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Abstract

We consider the problem of determining minimal Horn for-
mula size for a subclass of Horn formulas. A hydra formula
is a Horn formula consisting of size 3 definite Horn clauses,
specified by a set of bodies of size 2, and containing clauses
formed by these bodies and all possible heads. A hydra for-
mula can be specified by the undirected graph formed by the
bodies occurring in the formula. Thus minimal formula size
for hydras can be considered as a graph parameter, the hydra
number. We discuss how the hydra number relates to other
quantities such as the path cover number of the line graph,
characterize trees with low hydra number and give bounds for
the hydra number of complete binary trees. We also discuss
a related optimization problem and formulate several open
problems.

1 Introduction
Horn minimization is the problem of finding a shortest pos-
sible Horn formula equivalent to a given formula. There are
approximation algorithms, computational hardness and in-
approximability results for this problem (Hammer and Ko-
gan 1993; Bhattacharya et al. 2010; Boros and Gruber
2012). Estimating the size of a minimal formula is not well
understood even in rather simple cases. The problem can
also be viewed as a problem for directed hypergraphs. Spe-
cial cases correspond to the well studied transitive reduc-
tion and minimum equivalent digraph problems for directed
graphs.

Definition 1.1. A definite 3-Horn formula ϕ is a hydra1 for-
mula, or a hydra, if for every clause x, y → z in ϕ and every
variable u, the clause x, y → u also belongs to ϕ.

For example,

(x, y → z) ∧ (x, y → u) ∧ (x, z → y) ∧ (x, z → u)

is a hydra2.
We consider the Horn minimization problem for hydras.

Besides being a natural subproblem of Horn minimization,

∗This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0916708.

1In Greek mythology the Lernaean Hydra is a beast possessing
many heads.

2Redundant clauses like x, y → x are omitted for simplicity.

this problem may also be of interest for the following rea-
son. The Horn body minimization problem is the prob-
lem of finding, given a definite Horn formula, an equivalent
Horn formula with the minimal number of distinct bodies.
There are efficient algorithms for this problem (Maier 1983;
Guigues and Duquenne 1986; Angluin, Frazier, and Pitt
1992; Arias and Balcázar 2011). Thus one possible ap-
proach to Horn minimization is to find an equivalent formula
with the minimal number of bodies and then to select as few
heads as possible from the set of heads assigned to the bod-
ies. This approach is indeed used in an approximate Horn
minimization algorithm (Bhattacharya et al. 2010). Hydras
are a natural test case for this approach.

A hydra ϕ is determined by the undirected graph G
formed by the bodies in ϕ, and thus the minimal formula
size of a hydra can be viewed as a graph parameter h(G),
the hydra number of G. As the problem discussed in this
paper has a simple and natural formulation as a combina-
torial problem involving undirected graphs and directed hy-
pergraphs, we discuss the connection between the logic and
combinatorics formulations in Section 2, and for the rest of
the paper we use combinatorial terminology.

We present various results on hydra numbers. It is easy to
see that |E(G)| ≤ h(G) ≤ 2|E(G)| for every graph G on at
least three vertices. Graphs satisfying the lower bound are
called single-headed. In Section 3 we give some sufficient
and necessary conditions for single-headedness. The hydra
number is related to the path cover number of the line graph
(Theorem 4.1, Example 4.2). It is shown in Theorem 5.1 that
single-headed trees must be stars and that trees with hydra
number |E(G)| + 1 must be caterpillars. In Theorem 6.1
we show that the hydra number of complete binary trees is
between 13

12 |E (G)| and 8
7 |E (G) |.

In Section 7 we consider the related problem of finding
minimal definite 3-Horn formulas for which every k-tuple
of variables implies all other variables, and we give almost
matching lower and upper bounds. We conclude the paper
by mentioning several open problems.

