
ENFORCING SAFETY PROPERTIES IN WEB APPLICATIONS USING
PETRI NETS

Liviu Grigore
Computer Science Department

University of Illinois at Chicago
Chicago, IL, 60607
lgrigore@cs.uic.edu

Ugo Buy
Computer Science Department

University of Illinois at Chicago
Chicago, IL, 60607

buy@cs.uic.edu

ABSTRACT
Web applications are often based on the client-server model
which relies on concurrent execution of asynchronous pro-
cesses. Enforcing correctness of concurrent software is no-
toriously difficult. In general, automatic verification checks
if a given system has a certain property, while supervisory
control enforces the same property by restricting system
behavior. Supervisor control problems are often computa-
tionally more tractable to solve than verification problems.
Most verification problems areNP -hard, while some su-
pervisory control problems can be solved in polynomial
time with the appropriate representation. Here we present
two algorithms, one for enforcing mutual exclusion and the
other for deadlock prevention for web applications written
in Java. We combine these two methods in order to guar-
antee that a web application or web service comply with
given safety properties including freedom from deadlock
and system specific mutual exclusion properties.

KEY WORDS
Petri nets, formal methods, supervisory control.

1 Introduction

During development concurrent Java applications face mu-
tual exclusion and deadlock problems because these appli-
cations contain asynchronous processes. Efficiently test-
ing web applications represents an essential condition for
modern day software. Finding and correcting deadlocks
can be difficult. Testing for deadlock is not always a solu-
tion since testing all possible interleavings of computations
performed by asynchronous processes might be infeasible
because there is a huge number of such interleavings. In ad-
dition, replicating a deadlock situation is troublesome once
it appeared, making the source of the deadlock difficult to
determine [2].

Verification for concurrent system is a research area
that has been covered for more than twenty years. Since
most of these problems areNP -hard, they are difficult
to tackle and the advances in this domain have been rel-
atively slow. Supervisor control problems are sometimes
more tractable than the corresponding verification prob-
lems. Thus, results can be achieved more swiftly than in
case of verification. An example of a tractable supervisory

control algorithm compared with its verification counter-
part is mutual exclusion [6]. Supervisory control approach
is well-suited to the situations when detecting a property
is not sufficient; instead that property must be enforced as
well.

The goal of this project is to enhance the reliability of
web applications by automatically generating supervisory
control code that will prevent the violation of safety prop-
erties such as freedom from deadlock and mutual exclu-
sion properties. Past work in supervisory control of discrete
event systems has led to the definition of various methods
for enforcing freedom from deadlock and mutual exclusion
constraints. The systems under consideration are typically
modeled as finite state automata (FSAs) or Petri nets. Our
systems are modeled as Petri nets. We prefer this model
to finite state automata since Petri net methods for enforc-
ing supervisory control properties are more tractable than
methods that use finite state automata. In particular, our
methods for enforcing safety properties (mutual exclusion
and deadlock prevention) are more tractable when Java pro-
grams are represented as Petri nets.

Modern web applications have a three-tiered struc-
ture. The three tiers are: a web browser, a web server and a
database. Our method to enforce safety properties refers to
Java concurrent programs. Our work concerns Java appli-
cations that are included in a web server. Java is a modern
programming language that provides various capabilities
for concurrency. Java is by far the most popular tool for
platform independent development, in particular for web
and multi-tiered applications. It is simple, effective and
easy to use; it offers a wide range of high-quality libraries
and open network support. Our method consists of the fol-
lowing steps:

1. Concurrent Java code (e.g., Java RMI code) is trans-
lated into a Petri net model.

2. The Petri net model is further augmented by
the addition of a supervisory controller enforcing
programmer-defined mutual-exclusion properties.

3. The new Petri net model is further augmented by the
addition of a supervisory controller enforcing freedom
from deadlock.

4. The generated controller is translated back into Java
statements that are inserted into the original code.

In this paper we focus on steps (2) and (3) since these
steps are the most challenging. The method overview is
presented in Figure 1. First, the Java source code is con-
verted into a Petri net model. Various programming lan-
guages [3], [12] have been translated to Petri nets for differ-
ent reasons (verification, testing, supervisory control).The
level of granularity of the translation depends on the pur-
pose of the translation. Capturing all the details of a Java
program is synonymous with constructing a prohibitively
large Petri net. For our Petri net models we chose to cap-
ture explicitly a subset of Java constructs for defining con-
trol flow (e.g., if and while statements) and the most pop-
ular interprocess communication primitives (e.g., threads
and monitors).

