
CS211 – Programming Practicum Spring 2015

Programming Project 7

Due: Friday, 5/1/15 at 11:59 pm

Can I Get There from Here?

For this program, you will write a Java Program to represent a travel network. This travel network will

use an array of linked lists as its primary storage structure. This type of storage structure is typically

called an adjacency list. Please note: this write-up was originally taken from a C assignment. Any

reference to C items were not properly “translated” from C to Java. Such items should use their Java

counterparts.

Assume you have a small airline that flies planes between a small number of airports. Each airport will

be given a number. If a plane flies from airport X to airport Y, the network will have an “edge” from X

to Y. Below are a number of drawings that could represent this idea. The airports are represented by the

circled numbers, the edges are represented by the arrows. Consider the first drawing. It has 6 airports.

It has a plane that flies from airport 1 to airport 2. Three planes fly from airport 2, one to airport 3, one

to airport 4 and one to airport 5. No planes leave from airport 3 or from airport 5 (yes, it would be

stupid to strand planes at those airports, but ignore that fact for now). Planes fly from airport 4 to

airports 5 and 6. Finally, planes fly from airport 6 to airport 3.

In an adjacency list, each location/airport needs a list of those locations/airports that one can get to in

one move/flight. In this program, we need a list for each airport. If the travel network has N airports,

the array will have N linked lists, one for each airport. If airport X has planes flying to 3 different

airports, the linked list for airport X would have 3 nodes. Consider the following image showing a travel

network and an adjacency list:

There are 5 airports, so we have an array of 5 linked lists. Since Airport 3 can fly planes to two

Airports, namely Airport 1 and Airport 4, the linked list for Airport 3 has two nodes. One node

containing the value 1. Another node containing the value 4.

CS211 – Programming Practicum Spring 2015

Program Input and Commands

The input for the operations will come from standard input and from files. The input will initially come from

standard input. If the user specified the f command, your program will then read input from a file. See the

description below for more details. The commands are to follow the descriptions given below. Note: that the

form <int> could be any integer number and it will NOT be enclosed in angle brackets. <int> is just a

notation to specify and integer value. The integer value is to be input on the same line as the command

character. If the first character on the line is not one of the following characters, print an error message and

ignore the rest of the information on that line.

q - quit the program immediately.

? - display a list of the commands the user can enter for the program.

- ignore this line of input. Treat the line of input as a comment

t <int1> <int2> - display a message stating whether a person can travel from airport <int1> to airport

<int2> in one or more flights.

r <int> - remove all values from the traffic network and resize the array to contain the number

of airports as indicated by the given integer value. The value of the integer must be

greater than zero. The airports will be numbered from 1 to the given integer value. If

this were a C program, you would need to properly deallocate all of the nodes in each

linked list when resizes. This is a reason to be thankful for Java’s garbage collection

policy.

i <int1> <int2> - insert the edge to indicate a plane flies from airport <int1> to airport <int2>.

d <int1> <int2> - delete the edge that indicates a plane flying from airport <int1> to airport <int2>.

l - list all the items contained in the travel network. First display all of the airports (if any)

that can be reached from the first airport in one flight (that have an edge in the network),

followed by all the airports (if any) that can be reached from the second airport in one

flight, etc.

f <filename> - open the file indicated by the <filename> (assume it is in the current directory) and

read commands from this file. When the end of the file is reached, continue reading

commands from previous input source. This must be handled using recursion. Beware

of a possible case of an infinite recursive loop, the f command is may not call a file that

is currently in use.

Initially your program should have the array to hold 10 airports. If a command specifies an airport outside of

the current valid range, print an error message and ignore the command.

The use of the Scanner class for reading in input is expected to be used. It allows for a nice, simple elegant

solution for the input needs of this program. While using the Scanner class is not going to be made a

requirement, don’t expect help from the instructor or TA’s if you decide not to use the Scanner class. You

can use the Scanner class to read from standard input or from a file with the use of the proper constructor.

You are required to use method(s) to read in your input that take an instance of the Scanner class as a

parameter (see F Command below). For ideas on the Scanner class, see the web pages of:

 http://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html

 http://www.cs.utexas.edu/users/ndale/Scanner.html

http://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html
http://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html
http://www.cs.utexas.edu/users/ndale/Scanner.html

CS211 – Programming Practicum Spring 2015

Travel Algorithm and the Airport Object

To determine if a person can travel from airport X to airport Y in one or more flights, a recursive depth-

first-search algorithm must be used. For this algorithm to work, we will need to be able to mark each

airport as visited. Setting up an Airport class/object is the best way to do this in Java. This object will

contain the head of the linked list for the airport’s adjacency list and the object will also contain a

Boolean value to determine if an airport has been visited or not. The travel network MUST be a

dynamic array of these Airport objects. The adjacency list will also need a Node class/object to store the

linked list information.

