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VECTOR PROCESSORS

A processor can operate on an entire vector in one
mstruction

Work done automatically in parallel
(simultaneously)

The operand to the instructions are complete
vectors instead of one element

Reduce the fetch and decode bandwidth
Data parallelism

Tasks usually consist of:
Large active data sets
Poor locality
Long run times



VECTOR PROCESSORS (CONT’D)

Each result independent of previous result
Long pipeline
Compiler ensures no dependencies
High clock rate

Vector instructions access memory with known
pattern

Reduces branches and branch problems in
pipelines
Single vector instruction implies lots of work
Example: for(i=0; i<n; 1++)
c(l) = a() + b();
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VECTOR PROCESSORS (CONT’D)

/I C code
for(1=0;1<16; 1++)
b[i]+=ali]

/I Vectorized code
set vl,16
vload vr0,b
vload vrl,a
vadd vr0,vrO,vrl
vstore vr0,b

Each vector instruction
holds many units of
independent operations

b[15]+=a[15]
b[14]+=a[14]
b[13]+=a[13]
b[12]+=a[12]
b[11]+=a[11]
b[10]+=a[10]
b[9]+=a[9]

b[2]+=a[2]
b[1]+=a[1]
b[0]+=a[0]

:> @I‘ 1 Vector Lane



VECTOR PROCESSORS (CONT’D)

/I C code
for(1=0;1<16; 1++)
b[i]+=ali]

/l Vectorized code
set vl,16
vload vr0,b
vload vrl,a
vadd vrO,vrO,vrl
vstore vr0,b

Each vector instruction
holds many units of
independent operations

b[15]+=a[15]
b[14]+=a[14]
b[13]+=a[13]
b[12]+=a[12]
b[11]+=a[11]
b[10]+=a[10]
b[9]+=a[9]
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VECTOR PROCESSORS (CONT’D)

The three major categories to exploit parallelism:
Instruction-level parallelism (ILP)

Multiple instructions from one instruction stream are
executed simultaneously

Thread-level parallelism (TLP)

Multiple instruction streams are executed simultaneously

Vector data parallelism (DP)

The same operation 1s performed simultaneously on arrays
of elements
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VECTOR PROCESSING & PARALLEL
PROCESSING

A vector processor 1s a CPU design wherein the
Imstruction set includes operations that can
perform mathematical operations on multiple
data elements simultaneously

This 1s 1n contrast to a scalar processor which
handles one element at a time using multiple
Iinstructions

Parallel computing is a form of computation in
which many calculations are carried out
simultaneously

Large problems can often be divided into smaller
ones which are then solved concurrently in
parallel



BASIC VECTOR ARCHITECTURE

Seymour Cray

The Father of Vector Processing and Supercomputing

In 1951 he started working in computers when he
joined Electronic Research Associates for
producing early digital computers.

His first work was in very first general-purpose
scientific systems built

After year of work he became an expert on digital
computer technology

During his six years with ERA he designed
several other systems



BASIC VECTOR ARCHITECTURE (CONT’D)

In 1957 left ERA with four other individuals to
form Control Data Corporation

When Cray was 34 he considered as a genius in
designing high performance computers

By 1960 he had completed his work on the design
of the first computer to be fully transistorized

He also had already started his design on the
CDC 6600 the first supercomputer

The system would use three-dimensional packaging
and an instruction set known as RISC



BASIC VECTOR ARCHITECTURE (CONT’D)

The 8600 was the last system that Cray worked
on while at CDC

In 1968 he realized that he would need more
than just higher clock speed if he wanted to reach
his goals for performance

The concept of parallelism took root

Cray designed the system with 4 processors
running 1n parallel but all sharing the same
memory

In 1972 he packed away the design of the 8600 1n
favor of something completely new



BASIC VECTOR ARCHITECTURE (CONT’D)

His solution was that a greater performance could
come from a uniprocessor with a different design

This design included Vector capabilities

CRAY-1 the first computer produced by Cray
Research which implemented with a single processor
utilizing vector processing to achieve maximum
performance (8 registers with 64 64-bit words in each)

Cray-1 had separate pipelines for different instruction
types allowing vector chaining. 80-240 MFlops

Cray believed that physical designs should always be
elegant, having as much importance as meeting
performance goals



BASIC VECTOR ARCHITECTURE (CONT’D)

Pipeline architecture may have a number of steps

There 1s no standard when 1t comes to pipelining
technique

In the Cray-1 there 1s fourteen stages to perform
vector operations
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BASIC VECTOR ARCHITECTURE (CONT’D)