The second step in Figure 1 is based on the work of
Yamalidou et al. [6]. The method is computationally attrac-
tive and amenable to large systems. It constructs a feedback
controller for untimed Petri nets. The desired net behavior
is enforced by making it an invariant of the controlled net.
The main advantage of this method is that it computes the
controlled net very efficiently by a single matrix multipli-
cation. That method and a subsequent extension by Moody
et at. [10] will be the basis for generating controllers that
enforce mutual exclusion properties in Java code. A short-
coming of this method is that deadlock might be introduced
when the technique is applied.

The third step in Figure 1 represents the core of
our technique. Several directions have been investi-
gated to achieve the deadlock-freeness goal. The siphons
method [7] can be applied to a general class of Petri
nets (bounded Petri nets), but the computation of minimal
siphons is expensive. Shatz et al. [13] defined a different
method for sidestepping the complexity of deadlock detec-
tion. The disadvantage of that method is that its applica-
bility is restricted to a special class of Petri nets called Ada
nets. Melzer and Romer [9] define an efficient algorithm
for deadlock detection. It uses a technique called unfold-
ing to explore all the possible behaviors of the net and to
detect deadlock. Based on the detected deadlock states, we
generate supervisory controllers that eliminate these states.

The last step in Figure 1 consists of translation back
to Java. The observations made for the first translation are
in general valid for this phase also. To date, the translation
from Petri nets to Java has not been fully explored; how-
ever, we believe that this translation is relatively straight-
forward. Petri nets have been translated to programming
languages before. Yao and He generate parallel program
skeletons from Petri nets [14]. We plan to use a similar
approach for Petri net translation into Java.

Translate Java program to Petri net

Add supervisor for compliance
with mutual exclusion properties

Add supervisor for preventing deadlocks

Backward translate supervisors to Java

Figure 1. Diagram of supervisor generation for concurrent
Java programming.

2 Framework

2.1 Definitions

Petri nets are a graphical and mathematical tool that can
model many systems. They met considerable success in de-
scribing and studying information processing systems that
are characterized as being concurrent, asynchronous, dis-
tributed, nondeterministic and/or stochastic. They can be
used as a graphical aid tool similar to flow charts and block
diagrams [11].

A safe ordinary Petri netis a directed graph with two
distinct set of nodes, places and transitions. Using a math-
ematical notation a safe ordinary Petri net is an a 4-tuple
N = (P, T, F,M0) where:

1. P = {p1, p2, ..., pn} is a finite set of places.

2. T = {t1, t2, ..., tm} is a finite set of transitions.

3. F ⊂ (P × T) ∪ (T × P) is the set of arcs.

4. M0 : P → {0, 1} is the initial marking.

5. P ∩ T = ⊘ andP ∪ T 6= ⊘.

The set of predecessors and successors of a nodex are
defined in the following way:

•x = { y | (y, x) ∈ F} – set of input nodes ofx
x• = { y | (x, y) ∈ F} – set of output nodes ofx
The input and the output sets of a placep ∈ P will

be (possibly empty) subsets ofT . Likewise, the input and
output sets of a transitiont ∈ T will be (possibly empty)
place subsets.

To describe the dynamic behavior of the system, a
marking in an ordinary Petri net can be changed accord-
ing to specific rules. To simulate the dynamic behavior of
a net, a marking can be changed according to the following
rules [11]:

1. A transition is enabled if each input place is marked
(contains one token).

2. An enabled transition may fire.

3. The firing of a transition removes a token from each
input place and deposits a token in each output place
of that transition.

