
VECTOR PROCESSORS

Computer Science Department

CS 566 – Fall 2012

Eman Aldakheel

Ganesh Chandrasekaran

Prof. Ajay Kshemkalyani

1

OUTLINE

 What is Vector Processors

 Vector Processing & Parallel Processing

 Basic Vector Architecture

 Vector Instruction

 Vector Performance

 Advantages

 Disadvantages

 Applications

 Conclusion

2

VECTOR PROCESSORS

 A processor can operate on an entire vector in one
instruction

 Work done automatically in parallel
(simultaneously)

 The operand to the instructions are complete
vectors instead of one element

 Reduce the fetch and decode bandwidth

 Data parallelism

 Tasks usually consist of:

 Large active data sets

 Poor locality

 Long run times 3

VECTOR PROCESSORS (CONT’D)

 Each result independent of previous result

 Long pipeline

 Compiler ensures no dependencies

 High clock rate

 Vector instructions access memory with known

pattern

 Reduces branches and branch problems in

pipelines

 Single vector instruction implies lots of work

 Example: for(i=0; i<n; i++)

 c(i) = a(i) + b(i);
4

5

6

VECTOR PROCESSORS (CONT’D)

// C code

for(i=0;i<16; i++)

 b[i]+=a[i]

// Vectorized code

set vl,16

vload vr0,b

vload vr1,a

vadd vr0,vr0,vr1

vstore vr0,b

Each vector instruction

holds many units of

independent operations

b[0]+=a[0]
b[1]+=a[1]
b[2]+=a[2]

b[4]+=a[4]

b[3]+=a[3]

b[5]+=a[5]

b[6]+=a[6]

b[7]+=a[7]

b[8]+=a[8]

b[9]+=a[9]

b[10]+=a[10]

b[11]+=a[11]

b[12]+=a[12]

b[13]+=a[13]

b[14]+=a[14]

b[15]+=a[15]

vadd

1 Vector Lane

7

VECTOR PROCESSORS (CONT’D)

// C code

for(i=0;i<16; i++)

 b[i]+=a[i]

// Vectorized code

set vl,16

vload vr0,b

vload vr1,a

vadd vr0,vr0,vr1

vstore vr0,b

Each vector instruction

holds many units of

independent operations

vadd

16 Vector Lanes

b[0]+=a[0]
b[1]+=a[1]
b[2]+=a[2]

b[4]+=a[4]

b[3]+=a[3]

b[5]+=a[5]

b[6]+=a[6]

b[7]+=a[7]

b[8]+=a[8]

b[9]+=a[9]

b[10]+=a[10]

b[11]+=a[11]

b[12]+=a[12]

b[13]+=a[13]

b[14]+=a[14]

b[15]+=a[15]

16x speedup

VECTOR PROCESSORS (CONT’D)

 The three major categories to exploit parallelism:

 Instruction-level parallelism (ILP)

 Multiple instructions from one instruction stream are

executed simultaneously

 Thread-level parallelism (TLP)

 Multiple instruction streams are executed simultaneously

 Vector data parallelism (DP)

 The same operation is performed simultaneously on arrays

of elements

8

9

VECTOR PROCESSING & PARALLEL

PROCESSING

 A vector processor is a CPU design wherein the

instruction set includes operations that can

perform mathematical operations on multiple

data elements simultaneously

 This is in contrast to a scalar processor which

handles one element at a time using multiple

instructions

 Parallel computing is a form of computation in

which many calculations are carried out

simultaneously

 Large problems can often be divided into smaller

ones which are then solved concurrently in

parallel

10

BASIC VECTOR ARCHITECTURE

 Seymour Cray

 The Father of Vector Processing and Supercomputing

 In 1951 he started working in computers when he
joined Electronic Research Associates for
producing early digital computers.

