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Abstract— Zero-error communication over a primitive relay
channel is for the first time proposed and studied. This
model is used to highlight how one may exploit the channel
structure to design a relaying strategy that explicitly provides
“what destination needs”. We propose the Colour-and-Forward
relaying scheme which constructs a graph GR of relay outputs
based on the joint conditional distribution of the relay and
destination outputs given the channel input. The colours of this
graph GR are sent over the out-of-band link in the primitive
relay channel and are shown to be information lossless in the
zero-error sense; they result in the same confusability graph as
if the destination had the relay’s received signal. This allows us
to obtain an upper bound1 on the minimum required conference
rate required for the relay and destination terminals to be
effectively fully cooperative for any number of channel use n.
It also leads to an achievable zero-error communication rate
for the primitive relay channel, which may be shown to be
capacity for a class of channels.

I. BACKGROUND AND MOTIVATION

Motivation. The core function of a relay is to help the
destination in disambiguating the inputs, i.e. to provide “what
the destination needs”. A relay’s goal is not to decode the
message - this is why Decode-and-Forward fails in general;
it is not to provide “what the destination does not want”,
i.e. the noise, - this is why Amplify-and-Forward fails in
general; nor is it desirable to waste its communication
to send “what destination already possesses”. One might
argue that Partial Decode-and-Forward and Compress-and-
Forward embody the idea of providing “what the destination
needs” to some extent. However, we are not aware of any
explicit attempt to characterize and quantify this intuition,
which could potentially lead to a new relaying strategy with
improved rates.

In this paper, we attempt to quantify intuition about
relaying “what the destination needs” in the context of
communicating over a primitive relay channel (PRC) without
error, because 1) PRC is the simplest [2] network that
contains a relay and 2) the imposition of zero-error constraint
turns the problem into a combinatorial one. We believe this
makes it easier to formalize and hope that insights may be
borrowed to inspire new relaying strategies for a vanishing
probability of error.

Related work. Zero-error communication over a primitive
relay channel at first glance seems to be a combination of
two notoriously difficult and open communication problems
in information theory: computing the zero-error capacity over

1The optimality of this upper bound is proved in paper [1].

a point-to-point channel2 , and the small-error capacity of a
relay channel, whose capacity is unknown in general.

Communication allowing a vanishing probability of er-
ror is called small-error or ε−error communication, while
communication without error is called zero-error or 0-error
communication. The small-error capacity and the zero-error
capacity of a point-to-point discrete memoryless channel
were both initially studied by Claude E. Shannon, in [4]
in 1948 and in [5] in 1956. The zero-error capacity of
a point-to-point channel (X , p(y|x),Y) with discrete finite
channel input and output alphabets is characterized as the
limit as the number of channel uses n → ∞ of the
normalized independence number α(GnX|Y ) of the n-fold
AND product of the confusability graph GX|Y associated
with p(y|x). This generally uncomputable limiting expres-
sion is rather unsatisfying. Even for small alphabet sizes,
this is a challenging problem: Shannon’s conjecture that the
capacity of the famous “pentagon graph” channel is 1

2 log 5
was only formally proven by Lovasz [6] 23 years later by
proposing a computable-in-polynomial-time upper bound for
the independence number of a graph. Thus, a computable
expression for the zero-error capacity for even the simplest,
point-to-point channel remains open, except for a small class
of channels with perfect graphs3[3].

The primitive relay channel (PRC) proposed in [2] is a
three-node relay channel introduced to decouple the multiple
access and broadcast components of the standard relay
channel by having the link from the relay to the destination
be out of band and of fixed capacity C0, as shown in
Figure 1. In paper [2], an intensive case study of the small-
error communication over a PRC is provided and it is
shown that the classical relaying strategies Amplify-and-
Forward, Decode-and-Forward and Compress-and-Forward
are optimal in some classes of channels, but sub-optimal in
general.

We first define the new problem of zero-error communi-
cation over a primitive relay channel in Section II and state
our two main questions in Section III. In Section IV, we
present our main results: the construction of a new Colour-
and-Forward relaying scheme based on a novel compression
graph GR. This scheme is “information-lossless”: together
with the observation at the destination, the colour sent by
the relay yields the same confusability graph as the original

2Multi-letter capacity expressions are available, but these are not generally
computable except for a small class of channels with perfect graphs [3].

3A perfect graph is a graph where the chromatic number of every induced
subgraph is that subgraph’s largest clique size.
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Fig. 1. A primitive relay channel ((X , p(y, yR|x),Y × YR), C0), where
the broadcasting links (X , p(y, yR|x),Y × YR) from the source to the
relay and destination terminals are orthogonal to the conferencing link with
maximum rate C0 bits/channel use from the relay to the destination terminal.

received signal at the relay. In Section V, we present a class
of primitive relay channels for which this scheme achieves
capacity. In Section VI, we provide interesting case studies.

II. PROBLEM STATEMENT

Zero-error communication naturally leads to a problem
formulation in terms of graphs. We begin this section with
some useful graph-theoretic concepts and notation. Next, a
preliminary introduction on zero-error point-to-point com-
munication is provided. Finally, the problem of zero-error
communication over a primitive relay channel is formally
defined. All logarithms are base 2.

A. Graph theoretic notation

A graph G(V,E) consists of a set V of vertices or nodes
together with a set E of edges or lines, which are 2-element
subsets of V . Two nodes connected by an edge are called
adjacent. We will usually drop the V,E indices in G(V,E).