We will first present an example of Java code for
translation [1]. ThetransferMoneymethod describes a
transfer transaction from one account to another. Each ac-
count is forbidden from performing another operations dur-
ing money transfer.

public void transferMoney(Account fromAccount,
Account toAccount, DollarAmount amountToTransfer) {

synchronized (fromAccount) {
synchronized (toAccount) {

if (fromAccount.hasSufficientBalance(
amountToTransfer) {
fromAccount.debit(amountToTransfer);
toAccount.credit(amountToTransfer);

}
}

}
}

Thread 1:
transferMoney(accountOne, accountTwo, amount);

Thread 2:
transferMoney(accountTwo, accountOne, anotherAmount);

The Java method implements a money transfer from
one account to another. It takes a specified amount of
money amountToTransferand transfers it fromfromAc-
countto toAccount. It first checks whether there is enough
money to transfer. In this case, it subtracts the amount from
the first account and the sum is deposited into the second
account.

The method is not thread safe. For example if two
transactions are operated on two accounts at the same time
in opposite directions, then a deadlock could occur. Sup-
pose that a thread calls a transfer operation from the first
account to the second account and another thread calls a
transfer operation from the second account to the first ac-
count. For a deadlock to happen, the first thread must ac-
quire the monitor for the first account and the second thread
must acquire the monitor for the second account before the
first thread does so. In this situation there cannot exist a
normal program execution since both threads are waiting
to acquire a monitor that is held by another thread.

The Petri net representation of this code is presented
in Figure 2. This is the kind of Petri net that can be
obtained by translation from Java code. Each transition is

synchronized(fromAccount)

synchronized(toAccount)

then

fromAccount.debit(
amountToTransfer)

toAccount.credit(
amountToTransfer)

release monitor
Account two

release monitor
Account one

synchronized(fromAccount)

synchronized(toAccount)

then

fromAccount.debit(
amountToTransfer)

toAccount.credit(
amountToTransfer)

release monitor
Account one

release monitor
Account two

transferMoney(accountOne,
accountTwo,amount)

transferMoney(accountTwo,
accountOne,anotherAmount)

accountOne monitor

accountTwo monitor

End

p1 p2

p3 p4

p5

p7

p9

p11

p13

p15

p17

p6

p8

p10

p12

p14

p16

p18

p19

p20

Figure 2. Petri net representation of Java code

associated with a statement, while a location in the flow of
control of a thread is described by a place. Besides a flow
of serial transitions for each thread, a place associated with
each thread monitor was added to the Petri net. The tran-
sitions transferMoney(accountOne,accountTwo,amount),
synchronized(fromAccount), synchronized(toAccount),
fromAccount.debit(amountToTransfer), toAc-
count.debit(amountToTransfer)correspond to the homony-
mous statements. Thethentransition corresponds to body
of the if statement. The last two transitionsrelease monitor
Account two, release monitor Account twowill release the
monitor for the two objectstoAccount, fromAccount.

Placesp1 and p2 represent the initial start places
for the two processes. Triggering thetransfer-
Money(accountOne, accountTwo,amount)transition means
that a Java program entered the method with the same
name. Firing transitionssynchronized(fromAccount), syn-
chronized(toAccount)means taking a token from placesp19

andp20 that represent the monitors locks associated with
the Java objectsfromAccountandtoAccount. The two ac-
counts are debited and credited by firing the two corre-
sponding transitions. At the end, tokens are placed back
to the monitor places (by firing transitionsrelease monitor
Account twoand release monitor Account one). This net
contains a deadlock state if the two transitions labeled with
synchronized(fromAccount)are fired subsequently.

2.2 Unfoldings

Petri nets can be “unfolded” into a particular type of Petri
net named an occurrence net. The nodes of the occurrence
net are labeled with the places and the transitions of the
original net. The unfolding process can be stopped as in the
graph theory case at different stages and new nets are ob-
tained. By unfolding “as much as possible” a net a unique,
usually infinite occurrence net is obtained.

McMillan introduced the concept of truncated unfold-
ings (i.e., finite prefixes) [8] and proved that the truncated
net preserves all the markings existent in the original net
modulo a homomorphism mapping nodes in the unfolding
to nodes in the original net. Subsequently, Esparza et al. [4]
refined the initial definition of the truncating condition, in
such a way that the new prefix constructed is significantly
smaller than the McMillan prefix and never larger (up to a
small constant) than the state space of the Petri net.