 His first work was in very first general-purpose
scientific systems built

 After year of work he became an expert on digital
computer technology

 During his six years with ERA he designed
several other systems

11

BASIC VECTOR ARCHITECTURE (CONT’D)

 In 1957 left ERA with four other individuals to

form Control Data Corporation

 When Cray was 34 he considered as a genius in

designing high performance computers

 By 1960 he had completed his work on the design

of the first computer to be fully transistorized

 He also had already started his design on the

CDC 6600 the first supercomputer

 The system would use three-dimensional packaging

and an instruction set known as RISC

12

BASIC VECTOR ARCHITECTURE (CONT’D)

 The 8600 was the last system that Cray worked

on while at CDC

 In 1968 he realized that he would need more

than just higher clock speed if he wanted to reach

his goals for performance

 The concept of parallelism took root

 Cray designed the system with 4 processors

running in parallel but all sharing the same

memory

 In 1972 he packed away the design of the 8600 in

favor of something completely new

13

BASIC VECTOR ARCHITECTURE (CONT’D)

 His solution was that a greater performance could

come from a uniprocessor with a different design

 This design included Vector capabilities

 CRAY-1 the first computer produced by Cray

Research which implemented with a single processor

utilizing vector processing to achieve maximum

performance (8 registers with 64 64-bit words in each)

 Cray-1 had separate pipelines for different instruction

types allowing vector chaining. 80-240 MFlops

 Cray believed that physical designs should always be

elegant, having as much importance as meeting

performance goals
14

BASIC VECTOR ARCHITECTURE (CONT’D)

 Pipeline architecture may have a number of steps

 There is no standard when it comes to pipelining
technique

 In the Cray-1 there is fourteen stages to perform
vector operations

15

16

17

 Main

Memory

Vector

Load/Store

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector

registers

Scalar

registers

BASIC VECTOR ARCHITECTURE (CONT’D)

 Data is read into vector registers which are FIFO
queues

 Can hold 50-100 floating point values

 The instruction set:

 Loads a vector register from a location in memory

 Performs operations on elements in vector registers

 Stores data back into memory from the vector
registers

 A vector processor is easy to program parallel
SIMD computer

 Memory references and computations are
overlapped to bring about a tenfold speed
increase

18

19

20

21

22

VECTOR INSTRUCTION

 Instructions available depends on what
components the processor contains.

 For a case, we take the VMIPS processor
developed in 2001, that has the following
components:
 Floating Point Multiply

 Floating Point Divide

 Floating Point Add

 Integer Add/Shift

 Logical

 Integer Add/Shift exploits the additive nature of
multiplication and the built-in Shift-Add
procedure implemented in processors. 23

INSTRUCTIONS IN VMIPS

 Instr. Operands Operation
 Comment

 ADDV.D V1,V2,V3 V1=V2+V3
 vector + vector

 ADDSV.D V1,F0,V2 V1=F0+V2
 scalar + vector

 MULV.D V1,V2,V3 V1=V2xV3
 vector x vector

 MULSV.D V1,F0,V2 V1=F0xV2
 scalar x vector

 SUBV.D V1,V2,V3 V1=V2-V3
 vector - vector

 SUBSV.D V1,F0,V2 V1=F0-V2
 scalar – vector

 SUBVS.D V1,V2,F0 V1=V2- F0
 vector - scalar

 DIVV.D V1,V2,V3 V1=V2/V3
 vector / vector

 DIVSV.D V1,F0,V2 V1=F0/V2
 scalar / vector

 DIVVS.D V1,V2,F0 V1=V2/F0
 vector / scalar

24

INSTRUCTIONS IN VMIPS(CONT’D)

 Instr. Operands Operation

 Comment

 LV V1,R1 Load vector register V1 from

 memory starting at address R1

 SV R1,V1 Store vector register V1 into

 memory starting at address R1

 LVWS V1,(R1,R2) Load V1 from address at

 R1 and stride at R2 as R1+i*R2

 SVWS (R1, R2), V1 Store with Stride

 LVI V1,(R1+V2) Load V1 with vector whose

 elements are at R1+ V2(i)

 SVI (R1+V2),V1

 Store V1 to a vector whose

 elements are R1+V2(i)

 CVI V1,R1 Create an index vector by

 storing values i*R1 into V1.
25

LOGICAL OPERATION

 S- -V.D and S- -VS.D

Here - - is replaced by the corresponding Logical Operators as per

need. EQ – Equal to

 NE – Not Equal

 GT – Greater Than

 LT – Less Than

 GE – Greater than or Equal to

 LE – Less than or Equal to

Compare each value from S and V and put 1 in corresponding bit

vector if result is True and 0 if False. Put the resulting Bit Vector in

the Vector Mask Register.
26

VECTOR MASK REGISTER

Instr. Operands Operation

 Comment

 POP R1,VM Count the number of

1s in Vector mask

register and store

result in R1

 CVM Set VMR to all 1s

 MVTM VM,F0 Move contents of F0 to

 VMR

 MVFM F0,VM Move contents

of VMR to F0

27

VECTOR PERFORMANCE

 Vector execution time depends on:

 Length of operand vectors

 Data Dependencies

 Structural Hazards

 Initiation rate: rate at which a vector unit consumes new

operands and produces new results.

