Problem 1. Given a uniform, continuous random variable X whose range is $[-3, 3]$. We quantize X to give Y, using L levels such that SNR$_Q$(dB) = 25. Find:

1. $E[X^2]$
2. $Var[X]$
3. μ_X
4. $E[(X - Y)^2]$
5. L
6. Verify using Matlab that your choice of L yields SNR$_Q$(dB) \approx 25

Solution 1:
The PDF of X is a continuous Random Variable then
$$f_X(x) = \begin{cases} \frac{1}{6} & -3 \leq x \leq 3 \\ 0 & \text{otherwise} \end{cases}$$

The Variance for a Uniform Random Variable is as follows
$$Var[X] = \frac{(b-a)^2}{12}$$

1. $E(X^2)$ is calculated as follows
$$E(X^2) = \int_{-3}^{3} f_X(x)x^2 dx = \int_{-3}^{3} \frac{1}{6}x^2 dx = 3$$
2. $Var[X]$ is calculated as follows
$$Var[X] = \frac{(b-a)^2}{12} = \frac{(3-(-3))^2}{12} = 3$$
3. μ_X is calculated as follows
$$\mu_X = \sqrt{E(X^2)} - Var(X) = \sqrt{3 - \frac{3}{3}} = 0$$
4. Number of levels L is calculated as follows
\[
10 \log SNR = 25 \Rightarrow SNR = 10^{2.5} = 316.23 \tag{5}
\]
\[
L^2 = 316.23 \Rightarrow L = 17.778 \tag{6}
\]
But L can only be integer representing number of levels for quantization thus choose $L = 18$.

5. $E(X - Y)^2$ known as the mean square error. Where $(X-Y)$ represent the error due to quantizations is calculated as follows
\[
\Delta = \frac{b - a}{L} = \frac{6}{18} = \frac{1}{3} \tag{7}
\]
\[
E(X - Y)^2 = \frac{\Delta^2}{12} = \frac{1^2}{3} = 0.00926. \tag{8}
\]

6. MATLAB code is as follows:

```matlab
>> X = rand(1,1e7)*6-3;
>> delta = 6/L;
>> Y = round(X/delta)*delta;
>> Z = X-Y;
>> mean(Z.^2)
ans =
    0.00925335563324
>> 10*log10(mean(X.^2)/mean(Z.^2))
ans =
     25.10618609681968
```

Problem 2. Let $W = \text{Bernoulli}(1/2)$ and $X = 10W - 5$ and $Y = X + N$, where N is a Gaussian random variable having zero mean. Define the SNR as $E[X^2]/E[N^2]$, or in decibels, \(\text{SNR(dB)} = 10 \log_{10}(E[X^2]/E[N^2])\). Define the decoder output (our decision on which bit was transmitted based on the received signal Y) as a new random variable Z which is equal to 0 is $Y < 0$ and equal to 1 is $Y \geq 0$. If $Z = W$ then no error occurs, if $Z \neq W$ then an error occurred due to the additive Gaussian noise in the channel. Find:

1. The variance of N when the channel SNR is 30dB.
2. The channel SNR in dB when the variance of the RV \(N \) is 0.1.

3. The power of the noise in the channel is \(E[N^2] \). Derive an expression for the probability of a bit error in the channel (probability that \(Z \neq W \)) in terms of the noise power.

4. Derive an expression for the probability of a bit error in the channel in terms of channel SNR.

Solution 2: \(W = \text{Bernoulli} (1/2) \). Thus \(W \) takes on values either 1 or 0 with equal probability \(p = 0.5 \) which makes the range of values for \(X = 5 \) or -5 since \(X = 10W - 5 \). It is important for this problem to calculate the \(E(X^2) \) which is:

\[
E(X^2) = (5)^2(0.5) + (-5)^2(0.5) = 25
\]

1. The variance of \(N \) can be calculated from the SNR.

\[
10 \log \text{SNR} = 10 \log \frac{E(X^2)}{E(N^2)} = 30
\]

\[
\frac{E(X^2)}{E(N^2)} = 1000 \quad \text{with} \quad E(X^2) = 25
\]

\[
E(N^2) = \frac{25}{1000} = \frac{1}{40}
\]

Note that \(E(N^2) = \sigma_N^2 \) because \(N \) is zero mean thus \(E(N) = 0 \).

2. SNR is calculated as follows

\[
\text{SNR}(dB) = 10 \log \frac{E(X^2)}{\sigma_N^2} = 10 \log \frac{25}{0.1} = 23.9794
\]

3. The Probability of a bit error in the channel (probability that \(Z \neq W \))

\[
P(\text{bit error}) = P(Z \neq 1|W = 1)P(W = 1) + P(Z \neq 0|W = 0)P(W = 0)
\]

\[
= 0.5P(Y < 0|W = 1) + 0.5P(Y \geq 0|W = 0)
\]

\[
= 0.5P(X + N < 0|W = 1) + 0.5P(X + N \geq 0|W = 0)
\]

\[
= 0.5P(N < -5) + 0.5P(N \geq 5)
\]

But the the above probabilities are equal then

\[
P(N \geq 5) = Q\left(\frac{5}{E[N^2]}\right)
\]

4. The expression for the probability of a bit error in the channel in terms of channel SNR, from the above part it can be seen that:

\[
P(\text{bit error}) = Q\left(\sqrt{\frac{E[X^2]}{E[N^2]}}\right) = Q(\sqrt{SNR})
\]
Problem 3. Let \((X, Y)\) have the joint pmf given in the table below.

\[
\begin{array}{c|ccc}
Y = 3 & 0.1 & 0.1 & 0 \\
Y = 2 & 0 & 0.2 & 0.2 \\
Y = 1 & 0 & 0.3 & 0.1 \\
\hline
X = 1 & \quad & \quad & \quad \\
X = 2 & \quad & \quad & \quad \\
X = 3 & \quad & \quad & \quad \\
\end{array}
\]

Find:

1. The pmf of \(X\)
2. The pmf of \(Y\)
3. \(P[X = Y]\)
4. \(P[X > Y]\)

Solution 3:
(a) The pmf of \(X\) is given by the column sums:

\[
P_X(1) = 0.1, P_X(2) = 0.3 + 0.2 + 0.1 = 0.6, P_X(3) = 0.1 + 0.2 = 0.3.
\]

(b) The pmf of \(Y\) is given by the rows sums:

\[
P_Y(1) = 0.3 + 0.1 = 0.4, P_Y(2) = 0.2 + 0.2 = 0.4, P_Y(3) = 0.1 + 0.1 = 0.2.
\]

(c) For \(P[X = Y]\)

\[
P(X = Y) = p_{X,Y}(1,1) + p_{X,Y}(2,2) + p_{X,Y}(3,3) = 0 + 0.2 + 0 = 0.2.
\]

(d) For \(P[X > Y]\)

\[
P(X > Y) = p_{X,Y}(2,1) + p_{X,Y}(3,1) + p_{X,Y}(3,2) = 0.3 + 0.1 + 0.2 = 0.6.
\]