When we unfold a Petri net, we build a structure
called a labeled occurrence net. This is a Petri net in which
every place and transition is labeled by a corresponding
place or transition in the original net. Formally, we estab-
lish a homomorphic mapping from nodes in the occurrence
net to nodes in the original net. The occurrence net is a spe-
cialized form of net which must satisfy certain restrictions.
First, it must be well founded, meaning that any path start-
ing from any node to the initial places must have a finite
number of elements. Second, two arcs cannot converge on
the same place. Third, no transition may be in conflict with
itself. Fourth, the occurrence net is acyclic.

The unfolding algorithm associates with each transi-
tion added to the occurrence net a reachable marking of the
initial Petri net. For this we will need to compute the local
configuration of a transitiont. The local configuration of a
transitiont represents all the transitions precedingt in the
unfolding. We say thatx precedesy, denoted byx < y, if
a directed path fromx to y exists inN .

A mapping exists between the occurrence net and the
original net. It preserves the node types, the original mark-
ing and the restriction to the preset and the postset of any
transition is a bijection. The set of markings of the occur-
rence net is equivalent to the set of states of the original
net.

DEFINITION [Local configuration] The local configu-
ration of a transitiont, denoted[t], is the set{t′ ∈ T |t′ <

t or t′ = t}.
A local configuration has a final state, resulted after

firing all transitions belonging to the local configuration.
DEFINITION [Cut of a configuration] The cut of a con-

figurationC belonging to an occurrence netO is defined as
cut(C) = (M0 ∪ C•)\ • C.

The cut of a configuration represents the set of places
marked after the firing of all configuration transitions. The
main idea of the unfolding algorithm is to determine two
transitions (t1 and t2) such that two conditions are re-
spected: (1) The cuts of local configurations of both transi-
tions are the same (modulo homomorphism). (2) The local

p1

t2t1

p7

t4

p3

t8

p5

t3

p6

t7

p2

p4

t5

p8

t6

p1

t2t1

p7’

t4

p3

t8’

p5

t3

p6

t7

p2

p4

t5

p8’

t6

p3’ p1’’ p2’’

p7

t8

p8

p1’ p2’

Figure 3. Example of unfolding for a Petri net.

configuration oft1 is smaller (based on a special partial
order) than the local configuration oft2. Transitiont2 rep-
resentsa cutoff transition.

In Figure 3 we present an example of a Petri net and
its unfolding. Intuitively a configuration is a set of transi-
tions fireable from the initial marking. The following set of
transitions{t1, t2, t5, t6} represents a configuration. The
local configuration of transitiont′

8
is {t2, t5, t6}. The cut

of local configuration of transitiont′
8

is {p′′
1
, p′′

2
}.

3 Enforcing mutual exclusion properties

The method for enforcing mutual exclusion properties is
described by Moody et al. [6]. A controller is generated
that consists only of places connected to the original net
and no transitions. The controller size depends on the num-
ber of the properties enforced. The central notion in this
method is the place invariant for a Petri net. The con-
troller ensures that the net will not enter a forbidden state.
The resulting net (the supervisor and the supervised net)
relies on place invariants to enforce the constraints. The
controller is maximally permissive; it restricts any behav-
ior that violates the constraint but it allows any behavior
that conforms to the mutual exclusion constraints. The
constraints enforced are linear based on place markings
(M(pi1)+M(pi2)+...+M(pik) ≤ c), wherec is a positive
integer andM(p) denotes marking for placep.

To enforce mutual exclusion, a matrixDc is intro-
duced to describe the controller. This matrix will describe
how the controller places are connected to the controlled
net. The incidence matrixDp is associated with the orig-
inal Petri net.Dp is ann × m incidence matrix, wheren
is the number of places andm is the number of transitions;
the controller matrixDc is annc × m matrix, wherenc

is the number of constraints. The constraint matrixL is a
nc × n matrix. The formula to computeDc is:

Dc = −LDp

The initial marking of the controller places can be cal-
culated based on the fact that the place invariants equations
are valid for the initial marking too.

M0c = b − L M0p

HereM0c represents the initial marking of controller
places,M0p represents the initial marking of the original
net andb is anc × 1 vector.