An independent set of a graph G is a set of vertices, no two
of which are adjacent. Let independence number α(G) be
the maximum cardinality of all independent sets A maximum
independent set is an independent set that has α(G) vertices.
Note that one graph can have multiple maximum independent
sets. A colouring of graph G is any function c over the
vertex set such that c−1 induces a partition of the vertex
set into independent sets of G. The chromatic number χ(G)
of the graph G is the least number of colours required in
any colouring. A minimum colouring of graph G uses χ(G)
colours.

The strong product or AND product G ·H of two graphs
G and H is defined as the graph with vertex set V (G ·H) =
V (G) × V (H), in which two distinct vertices (g, h) and
(g′, h′) are adjacent iff g is adjacent or equal to g′ in G
and h is adjacent or equal to h′ in H . We denote Gn the
strong product of n copies of G.

A confusability graph GX|Y of X given Y , specified
by conditional probability function p(y|x) with support X
and output Y , is a graph whose vertex set is X and an
edge is placed when two different nodes x, x′ ∈ X may
be “confused”, that is, if ∃y ∈ Y : p(y|x) · p(y|x′) > 0. For
a given conditional probability function p(y|x), we denote
SX|Y (y) := {x : p(y|x) > 0} as the conditional support
of Y = y. Thus, the confusability graph GX|Y can be
equivalently constructed by fully connecting the nodes inside
each conditional support SX|Y (y), for all y ∈ Y .

B. Zero-error preliminaries

Consider the zero-error communication over a point-to-
point channel (X , p(y|x),Y). First, note that only whether
p(y|x) is zero or not matters for communication without er-
ror. Next, consider first communicating over a single channel
use: the maximal number of channel inputs the destination
can distinguish without error is α(GX|Y ), the maximum
number of vertices that are non-adjacent, or pairwise dis-
tinguishable. When multiple channel uses are allowed, we
know that α(GnX|Y ) is the number of distinguishable channel
inputs Xn, where GnX|Y is the strong product or AND
product of n copies of graph GX|Y .4 The zero-capacity is
then characterized as [6]

lim
n→∞

1

n
logα(GnX|Y ) = log lim

n→∞
n

√
α(GnX|Y ) ,

which may be upper and lower bounded as [5], [6]:

logα(GX|Y ) ≤ log lim
n→∞

n

√
α(GnX|Y ) ≤ log ‖X‖

where ‖X‖ is the cardinality of the input alphabet, which
is the maximal number of possible inputs per channel use.
Note the limit exists due to the super-multiplicativity of the
independence number [7].

C. Zero-error communication over a primitive relay channel

As shown in Fig. 2, a primitive relay channel (PRC)
((X , p(y, yR|x),Y × YR), C0) consists of: a source terminal
S that wants to communicate a message W to a destination
terminal D aided by a relay terminal R. This network
is defined by a discrete memoryless broadcast channel
(X , p(y, yR|x),Y × YR) from terminal S to terminals (R,
D) and an out-of-band conference link with finite capacity
C0 from terminal R to terminal D allowing the relay to
communicate at most C0 error-free bits to D per channel
use.
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WR := h(Y n
R ) ∈ {1, · · · , ‖WR‖}

Ŵ := g(Y n,WR)
X ∈ X ⊆ Xn

φ(W ) = X
W ∈ W = {1, · · · , ‖W‖}

Fig. 2. A primitive relay channel ((X , p(y, yR|x),Y × YR), C0), with
an encoder φ, a codebook X , a relaying function h and a decoding function
g.

Definition 1: An encoder φ(W ) at the source terminal S
consists of a message set W = {1, · · · , ‖W‖}, a codebook
X ⊆ Xn and the mapping:

φ :W → X .
Remark 2: Codebook X is a subset of the extended chan-

nel input alphabet Xn and consists of distinct sequences of
length n. The mapping φ is bijective and decoding message

4Note that the n-fold strong product graph Gn
X|Y is equivalent to

graph GXn|Y n , which is the confusability graph directly constructed
from the compound channel (Xn, p(yn|xn),Yn) with p(yn|xn) =∏n

i=1 p(yi|xi).



W ∈ W is equivalent to decoding codeword X ∈ X . We
will not distinguish these two concepts and abuse notation
ŵ ∈ X to denote the decoding result at the destination.

Definition 3: A conference h(Y nR ) at rate RR from the
relay to the destination is defined by a message set WR and
a mapping function h which processes the relay’s observation
Y nR into an index wR ∈ WR:

h : YnR →WR := {1, 2, · · · , ‖WR‖} ,

where RR := 1
n log ‖WR‖.

Definition 4: A C0-admissible conference is a conference
for which RR ≤ C0.

Definition 5: A decoding function g(Y n,WR) = X̂ at the
destination terminal takes in its own observation Y n and the
index WR received from the conference link and produces
an estimate for the transmitted codeword:

g : Yn ×WR → X .

Note that the estimate of the transmitted message is Ŵ =
φ−1(X̂) = φ−1(g(Y n,WR)).

Protocols for 0-error communication over PRCs, are the
counterparts of channel codes in ε-error communications.

Definition 6: An n-shot protocol (or scheme)
(n,X , h, g) for zero-error communication over a PRC
((X , p(y, yR|x),Y × YR), C0) is composed of a codebook
X ⊆ Xn, a C0-admissible conference h : YnR → WR and a
decoding function g : Yn ×WR → X .

Definition 7: A message rate Rz := 1
n log ‖W‖ =

1
n log ‖X‖ is achievable if there exists an n-shot proto-
col (n,X , h, g) over a PRC ((X , p(y, yR|x),Y × YR), C0)
achieving zero error, i.e. Pr[g(y, wR) 6= w] = 0 for all values
w ∈ X .