2 Preliminaries
A definite Horn clause is a disjunction of literals where ex-
actly one literal is unnegated. Such a disjunction can also be
viewed as an implication, for example the clause x̄∨ ȳ∨ z is
equivalent to the implication x, y → z. The tuple x, y is the



body and the variable z is the head of the clause. The size
of a clause is the number of its literals. A definite d-Horn
formula is a conjunction of definite Horn clauses of size d.
A clause C is an implicate of a formula ϕ if every truth as-
signment satisfying ϕ satisfies C as well. The implicate C
is a prime implicate if none of its proper subclauses is an
implicate.

Implication between a definite Horn formula ϕ and a def-
inite Horn clause C can be decided by forward chaining:
mark every variable in the body of C, and while there is a
clause in ϕwith all its body variables marked, mark the head
of that clause as well. Then ϕ implies C iff the head of C
gets marked. The closure clϕ(S) of a set of variables S with
respect to ϕ is the set of variables marked by forward chain-
ing started from S. A set of variables is good if its closure is
the set of all variables.

In the following proposition we note that every prime im-
plicate of a hydra is a clause occurring in the hydra itself
(this is not true for definite 3-Horn formulas in general).
Thus minimization for hydras amounts to selecting a min-
imal number of clauses from the hydra that are equivalent to
the original formula.
Proposition 2.1. Every prime implicate of a hydra belongs
to the hydra.

Proof. First note that all prime implicates of a definite
Horn formula are definite Horn clauses (Hammer and Ko-
gan 1992). Let us consider a hydra ϕ and a definite Horn
clause C. If the body of C is of size 1, or it is of size 2 but it
does not occur as a body in ϕ then forward chaining cannot
mark any further variables, thus C cannot be an implicate.
If the body of C has size at least 3 then it must contain a
body x, y occurring in ϕ, otherwise, again, forward chain-
ing cannot mark any further variables. But then the clause
x, y → head(C) occurs in ϕ and so C is not prime.

A definite Horn formula may also be viewed as a directed
hypergraph, where vertices are the variables occurring in
the formula, and there is a hyperedge corresponding to each
clause in the formula. The body (or tail) of the edge is the
body of the clause and the head of the edge is the head of
the clause. Definite 3-Horn formulas, in particular, are rep-
resented by directed 3-hypergraphs with hyperedges of the
form u, v → w.

Forward chaining, then, defines a notion of reachability in
directed hypergraphs: a vertex v can be reached from a set of
vertices S iff forward chaining started by marking vertices
in S eventually marks vertex v. The set of vertices reachable
from S in a hypergraph H is called the closure of S, and it
is denoted by clH(S). The set S is good if its closure is the
whole vertex set of H .
Definition 2.2. A directed 3-hypergraph H = (V, F ) repre-
sents an undirected graph G = (V,E) if

i. (u, v) ∈ E implies clH(u, v) = V ,
ii. (u, v) 6∈ E implies clH(u, v) = {u, v}.

Definition 2.3. The hydra number h(G) of an undirected
graph G = (V,E) is

min{|F | : H = (V, F ) representsG}.

Proposition 2.1 implies that the minimal formula size of
a hydra ϕ and the hydra number of the undirected graph G
formed by the bodies in ϕ are the same. For the rest of the
paper we are going to use the latter terminology.
Remark 2.4. For the rest of the paper we assume that every
variable in a hydra occurs in some body, or, equivalently,
that graphs contain no isolated vertices. The removal of a
variable occurring only as a head decreases minimal formula
size by one, and, similarly, the removal of an isolated vertex
decreases the hydra number by one.

3 The hydra number of graphs
In this section we note some simple properties of the hydra
number.
Proposition 3.1. For every graph G = (V,E) with at least
three vertices

|E(G)| ≤ h(G) ≤ 2|E(G)|.
Proof. For the upper bound construct a hypergraph of size
2|E(G)| by first ordering the edges of G, and then using
each edge as the body of two hyperedges whose heads are
the two endpoints of the next edge in G. For the lower
bound, note that each edge of G must be a body of at least
one hyperedge.

Graphs satisfying the lower bound are of particular inter-
est as they represent ‘most compressible’ hydras.
Definition 3.2. A graph G is single-headed if
h(G) = |E(G)|.