We will exemplify this method using the Petri net as-
sociated with the Java code in Figure 2. We want places
p5 andp6 to be mutual exclusive. This state is particularly
meaningful since it is a deadlock state. If two transactions
occur at the same time in opposite direction, involving the
same two accounts, then a deadlock might be reached.

The constraint to be introduced isM(p5)+M(p6) ≤
1, meaning thatp5 and p6 can contain at most one to-
ken combined. Enforcing this constraint is equivalent with
the removal of the deadlock state represented by places
{p5, p6}. One additional placeps will be added to enforce
this constraint:M(p5) + M(p6) + M(ps) = 1. For exam-
ple, the first row of the incidence matrix corresponding to
first place isD1, = [−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
and the constraint is specified by the following matrix with
one row:L = [0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0].

The supervisor controller generated is described by
the following data:
Dc = [0 0 1 1 − 1 − 1 0 0 0 0 0 0 0 0 0 0] andb = 1.
One place (ps) and four new arcs will be added to enforce
the mutual exclusion: two arcs from the two transitions
labeled withsynchronized(fromAccount) to the con-
troller place, and two arcs from the controller place to the
two transitions labeled withsynchronized(toAccount).
The initial marking of the controller place is 1. The mutual
exclusion constraint in this example will eliminate also the
deadlock. It will be impossible for each thread to acquire
just one lock associated with an account and to wait for the
second account lock to release. Enforcing a mutual exclu-
sion constraint in this example implies the elimination of a
deadlock state.

4 Enforcing deadlock avoidance

One of the main goals of our method is to allow future ex-
tensions of Java features implemented. This objective can
be accomplished only by considering a class of Petri nets
that is sufficiently general to capture the behavior of our
Java subset.

We defined a new supervisor generation algorithm
based on Melzer and Romer’s detection algorithm [9]. The
output of the deadlock detection method is a state where
no transition can be fired or an indication that such state
does not exist. Our deadlock avoidance strategy is based
on the idea that by preventing that specific state from being
reached, then deadlock is avoided.

Melzer and Romer’s method for detecting deadlocks
utilizes the token conservation equation. For a given firing
sequenceσ, the number of tokens for a placep is equal to
the number of tokens atM0 plus the tokens added by the
firing of input transitions ofp, minus the tokens removed by

the firing of its output transitions. In mathematical notation
the equation can be written (for each placep):

M(p) = M0(p) +
∑

t∈•p

ν(σ, t) −
∑

t∈p•

ν(σ, t)

whereν(σ, t) represents the number of occurrences
of transitiont in the firing vectorσ, M(p) represents the
current marking of placep andM0(p) represents the initial
marking of placep. This equation shows how many tokens
are present in a place for current marking.

The state equation for a Petri net is written as a matrix
equation:

M = M0 + D ∗ X ; X ≥ 0

whereX denotes transition firing vector.
It M is reachable, then there is an integer solution

for this equation. However, in general it is possible for
the equation to have an integer solution, even though the
markingM is not reachable. This scenario is possible since
a transition might “borrow” tokens that do not exist in one
of its input places, even though subsequently those tokens
are deposited back.

A special case for this equation is an acyclic Petri net.
In an acyclic netM is reachable from the initial marking
if and only if the state equation has a nonnegative integer
solution. Evidently, unfoldings are acyclic, which allows
us to represent all the reachable markings as an integer lin-
ear system. The central theorem of this paper relates the
deadlock in an unfolding to the original net [9].

TheoremLet U = (P, T, F, h) be the unfolding for
a safe Petri netN . N is deadlock-free if and only if the
following system of inequalities has no solution:

V ariables : M,X : integer

M = M0 + D ∗ X
∑

p∈•t

M(p) ≤ | • t| − 1,∀t ∈ T

X(t) = 0,∀t cutoff transition

In the above, the first equation (state equation) cap-
tures all reachable markings. This affirmation is valid since
the unfolding is an acyclic net. The second set of inequali-
ties ensures that no transition is fireable for a specific mark-
ing. For each unfolding transition, the transition is disabled
by the absence of at least one token in an input place. The
last set of inequalities guarantees that no cutoff transition
was fired. The idea behind this last subsystem is that if a
cutoff transition was fired, then it would only replicate pre-
vious states that were investigated in case of deadlock.

