Problem 1. A certain deep space transmitter uses on-off modulation of a laser to send a bit, with value either zero or one. If the bit is zero, the number of photons, X, arriving at the receiver has the Poisson distribution with mean $\lambda_0 = 2$; and if the bits is one, X has the Poisson distribution with mean $\lambda_1 = 6$. A decision rule is needed to decide, based on observation of X, whether the bit was a zero or a one.

1. Suppose we decide that a 1 is sent if $P[X = k | \text{one is sent}] > P[X = k | \text{zero is sent}]$. What does this decision rule simplify to in terms of X?

2. Suppose we know that the probability of sending a zero is π_0 and that of sending a one is π_1. Suppose now that we decide a 1 is sent if $P[X = k, \text{one is sent}] > P[X = k, \text{zero is sent}]$. What does this decision rule simplify to now in terms of X if $\pi_0 = 5\pi_1$?

Solution 1:

1. Decision Rule is in favor of 1 if

$$P[X = k | \text{one is sent}] \geq P[X = k | \text{zero is sent}] \quad (1)$$

Thus

$$\frac{P[X = k | \text{one is sent}]}{P[X = k | \text{zero is sent}]} \geq 1 \quad (3)$$

But it is given that the number of photons X arriving at the receiver has Poisson distribution, then

$$\frac{P[X = k | \text{one is sent}]}{P[X = k | \text{zero is sent}]} = \frac{e^{-\lambda_1} \frac{\lambda_1^k}{k!}}{e^{-\lambda_0} \frac{\lambda_0^k}{k!}} = \left(\frac{\lambda_1}{\lambda_0}\right)^k e^{-(\lambda_1-\lambda_0)} = 3^k e^{-4} \approx \frac{3^k}{54.6} \quad (4)$$

Thus based on this result, we decide that a bit 1 is sent if $\frac{3^k}{54.6} \geq 1$, that is if $X = k \geq 4$.
2. Now Decision Rule is in favor of 0 if

\[P[X = k, \text{one is sent}] \geq P[X = k, \text{zero is sent}] \] \hspace{1cm} (5)

\[P[X = k|\text{one is sent}]P[\text{one is sent}] \geq P[X = k|\text{zero is sent}]P[\text{zero is sent}] \] \hspace{1cm} (6)

\[P[X = k|\text{one is sent}] \pi_1 \geq P[X = k|\text{zero is sent}] \pi_0 \] \hspace{1cm} (7)

\[\frac{P[X = k|\text{one is sent}]}{P[X = k|\text{zero is sent}]} \geq \frac{\pi_0}{\pi_1} = 5 \] \hspace{1cm} (8)

\[\frac{P[X = k|\text{one is sent}]}{P[X = k|\text{zero is sent}]} = \frac{3^k}{54.6} \geq 5 \] \hspace{1cm} (9)

Thus the condition above is satisfied when \(X \geq 6 \)

Problem 2. Let \(X \) have CDF shown in Fig. 3.3. Find the numerical values of the following quantities:

1. \(P[X \leq 1] \)
2. \(P[X \leq 10] \)
3. \(P[X \geq 10] \)
4. \(P[X = 10] \)
5. \(P[|X - 5| \leq 0.1] \)

![CDF Graph](image_url)

Solution 2:

- \(P[X \leq 1] = F_X[1] = 0.05 \) where \(F_X(1) \) is calculated from the equation of the line \(F_X[x] = 0.05x \) when \(x < 5 \)
- \(P[X \leq 10] = F_X[10] = 0.75 \) from the graph.
- \(P[X \geq 10] = 1 - P(X < 10) = 1 - F_X(10^-) = 0.5. \)
• $P[X = 10] = F_X(10^+) - F_X(10^-) = 0.75 - 0.5 = 0.25$.
• $P[|X - 5| \leq 0.1] = P[4.9 \leq X \leq 5.1] = P(X \leq 5.1) - P(X < 4.9) = 0.5 - 0.245 = 0.255$.

where $F_X(4.9)$ is calculated from the equation of the line $F_X[x] = 0.05x$ when $x < 5$

Problem 3. Exponential random variables have a nice property termed the “memoryless property”, which means that $P[T > s + t | T > s] = P[T > t]$, where T is exponentially distributed. Show this property.

Solution 3: The aim is to prove that exponential random variables have property of being memoryless i.e $P[T > s + t | T > s] = P[T > t]$.

Using Bayes Rule

\[
P[T > s + t | T > s] = \frac{P[T > s + t, T > s]}{P[T > s]} \tag{14}
\]
\[
= \frac{P[T > s + t | T > s]}{P[T > s]}
\tag{15}
\]
\[
= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} \tag{16}
\]
\[
= e^{-\lambda t} = P[T > t] \tag{17}
\]

Problem 4. Suppose $Y = X^2$, where $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 2, \sigma^2 = 3$. Find the pdf of Y.

(HINT: $\frac{d}{dx} \Phi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$).

Solution 4: The RV $Y = g(X)$. The RV X can take on all real values and Y take on only values over \mathbb{R}^+

- if $y < 0$ then $F_Y(y) = 0$ since $P(Y \geq 0) = 1$
- if $y \geq 0$ then
\[F_Y(y) = P(X^2 \leq y) = P(-\sqrt{y} \leq X \leq \sqrt{y}) \]
\[= P\left(\frac{-\sqrt{y} - 2}{\sqrt{3}} \leq \frac{X - 2}{\sqrt{3}} \leq \frac{\sqrt{y} - 2}{\sqrt{3}}\right) = \Phi\left(\frac{\sqrt{y} - 2}{\sqrt{3}}\right) - \Phi\left(\frac{-\sqrt{y} - 2}{\sqrt{3}}\right) \] (18)

Taking the derivative with respect to \(y \), using the chain rule and the hint that \(\frac{d}{dx} \Phi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) \)

\[f_Y(y) = \begin{cases}
\frac{1}{\sqrt{2\pi y}} \left[\exp\left(-\frac{(\sqrt{y} - 2)^2}{6}\right) + \exp\left(-\frac{(\sqrt{y} + 2)^2}{6}\right) \right] & y \geq 0 \\
0 & y < 0
\end{cases} \]