 Convoy: set of vector instructions that can begin execution in

same clock (Assuming no Data dependencies or structural

hazards since all instructions in a convoy begin execution at the

same clock period)

 Chime: approx. time to execute a convoy

28

EXAMPLE

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDV.D V4,V2,V3 ;add

SV Ry,V4 ;store the result

1. First LV is in a separate convoy since MULVS depends on its

execution

2. MULVS and second LV can be in same convoy since they are

independent.

3. ADDV is in a separate convoy

4. SV is in the fourth convoy since it needs ADDV to complete.

No. of chimes for completion is 4 and 2 Floating point operations take

place in that time. So rate is 2 FLOPS per cycle. Assuming 10 elements

in vector, no. of clock cycles needed is 40.

29

ROLE OF STARTUP TIME

 Startup time - Time latency from pipelining of vector operation.

Assuming vector length of n,

30

Unit Startup Overhead(Cycles)

Load and store unit 12

Multiply Unit 7

Add Unit 6

Convoy Starting

time

First

result

time

Last result

time

LV 0 12 11+n(12-1+n)

MULVS.D LV 12+n 12+n+12 23+2n

ADDV.D 24+2n 24+2n+6 29+3n

SV 30+3n 30+3n+12 41+4n

31

31

VMIPS Execution Time

1: LV V1,Rx

2: MULV V2,F0,V1

 LV V3,Ry

3: ADDV V4,V2,V3

4: SV Ry,V4

Time

12
n

12

6

12

n

n

n

MEMORY UNITS

 Start up time for a load is time needed to get first word from

memory to register. If rest of the vector can be supplied without

any need to stall, then Initiation time = Rate at which new words

are fetched and stored.

 Startup time is longer for large LSU.

 Memory banks are better than normal interleaving because:

 Multiple loads or store per clock can be done. If Load and store

operations are in a single convoy with different vectors, banks

are better.

 Ability to store or load data words that are not sequential.

 Sharing of memory between multiple processors since each

 processor will generate its own stream of addresses.

32

VECTOR LENGTH

 VMIPS has a vector length of 64. But in real world applications

vector lengths are not exactly 64. For example, adding just first n

elements of a vector.

 Vector Length register is used for this purpose.

 VLR controls the length of any vector operation by defining their

length.

 Its value cannot be greater than the length of the vector registers.

(64 in this case)

 This works when the length of data is less than the Maximum

Vector Length of a processor. But in real world applications, data

in vectors in memory can be greater than the MVL of the

processor.

 In this case, we use a technique called Strip Mining.
33

STRIP MINING

 Splitting data such that each vector operation is done for a size

less than or equal to MVL.

 Done by a simple loop with MOD operator as control point.

 i = 0;

 VL = n mod MVL;

 for (j=0; j<n/MVL; j++){

 for(i<VL; i++)

 {Y(i)=a*X(i)+Y(i)}

 VL = MVL;}

34

IMPROVING PERFORMANCE :CONDITIONAL

STATEMENTS

 Conditional statements affect vectorization.

 for (i=0;i<100;i++)

 if (a[i] !=0)

 a[i] = a[i] – b[i];

 end

 Cannot be vectorized normally due to presence of if statement.

 Can be overcome by using the VMR

 LV V1,Ra ; load vector A into V1

 LV V2,Rb ; load vector B

 L.D F0,#0 ; load FP zero into F0

 SNEVS.D V1,F0 ; sets VM(i) to 1 if V1(i)!=F0

 SUBV.D V1,V1,V2 ; subtract under vector mask

 SV Ra,V1 ; store the result in A

35

IMPROVING PERFORMANCE

 If we think of the registers used as not one big block but group of

individual registers, we can pipeline data to improve performance.

 For example,

 MULV.D V1,V2,V3

 ADDV.D V4,V1,V5

 needs to be in separate convoys if we approach register as a

whole block.