A graph is single-headed iff there is a hypergraph H =
(V, F ) such that every edge of G has exactly one head as-
signed to it, every hyperedge body in H is an edge of G
and every edge of G is good in H . Cycles, for example, are
single-headed, as shown by the directed hypergraph

(v1, v2 → v3), (v2, v3 → v4), . . . , (vk−1, vk → v1). (1)

Adding edges to the cycle preserves single-headedness.
For example, the graph obtained by adding edge (vi, vj) is
represented by the directed hypergraph obtained from (1) by
adding the hyperedge vi, vj → vi+1, where i + 1 is meant
mod m. Thus we obtain the following.
Proposition 3.3. Hamiltonian graphs are single-headed.

We will discuss stronger forms of this statement in the
next section. Matchings, on the other hand, satisfy the upper
bound in Proposition 3.1. Indeed, every edge must occur
as the body of at least two hyperedges as otherwise forward
chaining cannot mark any further edges.

We call a body u, v single-headed (resp., multi-headed)
with respect to a directed hypergraphH representing a graph
G, if it is the body of exactly one (resp., more than one)
hyperedge of H .
Remark 3.4. Assume that the directed hypergraph H =
(V, F ) represents the graph G = (V,E) and |V | ≥ 4. If
u, v → w ∈ F and u, v is single-headed in H then w must
be a neighbor of u or v. Indeed, otherwise clH(u, v) =
{u, v, w} ⊂ V . This is a fact which we use numerous times
in our proofs without referring to it explicitly.



The following proposition generalizes the argument prov-
ing Proposition 3.3.

Proposition 3.5. Let G be a connected graph and let G′ be
a connected spanning subgraph of G. Then

h(G) ≤ h(G′) + |E(G)| − |E(G′)|.

If G′ is single-headed then G is also single-headed.

Proof. Let H ′ be a directed hypergraph of size h(G′) rep-
resenting G′. Since G′ is a connected spanning subgraph of
G, for every edge (u, v) ∈ E(G) r E(G′) there is an edge
(v, w) ∈ E(G′). The directed hypergraphH representingG
obtained from H ′ by adding the hyperedge u, v → w to H ′
for each edge (u, v) ∈ E(G) r E(G′) satisfies the require-
ments. The second statement follows trivially.

A second proposition gives a sufficient condition for
single-headedness based on single-headedness of a non-
spanning subgraph.

Proposition 3.6. Let G be a connected graph and (u, v) 6∈
E(G). Construct the graph Ĝ with vertex set V (Ĝ) =

V (G)∪{w} and edge set E(Ĝ) = E(G)∪{(u, v), (v, w)},
for some w 6∈ V (G). If G is single-headed then Ĝ is single-
headed.

Proof. Let H be a directed hypergraph representing G and
containing exactly |E(G)| hyperedges. Construct Ĥ fromH
by adding hyperedges u, v → w and v, w → z, where z is a
neighbor of v in G guaranteed to exist by the connectivity
of G. Since all pairs in E(G) reach both u and v in H (and
in Ĥ), hyperedge u, v → w ensures all pairs in E(G) can
reach in Ĥ the new variable w as well. On the other hand,
hyperedge v, w → z ensures that the new pairs (u, v) and
(v, w) can reach all other variables. Finally, there are |E(Ĝ)|
hyperedges in H .

Next we see a general sufficient condition for a graph not
to be single-headed.

Proposition 3.7. Let G be the union of two disjoint sub-
graphs G1 = (V1, E1) and G2 = (V2, E2), connected by a
path of length 2. If at least one of G1, G2 contains at least
two vertices then G is not single-headed.

Proof. Assume that G is single-headed and let H be a di-
rected hypergraph demonstrating this. Let u, v and w be the
three vertices forming the path of length 2 between G1 and
G2, where u ∈ G1, v 6∈ G1 ∪ G2, w ∈ G2 and, without
loss of generality, let G1 contain at least two vertices. There
is exactly one hyperedge of the form u, v → z. Either z is a
vertex in G1, or it is w. In the first case, forward chaining
started from z and one of its neighbors cannot mark w. In
the second case consider the unique hyperedge of the form
v, w → t. Here t can either be a vertex in G2 or it is u. In
both cases, if forward chaining is started from v, w, no ver-
tex in G1 other than u can be marked.

