ECE 534: Elements of Information Theory, Fall 2013

Homework 9

Out: October 30, due November 4, 2013 (BONUS)

Problem 9.2 Consider the ordinary Gaussian channel with two correlated looks at X, that is, $Y = (Y_1, Y_2)$, where

$$Y_1 = X + Z_1$$
$$Y_2 = X + Z_2$$

with a power constraint P on X, and $(Z_1, Z_2) \sim \mathcal{N}_2(0, K)$, where

$$K = \begin{bmatrix} N & N\rho \\ N\rho & N \end{bmatrix}.$$

Find the capacity C for

- 1. $\rho = 1$
- 2. $\rho = 0$
- 3. $\rho = -1$

Problem 9.4 Exponential noise channel. $Y_i = X_i + Z_i$, where Z_i is i.i.d. exponentially distributed noise with mean μ . Assume that we have a mean constraint on the signal (i.e. $E[X_i] \leq \lambda$). Show that the capacity of such a channel is $C = log\left(1 + \frac{\lambda}{\mu}\right)$.

Problem 9.5 Consider an additive noise fading channel Y = XV + Z, where Z is additive noise, V is a random variable representing fading, and Z and V are independent of each other and of X. Argue that knowledge of the fading factor V improves capacity by showing that $I(X;Y|V) \ge I(X;Y)$.

Problem 9.9 Vector Gaussian channel. Consider the vector Gaussian noise channel

$$Y = X + Z$$

where $X = (X_1, X_2, X_3), Z = (Z_1, Z_2, Z_3), Y = (Y_1, Y_2, Y_3), E||X||^2 \le P$, and

$$Z \sim \mathcal{N}\left(0, \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}\right).$$

Find the capacity. The answer may be surprising.