At this point in the lecture, we had discussed a proof of Lemma 7.18, which stated the following.

Lemma 1. Let f be the flow after the Δ-scaling phase. Then, the true max-flow f^* satisfies $v(f^*) \leq v(f) + m\Delta$.

Recall that our Scaling Max-Flow algorithm ran its outer loop $1 + \log \Delta \leq 1 + \lceil \log C \rceil$ times. Hence, it remains to bound the cost of any one run of the loop. Using the lemma above, we can bound this cost as follows.

Claim 2. The number of augmentations (i.e. calls to augment(f, P)) in any scaling phase is at most $2m$.

Proof. We begin with the first scaling phase, in which Δ is the largest power of 2 satisfying $\Delta \leq C$. Hence, there can only exist 1 edge out of s in $G_f(\Delta)$. This implies we can have at most 1 augmentation, which satisfies our claim.

Consider now any later scaling phase Δ, and let f_p be the flow at the end of the scaling phase just before Δ; this previous scaling phase had parameter $\Delta' = 2\Delta$. Thus, by the lemma above, we know that the true max-flow after the Δ'-scaling phase satisfied the condition

$$v(f^*) \leq v(f_p) + m\Delta' = v(f_p) + 2m\Delta.$$

(1)

But now in the Δ-scaling phase, each augmentation operation increases the flow by at least Δ. Hence, by Eqn. (1), the number of augmentations possible in the Δ-scaling phase is at most $2m$. This concludes the proof.

In sum, we have that the Scaling Max-Flow algorithm computes at most $2m(1 + \lceil \log C \rceil)$ augmentations. Since each augment call costs $O(m)$, our total runtime is hence $O(m^2 \log(C))$. This is polynomial-time. Compare this to the pseudo-polynomial-time FF-algorithm, which required $O(mC)$ time. Note: In practice, if m is large and C is small, the FF-algorithm is actually faster!