Definition 8: The capacity Cz of zero-error communi-
cation over a PRC ((X , p(y, yR|x),Y × YR), C0) is the
supremum of all possible achievable rates Rz for any n.
Clearly, Cz ≤ ‖X‖.

III. TWO MAIN QUESTIONS

We are interested in and make contributions towards:
(1) The zero-error capacity. What is the zero-error capacity

Cz for a given PRC ((X , p(y, yR|x),Y × YR), C0)? We first
show the cut-set bounds for Cz in Subsection III-A and then
show the zero-error capacity for a special class of primitive
relay channels in Section V.

(2) Minimum required conference rate. How small may the
conference link rate C0 be to achieve a given zero-error rate
Rz = R∗z , when (X , p(y, yR|x),Y × YR) is fixed? Slightly
abusing notation, we use Cz(C0) to denote the zero error
capacity of a PRC channel ((X , p(y, yR|x),Y × YR), C0)
for a given C0. We are particularly interested in the smallest
C0, denoted as C∗0,z , that can achieve the zero-error capacity
Cz(C0 = ∞), as discussed in detail in Subsection III-B. A
novel upper bound on C∗0,z is derived in Section IV.

A. “Cut-set” bound for Cz
By allowing full cooperation between the relay and des-

tination terminals (e.g. a genie argument), we have the fol-
lowing “cut-set”-like bound for the PRC zero-error capacity:

Proposition 1 (Zero-error capacity cut-set bound): The
capacity Cz(C0) of the 0-error PRC is upper bounded by

Cz(C0) ≤ min{ log lim
n→∞

n

√
α(GnX|Y ) + C0,

log lim
n→∞

n

√
α(GnX|Y,YR

) }.
(1)

Proof: Note that log lim
n→∞

n

√
α(GnX|Y ) is the zero-

error capacity of the direct link from the source to the
destination terminal; if this is orthogonal to what is received
from the relay, we obtain the first bound. The second bound
is obtained by recognizing log lim

n→∞
n

√
α(GnX|Y,YR

) as the
zero-error capacity of a point to point channel p(ỹ|x) with
ỹ = (y, yR), obtained by giving (genie) yR to the destination.

B. An effectively fully-cooperative scenario
Let Cz(∞) be the zero-error capacity of the PRC

((X , p(y, yR|x),Y × YR), C0) when C0 = ∞, i.e., the
destination terminal knows exactly what the relay terminal
observes (and hence the system is said to be “fully co-
operative”). We have Cz(∞) = log lim

n→∞
n

√
α(GnX|Y,YR

).
However, to achieve capacity Cz(∞), it is not necessary
for C0 to be infinity (a straightforward upper bound is
C0 ≤ log ‖YR‖), nor does the destination need to know
exactly what the relay observed. To formally present this
idea, we propose the quantity C∗0,z and the concept of an
effectively fully-cooperative PRC.

Definition 9 (C∗0,z in 0-error setting ): Define

C∗0,z := inf{C0 ≥ 0 : Cz(C0) = Cz(∞) = log lim
n→∞

n

√
α(GnX|Y,YR

)}
(2)

We call a PRC ((X , p(y, yR|x),Y × YR), C0) effectively
fully-cooperative when its zero-error capacity is Cz(∞), i.e.

C0 ≥ C∗0,z .
Note that C∗0,z is the smallest conferencing rate needed so

that the upper bound Cz(∞) may be achieved. The ε-error
communication analogy, C∗0,ε is defined in [2] as

C∗0,ε := inf{C0 : Cε(C0) = Cε(∞) = max
p(x)

I(X;Y, YR)}.

Remark 10: Note that a straight forward upper bound for
C∗0,z is log ‖YR‖. Together with the the cut-set bound in
Proposition 1, we have the following bounds on C∗0,z:

log
lim
n→∞

n

√
α(GnX|Y,YR

)

lim
n→∞

n

√
α(GnX|Y )

≤ C∗0,z ≤ log ‖YR‖ .

Next we try to solve C∗0,z by exploring upper bounds on
C
∗(n)
0,z

5, for some fixed number of channel uses, which is
defined as:

C
∗(n)
0,z = inf{C0 ≥ 0 : C(n)

z (C0) = C(n)
z (∞)} ,

5We use (n) in the superscript to indicate n-shot channel usage.



where C(n)
z (∞) := log n

√
α(GnX|Y,YR

).

Our plan is to derive an upper bound on C
∗(n)
0,z for any

given number of channel uses n and then to derive an upper
bound on C∗0,z based on these bounds.

In order to establish an effectively fully-cooperative sce-
nario, it is sufficient to require the relaying function to be
“information lossless” (and let C0 be log ‖Ŷ(n)

R ‖ ) in the
sense that:

Definition 11 (Information lossless relaying): A relay
mapping Ŷ

(n)
R = h(Y nR ) ∈ {1, 2, · · · , ‖Ŷ(n)

R ‖} is called
information lossless if the confusability graph on Xn from
p(yn, ynR|xn) is the same as the one from p(yn, ŷ

(n)
R |xn),

i.e.
GXn|Y n,Y n

R
= G

Xn|Y n,Ŷ
(n)
R

.

Note that any valid information lossless relaying function
Ŷ

(n)
R provides an upper bound (log ‖Ŷ(n)

R ‖) to C∗(n)0,z .