The key idea behind this theorem relies on the com-
pleteness of the unfolding. The unfolding has the same
state space as the original net modulo homomorphic map-
ping of unfolding nodes to the net nodes, thus any deadlock
in the original net can be detected via unfolding using the

p1

t1

p7

t4

p10

t7

p2

t2

p8

t5

p11

t8

p3

t3

p9

t6

p12

t9

p4 p5 p6

Figure 4. Dining philosophers net.

above system. Some dead markings in the unfolding based
on its finiteness and acyclicity do not correspond to actual
deadlocks in the original net. But these markings are not
detected by the previous system of inequalities because of
the last set of equations stipulating that unfolding transi-
tions are never fired.

For any deadlock we must make sure that this state
is never reached. Thus if the deadlock state is triggered
by the markingpi1, pi2, ..., pik, then we must enforce the
constraint:M(pi1) + M(pi2) + ... + M(pik) < k.

This method for supervisor generation ensures that in
any state there are at mostk − 1 tokens in the set of places
that are marked in the deadlock state. This constraint ef-
fectively prevents the original Petri net from entering its
deadlock state. Enforcing the above property will ensure
that the system never reaches the deadlocked state detected
before.

A classic example that involves deadlock is thedining
philosophers problem. The net portraying the problem of
dining philosophers is depicted in Figure 4. The unfolding
for this net is shown in Figure 5.

To detect the deadlock we write the system of equali-
ties and inequalities:

1. State equation:

p1 = 1 − t1 p2 = 1 − t2 p3 = 1 − t3
p4 = 1 − t1 p5 = 1 − t2 p6 = 1 − t3
p7 = t1 − t4 p8 = t2 − t5 p9 = t3 − t6
p10 = t4 − t7 p11 = t5 − t8 p12 = t6 − t9
p′
1

= t7 p′
4

= t7 p′
6

= t7
p′
2

= t8 p′′
4

= t8 p′
5

= t8
p′
3

= t9 p′′
5

= t9 p′′
6

= t9

2. Transitions inequalities:

p1 + p4 ≤ 1 p2 + p5 ≤ 1 p3 + p6 ≤ 1
p6 + p7 ≤ 1 p4 + p8 ≤ 1 p5 + p9 ≤ 1
p10 ≤ 0 p11 ≤ 0 p12 ≤ 0

3. Cut off transitions equalities:

p1

t1

p7

t4

p10

t7

p2

t2

p8

t5

p11

t8

p3

t3

p9

t6

p12

t9

p4 p5 p6

p’1 p’4 p’6
p’’4 p’5

p’3 p’’5 p’’6p’2

Figure 5. Unfolding of dinning philosophers net.

t7 = 0 t8 = 0 t9 = 0

This system admits a solution:p1 = p2 = p3 = p4 =
p5 = p6 = p10 = p11 = p12 = p′

1
= p′

2
= p′

3
= p′

4
=

p′
5

= p′
6

= p′′
4

= p′′
5

= p′′
6

= 0, p7 = p8 = p9 = 1
and t1 = t2 = t3 = 1, t4 = t5 = t6 = t7 = t8 =
t9 = 0. This solution corresponds to the situation when
each philosopher acquires only one resource (chopstick for
example) and waits for the other one to be released. This
might never happen if these resources are already held by
the other philosophers.

To avoid deadlock the state that generated the dead-
lock is avoided by enforcing a new linear constraint:p7 +
p8 + p9 < 3. The result will be a supervised net with one
extra place (p13). The net is shown in Figure 6. To continue
applying the technique we have to compute the unfolding
for the supervised net for the dining philosophers problem.
The unfolding is shown in Figure 7. Next, we check if there
is any deadlock state for the supervised net. The system
of equalities and inequalities is very similar to the unsuper-
vised net, but it does not admit any integer solution because
of the new constraint above. This step concludes our pro-
cess for deadlock avoidance for this net.