 If we consider it as group of individual registers, each containing

one value, then second ADDV can start as soon as first element

becomes available.

 Increases convoy size and increases HW

36

ADVANTAGES

 Each result is independent of previous results - allowing

high clock rates.

 A single vector instruction performs a great deal of work -

meaning less fetches and fewer branches (and in turn fewer

mispredictions).

 Vector instructions access memory a block at a time which

results in very low memory latency.

 Less memory access = faster processing time.

 Lower cost due to low number of operations compared to

scalar counterparts.

 37

DISADVANTAGES

 Works well only with data that can be executed in highly or

completely parallel manner.

 Needs large blocks of data to operate on to be efficient

because of the recent advances increasing speed of

accessing memory.

 Severely lacking in performance compared to normal

processors on scalar data.

 High price of individual chips due to limitations of on-chip

memory.

 Increased code complexity needed to vectorize the data.

 High cost in design and low returns compared to

superscalar microprocessors.

38

APPLICATIONS

 Useful in applications that involve comparing or processing large

blocks of data.

 Multimedia Processing (compress., graphics, audio synth, image

proc.)

 Standard benchmark kernels (Matrix Multiply, FFT, Convolution,

Sort)

 Lossy Compression (JPEG, MPEG video and audio)

 Lossless Compression (Zero removal, RLE, Differencing, LZW)

 Cryptography (RSA, DES/IDEA, SHA/MD5)

 Speech and handwriting recognition

 Operating systems/Networking (memcpy, memset, parity,

checksum)

 Databases (hash/join, data mining, image/video serving)

39

CONCLUSION

 The Vector machine is faster at performing mathematical

operations on larger vectors.

 The Vector processing computer’s vector register

architecture makes it better able to compute vast amounts

of data quickly.

 While Vector Processing is not widely popular today, it still

represents a milestone in supercomputing achievement.

 It is still in use today in home PC’s as SIMD units which

augment the scalar CPU when necessary (usually GPUs).

 Since scalar processors designed can also be used for

general applications their cost per unit is reduced

drastically. Such is not the case for vector

processors/supercomputers.

 Vector processors will continue to have a future in Large

Scale computing and certain applications but can never

reach the popularity of Scalar microprocessors.

40

THANK YOU
41

REFERENCES

 http://www.eecs.berkeley.edu/~krste/thesis.pdf

 http://www.geo.fmi.fi/~pjanhune/papers/

 www.eecg.toronto.edu/~yiannac/docs/cases08.ppt

 www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.ppt

 http://www.ece.uah.edu/~milenka

 www.docin.com/p-380535422.html

 What is difference between vector processing and parallel
processing?i have xp so what type of processing i have? |
Answerbag http://www.answerbag.com/q_view/1833623#ixzz2Bc4wyj
wI

 Vector Processors by Mark Smotherman, Assoicate Professor,School
of Computing, Clemson University

 Vector Processing by Aleksandar Milenkovic, Electrical and
Computer Engineering, University of Alabama in Huntsville

 Vector Processing by David A. Patterson and Jan Rabaey

 Vector Processors by Ryan McPherson

 Vector Processors by Pratyusa Manadhata, Vyas Sekar

 Vector Processing by Ben Helmer, Matt Sagerstrand, Daniel Yingling

 Vector Processors by Brian Anderson, Mike Jutt, Ryan Scanlon

42

http://www.eecs.berkeley.edu/~krste/thesis.pdf
http://www.eecs.berkeley.edu/~krste/thesis.pdf
http://www.geo.fmi.fi/~pjanhune/papers/
http://www.geo.fmi.fi/~pjanhune/papers/
http://www.eecg.toronto.edu/~yiannac/docs/cases08.ppt
http://www.eecg.toronto.edu/~yiannac/docs/cases08.ppt
http://www.eecg.toronto.edu/~yiannac/docs/cases08.ppt
http://www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.ppt
http://www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.ppt
http://www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.ppt
http://www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.ppt
http://www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.ppt
http://www.ece.uah.edu/~milenka
http://www.ece.uah.edu/~milenka
http://www.docin.com/p-380535422.html
http://www.docin.com/p-380535422.html
http://www.docin.com/p-380535422.html
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623
http://www.answerbag.com/q_view/1833623