IV. A NEW UPPER BOUND ON C∗0,z VIA
COLOUR-AND-FORWARD

We now propose a general upper bound on C∗0,z (no
looser than log ‖YR‖) based on a novel compression graph
GR which depends on the channel structure. A colouring
of GR is transmitted by the relay in our new relaying
scheme which we term the “Colour-and-Forward” scheme.
This scheme captures the intuition of providing the terminal
D with “what it needs” to resolve (with zero error) the
transmitted symbol. We first focus on the one-shot Colour-
and-Forward scheme for simplicity and to emphasize the
intuition behind our strategy. We then state the n-shot version
briefly in Subsection IV-C and state the novel Colour-and-
Forward upper bound in Theorem 7 in Subsection IV-D.

A. One-shot Colour-and-Forward relaying:

Our relaying strategy is based on the intuition of providing
“what the destination needs”, i.e. remaining information
lossless, while trying to minimize the number of bits needed
to do so. We construct a new upper bound on C

∗(1)
0,z in

Theorem 4, which would generalize to upper bounds on
C
∗(n)
0,z for any n, and finally to provide an upper bound on

C∗0,z .
Sitting at the destination terminal, for a given a conditional

joint pmf p(y, yR|x) with support X and output Y × YR,
we consider an arbitrary observation Y = y. Given this
observation Y = y, the destination knows that the channel
input symbol lies in the corresponding conditional support
SX|Y (y). What the destination needs is to resolve the ambi-
guity among which x out of SX|Y (y) was sent. Furthermore,
according to the joint pmf p(y, yR|x), the destination knows
what the relay could have observed when the channel input
symbol is X = x given observation Y = y, i.e.

BYR
(x, y) := {yR : p(y, yR|x) > 0 for given x and y}.

In order to help D distinguish which channel input symbol
x was actually transmitted, the relay terminal needs to
differentiate different collections of yR, i.e., BYR

(x, y) in
terms of the first index x for a given second index y. We

propose to do so through the Construction of the graph
GR(V,E):

1) Vertices: V = YR := {yR1, yR2, · · · yR‖YR‖};
2) Edges: for every y ∈ Y , construct a sequence of subsets of YR,

BYR
(x, y), indexed by x, where x ∈ SX|Y (y). Edges are placed

by fully connecting any two subsets BYR
(x, y) and BYR

(x′, y),
where x 6= x′ (i.e. put an edge between every pair (yR, y

′
R)

where yR ∈ BYR
(x, y) and y′R ∈ BYR

(x′, y).) Note that for
a given Y = y, the yR vertices that are inside one BYR

(x, y)
need not be connected.

TABLE I
CONSTRUCTION OF THE GRAPH GR(V,E)

This graph GR can also be formally defined as:
Definition 12 (Colour-and-Forward graph GR): Given a

conditional joint pmf p(y, yR|x) with support X and output
Y × YR, graph GR is an undirected graph with vertex set
YR and an edge yR1 − yR2 is imposed when for some y,
x1 6= x2, Pr(Y = y, YR = yR1|X = x1) · Pr(Y = y, YR =
yR2|X = x2) > 0.

Note that these two ways of specifying compression graph
GR are equivalent: defining graph GR directly by imposing
constraints on the joint pmf p(y, yR|x) is beneficial for the
proof of Theorem 2 in Subsection IV-B, while constructing
graph GR via differentiating BYR

(x, y) in terms of different
x for a given y emphasizes the intuition of providing “what
definition needs”.

One example is provided in Subsection VI-A to illustrate
the construction procedure in detail. We now propose a novel
relaying index W ∗R based on YR, obtained from our Colour-
and-Forward strategy derived from GR.

Definition 13 (Colour-and-Forward relaying W ∗R):
Given a conditional joint pmf p(y, yR|x) with support X
and output Y × YR, we define the Colour-and-Forward
relaying W ∗R as a function of YR by a minimum colouring
c with χ(GR) colours on graph GR:

W ∗R := c(YR)

where graph GR is defined in Definition 12 and can be
equivalently constructed by the iterative algorithm in Table
I. (Note that c is not unique.)

We now propose Theorem 2 which states that the Colour-
and-Forward relaying W ∗R is information lossless in terms
of discriminating, together with Y , channel input X and
establishes an effectively fully cooperative scenario for the
PRC.

Theorem 2: GX|Y,YR
= GX|Y,W∗R , i.e. the confusability

graph on X from p(y, yR|x) is the same as the one from
p(y, w∗R|x), where W ∗R = h(YR) = c(YR) is defined in
Definition 13.
That is, provided C0 is large enough to carry W ∗R, we may
achieve logα(GX|Y,YR

).
Corollary 3: For a PRC ((X , p(y, yR|x),Y × YR), C0),

when C0 ≥ logχ(GR), C(1)
z (C0) = logα(GX|Y,YR

).
Before proceeding to the proof for Theorem 2, we note

that a direct application of Theorem 2 leads to a new upper
bound on C

∗(1)
0,z . When a conditional joint pmf p(y, yR|x)

with support X and output Y ×YR is restricted to input K,



we denote its induced conditional pmf, support and output
by pK(y, yR|x), K and Y|K × YR|K respectively.

Theorem 4: A new upper bound for C∗(1)0,z is:

C
∗(1)
0,z ≤ T (1)

u ,

T (1)
u := min

K is a maximum independent set of graph GX|Y,YR

logχ(GR|K) ,

where χ(GR|K) is the chromatic number of graph GR|K,
constructed via the algorithm described in Table I from the
induced conditional joint pmf pK(y, yR|x).