G1 G2

u v w

1

Figure 1: G1, G2 connected by a path of length 2.

The following is a simple bound relating the hydra num-
ber of a disconnected graph to the hydra numbers of its com-
ponents.

Proposition 3.8. Let G have k connected components
G1, G2, . . . , Gk for k ≥ 2. Then

h(G) ≤
k∑

i=1

h(Gi) + 2k.

Proof. This follows directly by considering optimal directed
hypergraph realizations of the connected components, and
cyclically adding hyperedges

(x1, y1 → x2), (x1, y1 → y2), (x2, y2 → x3),

(x2, y2 → y3), . . . , (xk, yk → x1), (xk, yk → y1),

where xi, yi are vertices in Gi for i = 1, . . . , k.

Equality holds when G is a matching. In the final version
of the paper we will discuss sharper versions under certain
assumptions on the components.

4 Line graphs
In this section we consider graph parameters that can be
used to prove bounds on the hydra number. The line graph
L(G) of G has vertex set V (L(G)) = E(G) and edge set
E(L(G)) = {(e, f)|e 6= f ∈ E(G) and e ∩ f 6= ∅}. A
vertex-disjoint path cover ofG is set of vertex-disjoint paths
such that every vertex v ∈ V is in exactly one path.

In Proposition 3.3 we noted that hamiltonian graphs
are single headed. This can be extended to show that
hamiltonicity of the line graph is also sufficient for single-
headedness. Note that hamiltonicity of the line graph is a
strictly weaker condition than hamiltonicity. Hamiltonicity
is easily seen to imply hamiltonicity of the line graph, and
a triangle with a pendant edge shows that the converse fails.
Furthermore, the path cover number of the line graph gives
a general upper bound for the hydra number.

Theorem 4.1. LetG be a connected graph andG′ be a con-
nected spanning subgraph of G. Then the following state-
ments are true:

i. If L(G′) is hamiltonian then G is single-headed.
ii. If L(G′) has a path cover of size k then

h(G) ≤ |E(G)|+ k.

Proof. By Proposition 3.5 it is sufficient to prove the bounds
for G′.
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Figure 2: The graph (left) and its line graph (right) discussed in Example 4.2.

Proof of i. Let C be a hamiltonian cycle in L(G′). Direct
the edges ofC so that ~C is a directed hamiltonian cycle. The
directed hypergraph H satisfying the requirements is con-
structed by adding a hyperedge u, v → w for each directed
edge (e, f) ∈ ~C, where e = (u, v) and f = (v, w).

Proof of ii. Let {Pi}k1 be the minimum path cover of L(G′)
and let li be the number of vertices of the path Pi. Direct
the edges of each path Pi so that ~Pi is a directed path. Let
ei = (xi, yi) and fi = (ui, vi) be the first and last edges in
~Pi, respectively (if ~Pi is a single vertex then ei = fi).

We construct a directed hypergraph H representing G′

and satisfying the requirements as follows. First, for each
path ~Pi of at least 2 vertices we add li − 1 hyperedges:
for each directed edge (e, f) ∈ ~Pi, where e = (u, v) and
f = (v, w), add a hyperedge u, v → w to H .

If k = 1 then we complete the construction of H by
adding two hyperedges, u1, v1 → x1 and u1, v1 → y1. If
k > 1 then we complete the construction by adding the 2k
hyperedges

uk, vk → x1, uk, vk → y1, and
ui, vi → xi+1, ui, vi → yi+1, for 1 ≤ i ≤ k − 1.

As the following example shows, the condition of Theo-
rem 4.1(i) is sufficient but not necessary for a graph G to be
single-headed.

Example 4.2. Graph G in Figure 2 with 11 vertices and
12 edges is single-headed and has no connected spanning
subgraph with a hamiltonian line graph.