5 Research directions

We presented a new framework for Java programming
that focuses on deadlock prevention. We first determine
whether deadlock states exist. A deadlock state is discov-
ered using a set of equalities and inequalities. For deadlock
to be possible, a state must be reachable in which no transi-
tion can be fired. This search can be performed efficiently
using efficiently using Melzer and Romer’s method [9].
Our supervisors avoid any deadlock state using a linear in-
equality forbidding the Petri net to enter that state. The lin-
ear inequality states that the number of tokens in that dead-
lock state must be less than the number of places compos-
ing that state. The method is successfully integrated with an

p1

t1

p7

t4

p10

t7

p2

t2

p8

t5

p11

t8

p3

t3

p9

t6

p12

t9

p4 p5 p6

p13

Figure 6. The supervised net for dining philosophers ex-
ample.

p1
t1

p7
t4

p10
t7

p2
t2

p8
t5

p11
t8

p3
t3

p9
t6

p12
t9

p4 p5 p6

p’1 p’4 p’6
p’2 p’’4 p’5

p’3 p’’5 p’’6

p’13p13

p13 p13 p13 p13 p13 p13

Figure 7. Unfolding of dining philosophers net.

existing method for enforcing mutual exclusion constraints.
There are several aspects in which this method is open

to further research. The first optimization is related to
the number of iterations of the supervisor generation algo-
rithm. We will seek to reduce this number using heuristics.
One solution is to reduce the Petri net using reduction rules.
Transitions and places in a serial flow, for example, can be
merged. Another solution is to identify the decision points
that lead to deadlock and to avoid those points. Another
direction is represented by the investigation of alternative
deadlock prevention strategies. One such example is He
and Lemmon’s method [5]. In their article they described a
method to prevent deadlock, but some of their results were
not correct. Xie and Giua proposed a correction, but they
did not define a fully functional algorithm.

References

[1] Avoid synchronization deadlocks.

http://www.javaworld.com/javaworld/jw-10-
2001/jw-1012-deadlock.html.

[2] W. T. Amy Williams and M. D. Ernst. Static deadlock
detection for Java libraries. pages 602–629, July 27–
29, 2005.

[3] A. Bourjij and P. Nus. A new methodology for hard-
ware/software codesign using Petri nets.IEEE Pacific
Rim Conference On Communications, Computers and
signal Processing, 1:341–344, 2001.

[4] J. Esparza, S. Romer, and W. Vogler. An improve-
ment of McMillan’s unfolding algorithm.Tools and
Algorithms for Construction and Analysis of Systems,
pages 87–106, 1996.

[5] K. X. He and M. D. Lemmon. Liveness-enforcing
supervision of bounded ordinary Petri nets using par-
tial order methods.IEEE Transactions on Automatic
Control, 47(7):1042–1055, 2002.

[6] M. L. Katerina Yamalidou, John Moody and
P. Antsaklis. Feedback control of Petri nets based on
place invariants.Proceedings of the 33rd IEEE Con-
ference on Decision and Control, 3:3104–3109, 1996.

[7] J. O. M. Marian V. Iordache and P. Antzaklis. Syn-
thesis of deadlock prevention supervisors using Petri
nets.IEEE Transactions on Robotics and Automatics,
18:59–68, 2002.

[8] K. L. McMillan. A technique of state space search
based on unfolding.Formal Methods in System De-
sign, 6(1):45–65, 1995.

[9] S. Melzer and S. Romer. Deadlock checking using
net unfoldings. Computer Aided Verification, pages
352–363, 1997.

[10] J. Moody and P. Antsaklis. Supervisory control of
Petri nets with uncontrollable /unobservable transi-
tions. In Proceedings of the 35th IEEE Conference
on Decision and Control, pages 4433–4438, 1996.

[11] T. Murata. Petri nets: Properties, analysis and appli-
cations.Proceedings of the IEEE, 77:541–580, 1989.

[12] T. Murata, B. Shenker, and S. M. Shatz. Detection of
Ada static deadlocks using Petri net invariants.IEEE
Trans. Software Eng., 15(3):314–326, 1989.

[13] S. M. Shatz, S. Tu, T. Murata, and S. Duri. An ap-
plication of Petri net reduction for ada tasking dead-
lock analysis.IEEE Transactions on Parallel and Dis-
tributed Systems, 7(12):1307–1322, 1996.

[14] W. Yao and X. He. Mapping Petri nets to parallel
programs in cc++. IEEE Transactions on Robotics
and Automatics, pages 70–75, 1996.