We provide some intuition behind the above theorem. Let
the codebook X be some maximum independent set K of
graph GX|Y,YR

. For each given valid codebook X = K, by
Theorem 2, compressing YR into W ∗R according to the min-
imum colouring function c on graph GR|K, is information
lossless in terms of discriminating, together with Y , channel
input X ∈ K. To forward the W ∗R to the destination, a
conference link with rate logχ(GR|K) suffices. An example
of how to compute T (1)

u is provided in Subsection VI-B.
Note that the vertex set of graph GR|K is YR|K, which is

a subset of YR, i.e. YR|K ⊆ YR. Thus,

χ(GR|K)
(a)

≤ ‖YR|K‖
(b)

≤ ‖YR‖ .
By Brooks’ Theorem [8], the chromatic number of a graph is
at most the maximum degree ∆ (the largest vertex degree),
unless the graph is complete or an odd cycle. So inequality
(a) can be strict and as low as 1. The equality in (b) is
obtained only when the restriction of support from X to
K does not prohibit any YR = yR from showing up. One
extreme case is when graph GX|Y,YR

is edge free, then K
equals to the whole vertex set and YR|K = YR. Please refer
to the examples in the case study in section VI.

B. Proof of Theorem 2

Proof: Note W ∗R = c(YR) is a deterministic function
of YR by Definition 13, thus given the conditional pmf
p(y, yR|x), p(y, w∗R|x) is computable. Since a confusability
graph by definition is characterized by the collection of
conditional joint supports T := {SX|Y,YR

(y, yR), (y, yR) ∈
Y × YR} and does not depend on the actual probability
values, it suffices to show that the conditional supports
SX|Y,W∗R(y, wR)6 (to be formally defined later) form the
same collection T . We show this condition is true by pointing
out

SX|Y,W∗R(y, wR) = ∪
yR ∈ c−1(wR)

SX|Y,YR
(y, yR)

and show that {SX|Y,W∗R(y, wR), (y, wR) ∈ Y × W∗R} =
{SX|Y,YR

(y, yR), (y, yR) ∈ Y × YR} = T .
It suffices to show every non-empty SX|Y,YR

(y0, yR0)
is equal to SX|Y,W∗R(y0, wR0), where wR0 = c(yR0).
For every (y0, yR0) such that SX|Y,YR

(y0, yR0) 6= ∅,
we denote c(yR0) = wR0 and let c−1(wR0) =
{yR0, yR1, · · · , yR(K−1)}, where K ≥ 1 is the number

6Throughout this proof, we drop the superscript of w∗R for simplicity and
we mean wR ∈ W∗R = {1, · · · , χ(GR)}.

of yR’s that are mapped to the same colour index wR0.
When K = 1, SX|Y,W∗R(y0, wR0) = SX|Y,YR

(y0, yR0).
When K ≥ 2, SX|Y,W∗R(y0, wR0) = SX|Y,YR

(y0, yR0) ∪
SX|Y,YR

(y0, yR1) ∪ · · · ∪ SX|Y,YR
(y0, yR(K−1)). Note that

SX|Y,YR
(y0, yR0) is non-empty:

• when SX|Y,YR
(y0, yR0) has only one element, say x0,

we know Pr(Y = y0, YR = yR0|X = x0) > 0. By
the construction of W ∗R in Definition 13, we know that
Pr(Y = y0, YR = yRt|X = xq) = 0 for all t =
1, · · · ,K−1 and xq 6= x0. Otherwise, the presumption
that yR0 and yRt share the same colour index wR0 leads
to a contradiction. As a result, for all t = 1, · · · ,K−1,
SX|Y,YR

(y0, yRt) = {x0} when Pr(Y = y0, YR =
yRt|X = x0) > 0 and SX|Y,YR

(y0, yRt) = ∅ otherwise.
Thus, we have SX|Y,YR

(y0, yR0) ∪ SX|Y,YR
(y0, yR1) ∪

· · · ∪ SX|Y,YR
(y0, yR(K−1)) = SX|Y,YR

(y0, yR0), and
SX|Y,W∗R(y0, wR0) = SX|Y,YR

(y0, yR0).
• when SX|Y,YR

(y0, yR0) has more than one element, i.e.,
x0, x

′
0 ∈ SX|Y,YR

(y0, yR0) and x0 6= x′0. Applying
the argument above twice, we have Pr(Y = y0, YR =
yRt|X = xq) = 0 for all t = 1, · · · ,K − 1 when
xq 6= x0 and xq 6= x′0. Thus, Pr(Y = y0, YR =
yRt|X = x) = 0 for all t = 1, · · · ,K−1 and all x ∈ X ,
i.e., SX|Y,YR

(y0, yRt) = ∅ for all t = 1, · · · ,K−1. So,
SX|Y,W∗R(y0, wR0) = SX|Y,YR

(y0, yR0).

Thus, every non-empty SX|Y,YR
(y0, yR0) is equal

to SX|Y,W∗R(y0, wR0), where wR0 = c(yR0) and
hence {SX|Y,YR

(y, yR), (y, yR) ∈ Y × YR} and
{SX|Y,W∗R(y, wR), (y, wR) ∈ Y ×W∗R} are equal.

C. n-shot Colour-and-Forward relaying:

When block coding or multiple uses of the channel is al-
lowed, all results from the previous section may be extended
in a straightforward manner. That is, we focus on the joint
conditional pmf p(yn, ynR|xn) with support Xn and output
Yn × YnR. The compression graph G

(n)
R now has ynR or its

subset as vertices, and is analogously defined. For simplicity,
we state the key theorems without proofs.