Data 1s read into vector registers which are FIFO
queues

Can hold 50-100 floating point values

The 1instruction set:
Loads a vector register from a location in memory
Performs operations on elements in vector registers

Stores data back into memory from the vector
registers

A vector processor 1s easy to program parallel
SIMD computer

Memory references and computations are
overlapped to bring about a tenfold speed
Increase



Vector Register File

Store  Load Index
[ Base
Stride _
ERE 1y __ Physical Page Number
! { 1 Eakﬁ
¥ 7 — 1 Cache
T —tag PPN Index
Address
Generator =4— - A 1
-GD-
T 1% s = Page Hit?
Index 1 Virtual Page Number
: i
FIFO =9
e =~ Line Hit?
1% %
s
= 3 11
% ~A~— \\rite Back
} 256 y Physical Address Bus
Y Data Bus




Integer Float Vector Data Registers
Registers Registers v ' : L ' " L I
r7 f7
=
r0 fo 01 Ml 2 [VLMAX-1]
Scalar Unit Vector Unit Vector Length Register VLR ]
Vector Arithmetic Instructions vIE— T — T — T —T— T —
Vi
" F \F \F V¥ W 1)
VADD v3,vl, v2 +) +) () ) +) ¥)
"IirB.l ] | 1 | ] |
0] [ [2] [VLR-1]
Vector Load and Store Instructions
01 M1 [2 [VLR-1]
VID vl,rl, x2 vl
Base, rl
L 1 —1 | — 1 | — 1 1 | | . 1 i ]

Siride. o3 Memory




alkaut <lkZEin

e . 7 N

N
— M EC e EE T A FEr R ET T ET
Sk« 2 = e
:ultlll. ]| 2. Shaer | 1%, ShE Sha PLI'I'-'PLI'IIIFEII'I_I:
l_ el MMMt | kb || Pukkw | Mabbe | Aukka || Pakbe | Aded | Aikie
phi —# Logcal | Logesl | Logiod | Logesd | Logeesl | Logicad | Logcal | Logiesd
e L b | L || 3 [ e | L e L S [ e [ L S
iy T L il | PO o | ROl gl | P L ol | 3 [ T |
F Y W) ¥ 3 Y 3 ¥ W
- R e P e
e g - L F F L F
g PO I
WiConir .
= RLL
0 = i
hpn | Ti0) - R —
|
18
cath "~ Watriaction Cacha{ | 295 %] —
T
w Lintk|1 2] “'_+ L B! WP 1
— [| cPo |E= T A |
i ot 1 —#{ Lopcl | Copcal | Lopiod Lol | Coocd | Lol
] Al | i || ks mm- m:-:u-' Py | Ak | Ader
Ll p{5 Shi | Shier| e Shier| e SR 5Nl B Shiter |- S der . S hiller
A1 710 =N * i ™ ] =
R T ap [l e e e T T e e o]
| her L
o150 [agZlet ™" la —3 nf g wl wl Wl el ul w6y
bl Fd
B

&l H1z4] id cw waninb |1 0] d| 17 =h]
kK Ereiniln |1 52D
nkE vl ' ]



Elements per

Clock register Yector
rate Vector (54-bit load-store
Processor (year) (MHz} registers elements; Vector arithmetic units units Lanes
Cray-1 {1976) R0 3 6l 6: FP add, FP multiply, FP reciprocal, I I
integer add, logical, shift
Cray X-MP 118 8: FP add. FP multiply, FP reciprocal, 2 loads I
(1983) 3 6ud integer add, 2 logical, shift, popularion | slor
Cray Y-MP (1988) 166 counl/parily
Cray-2 {1985) 244 R %: FP add, FP multiply, FP reciprocalf [ I
sqrt, integer add/shi fiypopulation
counl, legical
Fujitsu VP I} 133 3-256 32-1024  3: FPor integer addAogical. multiply, 2 1 {VPI100)
VP200 {1982) divide 2 (YP200)
Hitachi 5810/ 71 2 256 4: FP multiply-add, FF mulliplyf 3 loads 1 (3810
SE20{1983) divide-add unit, 2 integer add/logical | slore 2 (38207
Convex C-1 10 8 128 2: FP or integer multiply/divide, add/ I | (64 bit)
(1985) logical 232 bin
NEC §X/2{1983) 167 2+32 256 4: FP multiply/divide, FP add, integer I 4
add/logical, shift
Cray C90(19%1) 240 B: FP add, FP multiply, FP reciprocal, 2 loads 2
3 1238 integer add, 2 logical, shift, population | slora
Cray T9O (1935) 460 counl/parily
NEC §X/5{1998) 312 8 +6d 512 4: FP or integer add/shift, muluply, [ 16
divide, logical
Fujilsu VPP5000 300 2-256 1284096 3: FP or integer multiply, add/logical, 1 load 16
(1999 divide | slore
Cray Y1 (1998) 200 B: FP add. FP multiply, FP reciprocal, 1 load-siore 2
3 integer add, 2 logical, shift, population 1 load B {MSP)
S¥lex {2001) 300 counl/parily
VMIPS (2001) 500 3 5: FP multiply, FP divide, FP add, 1 load-slore I

integer addfshifi, logical




VECTOR INSTRUCTION

Instructions available depends on what
components the processor contains.