For a simple proof of single-headedness, consider the
graph Ḡ be obtained from G by deleting edges (x, y) and
(y, z). Then L(Ḡ) is hamiltonian and so Ḡ is single-headed.
But G is obtained from L(Ḡ) using the operation of Propo-
sition 3.6, and so G is single-headed as well. The directed
3-hypergraph H with 12 hyperedges representing G can be
viewed in Figure 2 as directed edges in the line graph L(G).
For every directed edge e→ f in the line graphL(G), where
e = (u, v) and f = (v, w) for some vertices u, v, w in G,
the hyperedge u, v → w belongs to H , and H contains no
other hyperedges.

By inspection, L(G) contains no hamiltonian cycle. Now
consider an arbitrary connected spanning subgraph G′ of G.
There are three independent paths connecting v0 and v4 inG
and, by virtue of its connectivity,G′ can exclude exactly one
edge in at most two of these three paths, and must include
all other edges of G. Then, with one exception, G′ consists
of two distinct components (one with exactly one vertex)
connected by a path of length 2. Thus, by Proposition 3.7,
G′ is not single-headed and so L(G′) is non-hamiltonian. In
the remaining case, when G′ is obtained by deleting edge
(v0, x), its line graph is easily seen to be non-hamiltonian as
well.

The final version of the paper will contain a more compli-
cated example of a single-headed graph for which the line
graphs of its connected spanning subgraphs do not even con-
tain a hamiltonian path.

5 Trees with low hydra number
In this section we begin the discussion of the hydra number
of trees. We begin with trees having low hydra numbers, that
is, hydra numbers |E(T )| or |E(T )|+ 1.

A star is a tree that contains no length-3 path. A caterpil-
lar is tree for which deleting all vertices of degree one and
their incident edges from the tree gives a path graph. We
call this path the spine of T , and note that it is unique. An-
other useful characterization of caterpillars is that they do
not contain the subgraph in Figure 3 (Harary and Schwenk
1971) (see also (West 2001, p.88)).

1

Figure 3: The forbidden subgraph for caterpillars.

Caterpillars have been instrumental in (Raychaudhuri
1995), where finding maximal caterpillars starting from the
leaves of the tree was the basis for a polynomial algorithm
used to find a minimum hamiltonian completion of the line
graph of a tree (which is the same as finding a minimum path
cover). A linear algorithm was later put forth by (Agnetis
et al. 2001) for the same problem. For general graphs the
problem is NP-hard. Furthermore, (Bertossi 1981) proves



that finding a hamiltonian path is NP-complete even for line
graphs.

Stars are the only trees that are single-headed, and cater-
pillars are the only non-star trees that can attain h(T ) =
|E(T )|+ 1.

Theorem 5.1. Let T be a tree. Then

i. h(T ) = |E(T )| if and only if T is a star.
ii. h(T ) = |E(T )|+ 1 if and only if T is a non-star cater-

pillar.

The proof of Theorem 5.1 relies on lower bounds given
for h(T ) in Lemmas 5.2 and 5.3. We first show that a tree
that is not a star cannot be single-headed.

Lemma 5.2. If T is a tree that is not a star, then h(T ) ≥
|E(T )|+ 1.

Proof. Since T is not a star, it contains a path of length three,
say (s, t), (t, u), (u, v). Let Ts and Tt be the trees rooted at s
and t respectively that we would get by removing (s, t) from
T . Let hypergraph H represent T . If the body t, u has two
heads, then we are done. Otherwise, assume without loss of
generality that the head of the hyperedge with body t, u is a
neighbor of u in T (possibly but not necessarily v).

Then for s to be reachable from (t, u) in H , some edge
of T that is within Tt must be a body with a head in Ts.
That will be hyperedge with a head that is not a neighbor
of either of its body vertices in T . Thus its body cannot be
single-headed so h(T ) > |E(T )|.

In fact a hypergraph that represents a non-caterpillar tree
requires even more hyperedges.

Lemma 5.3. If T is a tree that is not a caterpillar then
h(T ) > |E(T )|+ 1.