Theorem 5: GXn|Y n,Y n
R

= GXn|Y n,W∗R
, i.e. the confus-

ability graph on Xn from p(yn, ynR|xn) equals that from
p(yn, w∗R|xn). W ∗R is generated by Definition 13 from
p(yn, ynR|xn) with support Xn and output Yn × YnR.

Theorem 6: A new upper bound for C∗(n)0,z is:

C
∗(n)
0,z ≤ T (n)

u ,

T (n)
u :=

min
K is a maximum independent set of graph GXn|Y n,Y n

R

log
n

√
χ(G

(n)
R |K)

,

where χ(G
(n)
R |K) is the chromatic number of graph G(n)

R |K,
constructed via the algorithm described in Table I from the
joint pmf p(yn, ynR|xn) with restricted input K.



D. A new upper bound on C∗0,z via Colour-and-Forward

Theorem 7 (A Colour-and-Forward upper bound on C∗0,z):
C∗0,z ≤ Tu, where

Tu := min
{
T (n∗)
u : n∗ = arg max

n
{C(n)

z (∞), n = 1, 2, · · · }
}
,

when maxn C
(n)
z (∞) exists.

This follows directly from Theorem 6, the definition
Cz(∞) = supn log n

√
α(GnX|Y,YR

) and the assumption that

the supremum and maximum of log n

√
α(GnX|Y,YR

) is equal.
Note that to infer the behavior of C∗0,z from the upper

bounds on C
∗(n)
0,z requires knowing how Cz(∞) depends

on C(n)
z (∞). By the super-multiplicity of the independence

number sequence of the strong product graphs and Fekete’s
lemma, we know that sequence C

(n)
z (∞) converges to its

supremum. In general, the maximum need not exist.

V. ZERO-ERROR CAPACITY OF A SPECIAL CLASS OF
PRIMITIVE RELAY CHANNELS

Applying Theorem 2 using our Colour-and-Forward relay
strategy W ∗R defined in Definition 13, we may obtain the
zero-error capacity of a special class of primitive relay
channels.

Recall that in Definition 9, we call a PRC channel
((X , p(y, yR|x),Y × YR), C0) effectively fully-cooperative,
when its zero-error capacity equals Cz(∞), i.e., when C0 ≥
C∗0,z , which is guaranteed when C0 ≥ Tu, where Tu is the
upper bound in Theorem 7.

We now look at a particular class of primitive relay
channels for which we will be able to show capacity. We term
these perfect primitive relay channels as (1) like in the point-
to-point channel, we can characterize the zero-error capacity
exactly, and not because any of the associated graphs are
perfect graphs necessarily; (2) the zero-error capacity of such
PRCs is the maximal possible rate – the logarithm of the
channel input alphabet size ‖X‖.

Definition 14: A PRC channel
((X , p(y, yR|x),Y × YR), C0) is perfect if 1)
maxn C

(n)
z (∞) exists; 2) C0 ≥ Tu; and 3) GX|Y,YR

is edge free.
Theorem 8: The zero-error capacity of the perfect primi-

tive relay channel satisfying conditions in Definition 14, is

Cz,perfect = log ||X ||.
Proof: The converse is trivial: the zero-error capacity is

always upper bounded by log ‖X‖. The achievability follows
by default:

(1) graph GX|Y,YR
being edge-free implies that block

coding brings no gain than a single-shot coding scheme.
Thus, Cz(∞) = logα(GX|Y,YR

) = log ‖X‖.
(2) Cz(∞) = log ‖X‖ is achievable because C0 ≥ C∗0,z

is guaranteed by C0 ≥ Tu.
To be explicit, the 1-shot protocol (n = 1, X = X , h, g)

achieves zero error when C0 ≥ Tu, with the codebook
X being the whole channel input alphabet as desired, the

SX|Y (y) BYR
(x, y) edges

Y = 1
X = 1 {3, 4}

1− 3, 1− 4
X = 5 {1}

Y = 2
X = 1 {1, 2}

1− 2, 1− 4, 2− 4X = 2 {2}
X = 4 {4}

Y = 3
X = 2 {3}

1− 3
X = 3 {1}

Y = 4
X = 3 {3}

3− 4
X = 4 {4}

Y = 5
X = 4 {3}

3− 5
X = 5 {5}

TABLE III
CONSTRUCTING COMPRESSION GRAPH GR FROM p(y, yR|x) IN TABLE

II.

relaying h(yR) := c(yR) as in Definition 13 and the
decoding function g(y, wR) as in the proof of Theorem 2:

g(y, wR) := SX|Y,W∗R(y, wR) = ∪
yR ∈ c−1(wR)

SX|Y,YR
(y, yR).

Note that we do not claim the C0 ≥ Tu is necessary, but
merely sufficient to achieve log ‖X‖.

VI. CASE STUDIES

We first give an example to show how to construct the
compression graph GR, illustrated in Table I and how to use
this to find the Colour-and-Forward relay mapping W ∗R =
c(YR), defined in Definition 13. Then, in Subsection VI-
B, we show how to obtain the upper bound T

(1)
u on C

∗(1)
0,z

in Theorem 4 and how to construct protocols for the whole
network. Last, we provide three examples to further illustrate
the intuition and potential benefit of relaying to provide
“what the destination needs”. For the sake of simplifying the
description for a conditional joint pmf, we let p(y, yR|x) =
p(yR|x)p(y|x) in the these three examples. An edge in a
bipartite graph between X and Y (or X and YR) indicates
p(y|x) > 0 (or p(yR|x) > 0).

