 dataset. We
randomly drew 200 samples per seed, which results in a total of 1000 samples to make each plot.
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