The pseudo code for this algorithm is as shown below. Note it is valid to ask, can I to go from airport X

to airport X in one or more flights. It really asks, “If I leave airport X, can I return to it?” This

algorithm is recursive and you MUST use this recursive algorithm in your program.

void depthFirstSearchHelper (int x, int y)

{

 mark all airports as unvisited;

 if (dfs (x, y) = = TRUE)

 print (“You can get from airport “ + x + “ to airport “ + y “ in one or more flights”);

 else

 print (“You can NOT get from airport “ + x + “ to airport “ + y + “ in one or more flights”);

}

boolean dfs (int a, int b)

{

 for (each airport c that can be reached from a in one flight)

 {

 if (c = = b)

 return TRUE;

 if (airport c is unvisited)

 {

 mark airport c as visited;

 if (dfs (c, b) = = TRUE)

 return TRUE;

 }

 }

 return FALSE;

}

The FILE Command: f

The f command may seem difficult to implement at first, but it has a creative solution that you are to

use. The code in the file Proj7Troya.java is intended to give you an idea on how this solution is to be

implemented.

First note that main(), is extremely short. It creates an instance of the Proj7Troya class and calls the

processCommandLoop() method with an instance of the Scanner class that reads from standard input.

The method processCommandLoop() reads from the input source specified by the parameter and

determines the which command is being invoked.

CS211 – Programming Practicum Spring 2015

When the f command is invoked, it is to open the file specified by the command, create a new instance

of the Scanner class that reads from this file. Then make a recursive call to processCommandLoop()

with this new instance of the Scanner class so the next line of input comes from the specified file instead

of where the previous command came from. When the end of a file is reached, the program is to revert

back to the previous input source that contained the f command. This previous input source could be

standard input or a file. By making these calls recursively, reverting back to the previous input source

is a complete no-brainer.

However, this can cause an infinite loop if you try to access a file that your program is already reading

from. Consider this scenario. Assume the user enters a command from standard input to start reading

from file A. However; file A tells you to read from file B, file B tells you to read from file C, and file C

tells you to read from file A. Since you always start reading from the top of the file, when file C

eventually tells the program to read from file A, the program will reprocess the command to read from

file B, which will reprocess the command to read from file C, which will reprocess the command to read

from file A, which will reprocess the command to read from file B, which will reprocess the command

to read from file C, which will reprocess the command to read from file A, which will reprocess…

In order to stop this, you are required to maintain a linked list of file names. Before the f command

attempts to create a new instance of the Scanner class that read from file X, the f command is to check if

the linked list of file names already contains the name of X.

 If the name X already exists in the linked list, the f command will NOT create a new instance of

the Scanner class and it will NOT make the recursive call to processCommandLoop().

 If the name X does not exist in the linked list, the f command will add the name X to the linked

list before making the recursive call to processCommandLoop() and it must remove the name X

from the linked list after the call t0 processCommandLoop() returns.

You are responsible to write the code for this linked list yourself. Note that this will most likely be a

linked list of Strings, while each airport’s adjacency list will most likely be a linked list of integers.

You are not allowed to use any of the classes from the Java Collections Framework in this program.

These classes include ArrayList, Vector, List, Set, HashMap, etc. If you need such a class, you are to

write it yourself. A full listing of the Java Collections Framework can be found at:

 http://docs.oracle.com/javase/7/docs/technotes/guides/collections/reference.html

Multiple Source Code Files

Your program is to be written using at least two source code files. One of the source file files is to

contain the main method of the program named in a file using your NetId and Program name, like:

Ptroy1Proj7.java

The other source code file must contain your Airport class in a file named:

 Airport.java

You may use additional source code files if you wish, but these two are required.

Program Submission

You are to submit the programs for this project via the Assignments Page in Blackboard.

To help the TA, zip your files together and name your zip file with your net-id and the assignment name,

like: Ptroy1Proj7.zip

http://docs.oracle.com/javase/7/docs/technotes/guides/collections/reference.html
https://blackboard.uic.edu/