For a case, we take the VMIPS processor
developed in 2001, that has the following
components:

Floating Point Multiply

Floating Point Divide

Floating Point Add

Integer Add/Shift

Logical
Integer Add/Shift exploits the additive nature of
multiplication and the built-in Shift-Add
procedure implemented in processors.



INSTRUCTIONS IN VMIPS

Instr.

ADDV.D
ADDSV.D
MULV.D
MULSV.D
SUBV.D
SUBSV.D
SUBVS.D
DIVV.D
DIVSV.D

DIVVS.D

Operands
Comment

V1,V2,V3
vector + vector

V1,F0,V2
scalar + vector

V1,V2,V3
vector x vector

V1,F0,V2
scalar x vector

V1,V2,V3
vector - vector

V1,F0,V2
scalar — vector

V1,V2,F0
vector - scalar

V1,V2,V3
vector / vector

V1,F0,V2
scalar / vector

V1,V2,FO0
vector / scalar

Operation

V1=V2+V3
V1=F0+V2
V1=V2xV3
V1=F0xV2
V1=V2-V3
V1=F0-V2
V1=V2- FO
V1=V2/V3
V1=F0/V2

V1=V2/F0



INSTRUCTIONS IN VMIPS(CONT’D)

Instr.

LV

SV

LVWS

SVWS
LVI

SVI

CVI

Operands
Comment

V1,R1

R1,V1

V1,(R1,R2)

(R1, R2), V1
V1,(R1+V2)

(R1+V2),V1

V1,R1

Operation

Load vector register V1 from
memory starting at address R1

Store vector register V1 into
memory starting at address R1

Load V1 from address at
R1 and stride at R2 as R1+1*R2

Store with Stride

Load V1 with vector whose
elements are at R1+ V2(3)

Store V1 to a vector whose
elements are R1+V2(1)

Create an index vector by
storing values 1*R1 into V1.



LOGICAL OPERATION

S--V.D and S- -VS.D

Here - - 1s replaced by the corresponding Logical Operators as per
need. EQ — Equal to

NE — Not Equal

GT — Greater Than

LT — Less Than

GE — Greater than or Equal to
LE — Less than or Equal to

Compare each value from S and V and put 1 in corresponding bit
vector if result 1s True and O if False. Put the resulting Bit Vector in

the Vector Mask Register.



VECTOR MASK REGISTER

Instr.

POP

1s

register
result in R1

CVM
MVTM

MVFM
of VMR

Operands Operation
Comment
R1,VM Count the number of
1n Vector mask
and store

Set VMR to all 1s

VM, F0 Move contents of FO to
VMR
FO,VM Move contents
to FO



VECTOR PERFORMANCE

Vector execution time depends on:
Length of operand vectors
Data Dependencies
Structural Hazards

Initiation rate: rate at which a vector unit consumes new
operands and produces new results.

Convoy: set of vector instructions that can begin execution in
same clock (Assuming no Data dependencies or structural
hazards since all instructions in a convoy begin execution at the
same clock period)

Chime: approx. time to execute a convoy



EXAMPLE

LV V1,Rx :load vector X
MULVS.D V2,V1,FO ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add

SV Ry, V4 ;store the result

First LV 1s in a separate convoy since MULVS depends on its
execution

MULVS and second LV can be in same convoy since they are
independent.

ADDV is in a separate convoy
SV is in the fourth convoy since it needs ADDV to complete.

No. of chimes for completion is 4 and 2 Floating point operations take
place in that time. So rate is 2 FLOPS per cycle. Assuming 10 elements
1n vector, no. of clock cycles needed is 40.