Proof. A non-caterpillar tree T contains the subgraph in
Figure 3. Let us call the central vertex of that forbidden
subgraph u.

u

v

w
Tv

1

Figure 4: Part of the non-caterpillar tree T from the proof of
Lemma 5.3.

Assume for contradiction that H is a hypergraph with
|E(T )|+1 hyperedges that represents T . Let the two-headed
body of H be α.

We claim α must have a head in every non-singleton sub-
tree attached to u that does not contain both vertices of
α. Suppose not. Let v be a neighbor of u, and let Tv be
a non-singleton subtree of T not containing any heads of
α, and also not containing both vertices of α. Finally let

w ∈ V (Tv) be a neighbor of v. (See Figure 4.) Body
u, v must have a head that is a neighbor of v in Tv: among
the vertices in Tv , only v itself can be a head to a body
completely outside Tv; so if u, v has only heads outside of
Tv , then u, v cannot reach w. Body u, v must also have a
head outside Tv , because otherwise only vertices in Tv and
u would be reachable from u, v in H . So u, v must be α,
which contradicts α having no heads in Tv .

Since there are at least three non-singleton subtrees at-
tached to u, it must be that two of those subtrees each contain
one head of α, and the third subtree contains both vertices
of α. The two heads of α must not be adjacent to α, because
they are in different subtrees. Those two heads also cannot
be adjacent to each other. Therefore, the only vertices reach-
able from α in H are α’s two heads and α itself.

Proof of Theorem 5.1. We need to prove the upper bounds.
The single-headedness of stars is easily seen directly, or fol-
lows from Theorem 4.1(i). For T a caterpillar, the upper
bound follows from Theorem 4.1(ii) as the line graph of a
caterpillar contains a hamiltonian path.

6 Complete binary trees
In this section we obtain upper and lower bounds for h(G)
when G is a complete binary tree.

A complete binary tree of depth d, denoted Bd, is a tree
with d+1 levels, where every node on levels 1 through d has
exactly 2 children. Bd has 2d+1 − 1 vertices and 2d+1 − 2
edges.

Theorem 6.1. For d ≥ 3 it holds that

h (Bd) ≥ 13

12
|E (Bd)| , and

h (Bd) ≤


8
7 |E (Bd)| for d ≡ 0 mod 3,
8
7 |E (Bd)|+ 5

7 for d ≡ 1 mod 3,
8
7 |E (Bd)|+ 1

7 for d ≡ 2 mod 3.

Proof. Let us begin with the upper bound. Note that all the
expressions in the statement of the theorem’s upper bounds
evaluate to integers.

First let d = 3k for some k > 1. Define p(G) to be the
minimum number of paths in a path cover of L(G). By The-
orem 4.1(ii) we need only show that p(B3k) is |E(B3k)|/7.
This we do inductively. By inspection, p(B3) = 2. Consid-
ering the top three levels of the line graph L(B3k) we note
the following inductive inequality:

p (B3k) ≤ 2 + 8p (B3k−3) , (2)

which holds because we can construct a path cover by cov-
ering the top copy of L(B3) in L(B3k) with 2 paths, and
noting the 8 copies of L(B3k−3) remaining in L(B3k). (See
Figure 5.) Inequality (2) and the inductive hypothesis to-
gether complete the d = 3k case.

For the case d = 3k+1, cover the vertices of the top level
of L(B3k+1) with one path and note that there are 2 copies
of L(B3k) covering the remaining vertices of L(B3k+1).
Thus

p (B3k+1) ≤ 1 + 2p (B3k) ,
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Figure 5: Line graph L(B3k) from the proof of Theorem 6.1.

which together with the formula for the d = 3k case gives
the desired result.

Finally the d = 3k + 2 case is handled in a similar way.
This time we cover the vertices of the top two levels of
L(B3k+2) with one path and note that there are 4 copies
of L(B3k) remaining. Thus

p (B3k+2) ≤ 1 + 4p (B3k) .