A. Construction of the compression graph GR

Table II enumerates a conditional joint probability mass
function: p(y, yR|x), where ‖X‖ = ‖Y‖ = ‖YR‖ = 5. An
entry at position (x, y, yR) is denoted by “∗” (the actual value
does not matter), when its probability p(y, yR|x) is positive
and by “0” when p(y, yR|x) = 0.

Table III illustrates the iterative algorithm: for each Y ∈
[1 : 5], construct a sequence of BYR

(x, y) ⊆ YR = [1 : 5],
where x ∈ SX|Y (y) = {x : p(y|x) > 0} and put an
edge between every pair (yR, y

′
R) where yR ∈ BYR

(x, y)
and y′R ∈ BYR

(x′, y). Superimposing these edges, we have
the compression graph GR as shown in Figure 3. In graph
GR, different colours are used to denote one choice of
minimum colouring function c. These colours specify the
relay’s mapping W ∗R = c(YR). As shown in Figure 4,
GX|Y,YR

= GX|Y,W∗R , i.e. compressing YR into W ∗R is
information lossless in the sense that together with Y , W ∗R
provides the same ability to distinguish different X = x’s as
YR.



s(p(y, yR|x)) YR YR YR YR YR
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Y

1
2
3
4
5

0 0 ∗ ∗ 0
∗ ∗ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
∗ 0 0 0 0
0 0 ∗ 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 ∗ 0
0 0 0 0 0
0 0 0 ∗ 0
0 0 ∗ 0 0

∗ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ∗

X = 1 X = 2 X = 3 X = 4 X = 5

TABLE II
CONDITIONAL JOINT PROBABILITY MASS FUNCTION: p(y, yR|x), WHERE ‖X‖ = ‖Y‖ = ‖YR‖ = 5. NOTE THAT s(p(y, yR|x)) EQUALS TO ∗ WHEN

p(y, yR|x) > 0 (ACTUAL VALUE IS UNIMPORTANT) AND 0, OTHERWISE.

1
2

3

4

5

Compression graph GR

1g
2b

3b

4r

5r

One minimum colouring c

Fig. 3. The compression graph GR and one choice of minimum colouring
function c, for the joint conditional pmf p(y, yR|x) in Table II. Note that
the least number of colours required is: χ(GR) = 3.

1
2

3

4

5

confusability graphs: GX|Y,YR
= GX|Y,W∗

R

Fig. 4. Compressing YR into W ∗R according to the minimum colouring
function c on graph GR in Figure 3, is information lossless in the sense
that together with Y , W ∗R provides as much information of about X as YR.
Note that the independence number is: α(GX|Y,YR

) = 4.

B. Construction of protocols for the PRC

Let the broadcasting component of this primitive relay
channel, i.e. (X , p(y, yR|x),Y × YR), be the conditional
joint pmf specified in Table II. We now illustrate how to
compute our upper bound T

(1)
u on C∗0,z in Theorem 4 and

when C0 ≥ T
(1)
u , how to construct protocols to achieve the

message rate of Corollary 3, Rz = logα(GX|Y,YR
) = log 4

(Figure 4).
As shown in Figure 4, graph GX|Y,YR

has two possible
maximal independent sets: K1 = {1, 3, 4, 5} and K2 =
{2, 3, 4, 5}.

1) When codebook K1 = {1, 3, 4, 5} is chosen,
the induced broadcasting component is
(K1, pK1(y, yR|x),Y|K1 × YR|K1).
• The iterative algorithm: in Table IV.7

• The compression graph GR|K1 : in Figure 5.8

7We retain the cross-out items in Tables IV, V to serve a comparison
with the construction algorithm in Table III.

8We retain the dotted edges in Figure 5, 6 to serve as a comparison with
the compression graph in Figure 3.

SX|Y (y) BYR
(x, y) edges

Y = 1
X = 1 {3, 4}

1− 3, 1− 4
X = 5 {1}

Y = 2
X = 1 {1, 2}

1− 2, 1− 4, 2− 4 1− 4, 2− 4X = 2 {2}
X = 4 {4}

Y = 3
X = 2 {3}

1− 3 ∅
X = 3 {1}

Y = 4
X = 3 {3}

3− 4
X = 4 {4}

Y = 5
X = 4 {3}

3− 5
X = 5 {5}

TABLE IV
CONSTRUCTING COMPRESSION GRAPH GR|K1 FOR INDUCED

CONDITIONAL JOINT PMF (K1, pK1
(y, yR|x),Y|K1

× YR|K1
).

• One choice of minimum colouring on compression
graph GR|K1

: in Figure 5 with chromatic number
χ(GR|K1) = 3.

2) When codebook K2 = {2, 3, 4, 5} is chosen
and the induced broadcasting component is
(K2, pK2

(y, yR|x),Y|K2
× YR|K2

).
• The iterative algorithm: in Table V.9

• The compression graph GR|K2
: in Figure 6.10

• One choice of minimum colouring on compression
graph GR|K2

: in Figure 6 with chromatic number
χ(GR|K2) = 2.

So T
(1)
u = log min{χ(GR|K1

), χ(GR|K2
)} =

log min{3, 2} = 1. Thus, by Theorem 4, we know
C∗0,z is upper bounded by 1. Also, when C0 ≥ T

(1)
u , by

choosing codebook K2 = {2, 3, 4, 5}, relaying function h to
be the minimum colouring for graph GR|K2

in Figure 6 and
the decoding function g(y, wR) to be the same one used in
the proof of Theorem 8 or Theorem 2, we can achieve the
message rate Rz = logα(GX|Y,YR

) = log 4.

