CSE 111 Bio:
Program Design |
Lecture 19:
genetics

Tanya Berger-Wolf (CS) & Boris Igi¢ (Bio)
University of Illinois, Chicago
November 2, 2016

append, extend etc.

>>> L = [6, 3]

>>> L.append([9,11])
>>>
(6, 3, [9, 111]

[l

>>> L = [6,3]

>>> L =L + [9,11])
>>> I,

(6, 3, 9, 11]

>>> L = [6,3]

>>> L.extend([9,11])
>>> I,

(6, 3, 9, 11]

>>> uniquify([9,9,7,5,3,5,7]) The in syntax might be useful:
[9, 3, 5, 71 >>> 9 in [4,2,7]
False

def uniquify(L):
'''Returns a list of the unique elements from L.

v

Worksheet

>>> uniquify([9,9,7,5,3,5,71)

[9,

3,5, 7]

def uniquify(L):

Returns a list of the unique elements from L.
unigL=[]
for i in range(len(L)):

vy

if L[i] not in L[(i+1l):]:
uniqL.append(L[i])

return uniqL

Worksheet

11/3/16

If you have time after uniquify...

Write a function to sort a list of numbers in ascending order using

the selection sort algorithm. Selection sort works like this. First it 9, 6,
scans over the list and finds the smallest element in it. Then it 14, 6,
puts this in the zero position of the list by swapping it with 14, s,
whatever was already there. Next, it scans the list again, but this 4, s,
time it starts in the 1 position (skipping the O position). Again it 14, s,
finds the smallest element and swaps it into the 1 position. It 14, s,
proceeds like this until the whole list has been sorted. 14, s,

Try to do this without using any python built-ins such as min!

def selectionSort(L):
'''Sort list L in ascending order.''

O\ OV Oy Oy © ® ©

Variables inside and outside of
functions

def funcl():
'''A snazzy demo function.'''
i=42
func2 ()
return i
def fl,",lcz(): A.lown42Lladas
An even snazzier demo function.
i=7 B. lown 7 Ladas
int "I T "Ladas."
prin ownie 1o adas C. lown 42 Ladas
>>> funcl() 1 own 7 Ladas
2?2 D. | own 7 Ladas
42
E. 1 own 42 Ladas
7
wikimedia. ada_1200,jpg/420px-Lada_1200.jpg Demo

A simulation of variation in
populations

Populations and alleles

@@@
CraC
&

& G

11/3/16

A simple model of allele frequency
changes over time

© o .
Y| 6%l |©
& & & ©

. Two alleles

5
&

. Fixed population size
. Haploid: have one copy of each sequence
. Asexual reproduction

. Make next generation by sampling with replacement

Representing a population on a
computer

>>>popList=["A","A","a","A","a"]

We can sample using the random
module

>>> import random
>>> random.choice(popList)

>>> popList
["a","a","a","A","a"] # Didn't change the original list

import random

def createInitialPop(popSize, pA):
"""Create starting pop given popSize and proportion of
Ars."""
num0=int (round (pA*popSize))
numl=popSize-numl
popL=["A"]*num0+["a"] *numl
return popL

def nextGen(popL):

"""Given the population of the current generation, obtains

next generation by sampling with replacement."""

11/3/16