ROLE OF STARTUP TIME

o Startup time - Time latency from pipelining of vector operation.
Assuming vector length of n,

Startup Overhead(Cycles)

Load and store unit 12

Multiply Unit 7

Add Unit
Convoy Starting First Last result
time result time
time

LV 0 12 11+n(12-1+n)
MULVS.D LV 12+n 12+n+12 23+2n
ADDV.D 24+2n 924+2n+6 29+3n @
SV 30+3n 30+3n+12 41+4n
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JRX
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V3,Ry
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MEMORY UNITS

Start up time for a load is time needed to get first word from
memory to register. If rest of the vector can be supplied without
any need to stall, then Initiation time = Rate at which new words
are fetched and stored.

Startup time 1s longer for large LSU.

Memory banks are better than normal interleaving because:

Multiple loads or store per clock can be done. If Load and store
operations are in a single convoy with different vectors, banks
are better.

Ability to store or load data words that are not sequential.

Sharing of memory between multiple processors since each
processor will generate its own stream of addresses.



VECTOR LENGTH

VMIPS has a vector length of 64. But in real world applications
vector lengths are not exactly 64. For example, adding just first n
elements of a vector.

Vector Length register is used for this purpose.

VLR controls the length of any vector operation by defining their
length.

Its value cannot be greater than the length of the vector registers.
(64 1n this case)

This works when the length of data is less than the Maximum
Vector Length of a processor. But in real world applications, data
in vectors in memory can be greater than the MVL of the
processor.

In this case, we use a technique called Strip Mining.



STRIP MINING

Splitting data such that each vector operation is done for a size
less than or equal to MVL.

Done by a simple loop with MOD operator as control point.

1=0;

VL =n mod MVL;

for j=0; ;<n/MVL; j++){
for(i<VL; 1++)
Y(0)=a*X0)+Y (1)}

VL = MVL;}




IMPROVING PERFORMANCE :CONDITIONAL
STATEMENTS

Conditional statements affect vectorization.
for 1=0;1<100;1++)
if (a[1] !=0)
afi] = a[i] — b[i];
end
Cannot be vectorized normally due to presence of if statement.

Can be overcome by using the VMR

LV V1,Ra; load vector A into V1

LV V2,RDb ; load vector B

L.D FO,#0 ; load FP zero into FO
SNEVS.D V1,F0; sets VM() to 1 1f V1(1)!=FO0
SUBV.D V1,V1,V2; subtract under vector mask

SV Ra, V1 ; store the result in A



IMPROVING PERFORMANCE

If we think of the registers used as not one big block but group of
individual registers, we can pipeline data to improve performance.

For example,
MULV.D V1,V2,V3
ADDV.D V4,V1,V5

needs to be in separate convoys if we approach register as a
whole block.

If we consider it as group of individual registers, each containing
one value, then second ADDYV can start as soon as first element
becomes available.

Increases convoy size and increases HW



ADVANTAGES

Each result i1s independent of previous results - allowing
high clock rates.

A single vector instruction performs a great deal of work -
meaning less fetches and fewer branches (and in turn fewer
mispredictions).

Vector instructions access memory a block at a time which
results in very low memory latency.

Less memory access = faster processing time.

Lower cost due to low number of operations compared to
scalar counterparts.



DISADVANTAGES

Works well only with data that can be executed in highly or
completely parallel manner.

Needs large blocks of data to operate on to be efficient
because of the recent advances increasing speed of
accessing memory.

Severely lacking in performance compared to normal
processors on scalar data.

High price of individual chips due to limitations of on-chip
memory.

Increased code complexity needed to vectorize the data.

High cost in design and low returns compared to
superscalar microprocessors.



APPLICATIONS

Useful in applications that involve comparing or processing large
blocks of data.

Multimedia Processing (compress., graphics, audio synth, image
proc.)

Standard benchmark kernels (Matrix Multiply, FFT, Convolution,
Sort)

Lossy Compression (JPEG, MPEG video and audio)

Lossless Compression (Zero removal, RLE, Differencing, LZW)
Cryptography (RSA, DES/IDEA, SHA/MD5)

Speech and handwriting recognition

Operating systems/Networking (memcpy, memset, parity,
checksum)

Databases (hash/join, data mining, image/video serving)



CONCLUSION

The Vector machine is faster at performing mathematical
operations on larger vectors.

The Vector processing computer’s vector register
architecture makes it better able to compute vast amounts
of data quickly.

While Vector Processing is not widely popular today, it still
represents a milestone in supercomputing achievement.

It 1s still in use today in home PC’s as SIMD units which
augment the scalar CPU when necessary (usually GPUs).

Since scalar processors designed can also be used for
general applications their cost per unit is reduced
drastically. Such 1s not the case for vector
processors/supercomputers.

Vector processors will continue to have a future in Large
Scale computing and certain applications but can never
reach the vovpularitv of Scalar micronrocessors.
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