C. The pentagon problem

We now consider a channel where the direct link between
the source and destination consists of Shannon’s “pentagon
problem”, which was notoriously difficult to solve. If the
relay link is such that the corresponding channel forms a
perfect PRC (this relay link described by p(yR|x) is not
unique) an example of which is shown in Figure 7, we
have α(GX|Y,YR

) = 5 and rate log 5 can be achieved, when
C0 ≥ log 3 (in a 1-shot scheme). Note that smaller values

9See footnote 7.
10See footnote 8.



1
2

3

4

5

Compression graph GR|K1

1g
2b

3b

4r

5r

One minimum colouring c

Fig. 5. The compression graph GR|K1 and one choice of
minimum colouring function c, for induced conditional joint pmf
(K1, pK1

(y, yR|x),Y|K1
×YR|K1

). Note that the least number of colours
required is: χ(GR|K1 ) = 3.

SX|Y (y) BYR
(x, y) edges

Y = 1
X = 1 {3, 4}

1− 3, 1− 4 ∅
X = 5 {1}

Y = 2
X = 1 {1, 2}

1− 2, 1− 4, 2− 4 2− 4X = 2 {2}
X = 4 {4}

Y = 3
X = 2 {3}

1− 3
X = 3 {1}

Y = 4
X = 3 {3}

3− 4
X = 4 {4}

Y = 5
X = 4 {3}

3− 5
X = 5 {5}

TABLE V
CONSTRUCTING COMPRESSION GRAPH GR|K2 FOR INDUCED

CONDITIONAL JOINT PMF (K2, pK2 (y, yR|x),Y|K2 × YR|K2 ).

of C0 might still be able to guarantee the maximal rate
log ‖X‖ = log 5 when multiple channel uses are allowed,
but this is left open.

We compare the rate achieved by our strategy with that
achieved by a “Decode-and-Forward” (DF) relaying strategy.
In a DF strategy, the relay would like to decode every code-
word w ∈ X , in which case the message rate is constrained
by Rz ≤ logα(GX|YR

). In this example, α(GX|YR
) = 3.

Thus, Rz ≤ log 3 is a hard constraint on the message
rates that can be achieved by Decode-and-Forward, which
is clearly inferior to that achieved by our scheme. Our
scheme might be seen as a “channel-aware” (depends on the
conditional p(y, yR|x)) compression of YR, and thus might
be seen as a smart way of implementing Compress-and-
Forward.

1
2

3

4

5

Compression graph GR|K2

1r
2b

3b

4r

5r

One minimum colouring c

Fig. 6. The compression graph GR|K2
and one choice of

minimum colouring function c, for induced conditional joint pmf
(K2, pK2 (y, yR|x),Y|K2×YR|K2 ). Note that the least number of colours
required is: χ(GR|K2

) = 2.

p(y|x) p(yR|x)

X Y

1

2

3

4

5

1

2

3

4

5

X YR

1

2

3

4

5

1

2

3

4

5

GR

1g

2r

3g

4r

5b

Fig. 7. Pentagon problem: marginals and GR graph used for relaying. The
capacity is log 5 and may be achieved if C0 ≥ log 3, in 1-shot.

D. An example where no compression is possible

We now provide an example in Figure 8 to show that
there exist channels for which no information lossless com-
pression is possible at the relay and the relay has to forward
everything that it has observed, i.e, C∗0,z = log ‖YR‖. Our
relaying scheme W ∗R captures this phenomenon by requiring
8 different colours for 8 yR’s, as shown in Figure 8.

p(y|x) p(yR|x)

X Y

1

2

3

4

5

6

1

2

X YR

1

2

3

4

5

6

1

2

3

4

5

6

7

8

GR

1g

2br
3b

4r

5p

6or
7bl

8y

Fig. 8. An example where information lossless compression at the relay
is impossible.

E. An example where much compression is possible

Finally, in Figure 9 we show an example of a channel
where YR may be highly compressed without losing the
needed information about X – i.e. we do not need to
reconstruct YR at the destination, but only need to use the
conferencing link to resolve any remaining ambiguity from
the direct link. Here, one may verify that by sending only
one of the two colours over the conferencing link, that a
capacity of log 8 may be achieved when C0 ≥ log 2.

VII. CONCLUSION AND FUTURE WORK

This paper introduces and formally defines the problem
of zero-error communication over a primitive relay channel,
which serves as an example of the essential role of a relay
in a relay channel: providing “what the destination terminal
needs” to disambiguate the transmitted symbols. We develop
a compression graph to capture this notion of “what the
destination needs” and propose a novel information lossless



p(y|x) p(yR|x) GR

X Y

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

X YR

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1r

2b
3r

4b

5r

6b
7r

8b

Fig. 9. An example where much compression is possible.

relaying scheme based on some minimum colouring on this
compression graph, termed “Colour-and-Forward” relaying.
We hope that insights from this zero-error communication
relaying strategy may be borrowed to better understand
how to exploit the channel structure to design new relaying
schemes in the small-error setting.

Due to the space limitations, we leave the following dis-
cussions to future work: (1) Whether the presented Colour-
and-Forward relaying mapping is optimal, i.e. yields the
minimum needed conference capacity to support an overall
rate of lim

n→∞
log n

√
α(GXn|Y n,Y n

R
); (2) The connection with

Witsenhausen’s source coding graph [9]. We note that, for
the special channel in which YR = X with probability 1, our
problem is different from the source coding problem studied
by Witsenhausen in [9].
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