For the lower bound consider a directed hypergraph H
representing Bd. Color the vertices of L(Bd) red (resp.,
black) if the corresponding edge is single-headed (resp.,
multi-headed) in H . If e = (u, v) is single-headed then the
head w of the unique hyperedge with body u, v is a neigh-
bor of u or v. If w is a neighbor of u (resp., v) then let
f = (u,w) (resp., f = (v, w)). Direct the edge (e, f) in
L(Bd) from e to f . Let ~R be the directed graph formed by
the directed edges and their endpoints (some of which may
be colored black). Note that red (resp., black) vertices have
outdegree one (resp. zero) in ~R.

We claim that ~R is acyclic. The only cycles in L(Bd)

are triangles, thus a simple directed cycle in ~R must con-
sist of red vertices, and have length two or three. This cor-
responds in Bd to two incident single-headed edges, resp.,
three single-headed edges forming a star. None of these
edges participate in a hyperedge with a head that is not in-
volved in the cycle. Thus these edges could only reach ver-
tices of Bd involved in the cycle.

Thus ~R has the following structure: it is a directed forest,
where every tree in the forest has a black root, all its other
vertices are red, and its edges are directed towards the root.

Consider a triangle at the bottom of L(Bd) (please con-
sult Figure 5). By the structure of ~R at least one of the two
bottom vertices of this triangle is either black or a red leaf in
~R.

Let b denote the number of black vertices in L(Bd) and r
denote the number of red leaves on the last level of L(Bd).
We have 2d−1 = d|E(Bd)|/4e triangles in the bottom level
of L(Bd). Therefore, max{b, r/2} ≥ |E(Bd)|/12.

To conclude the lower bound, we show that both b and r/2
are lower bounds on the the difference between the number
of edges in H and |E(Bd)|. For b, this is obvious.

Consider a red leaf e = (v, w) at the bottom of L(Bd)
and assume without loss of generality that v is a leaf of Bd.
Then, as e is the only edge incident to v, a hyperedge with a
single-headed body pointing to v would make e into a non-
singleton in ~R. Thus the hyperedge with head v must have
a multi-headed body. Hence there are at least r hyperedges
with multi-headed bodies. If there are smulti-headed bodies
then r − s ≥ s, so r − s ≥ r/2.

7 Minimal definite 3-Horn formulas with all
k-tuples implying all variables

In this section we consider a problem related to hydra
minimization. Given variables x1, . . . , xn and a number
k (2 ≤ k ≤ n − 1), find a shortest definite 3-Horn for-
mula ϕ such that for every k-element subset S of variables
clϕ(S) = {x1, . . . , xn}, i.e., every k-element subset of vari-
ables is good for ϕ. We denote the size of a shortest such
formula by f(n, k).

The case k = 2 is just hydra minimization for complete
graphs and it follows from Proposition 3.3 that the shortest
formula has size

(
n
2

)
. This was already noted in (Langlois et

al. 2009) along with the stronger result that for some min-
imal formula every prime implicate has a resolution deriva-
tion where every intermediate clause has size 3 as well.

We use Turán’s theorem from extremal graph theory (see,
e.g. (West 2001)). The Turán graph T (n, k − 1) is formed
by dividing n vertices into k − 1 parts as evenly as possible
(i.e., into parts of size bn/(k − 1)c and dn/(k − 1)e) and



connecting two vertices iff they are in different parts. The
number of edges of T (n, k− 1) is denoted by t(n, k− 1). If
k − 1 divides n then

t(n, k − 1) =

(
1− 1

k − 1

)
n2

2
.

Turán’s theorem states that if an n-vertex graph contains no
k-clique then it has at most t(n, k − 1) edges and the only
extremal graph is T (n, k− 1). Switching to complements it
follows that if an n-vertex graph has no empty subgraph on
k vertices then it has at least

(
n
2

)
− t(n, k − 1) edges.

Theorem 7.1. If k ≤ (n/2) + 1 then(
n

2

)
−t(n, k−1) ≤ f(n, k) ≤

(
n

2

)
−t(n, k−1)+(k−1).

Proof. Suppose ϕ is a definite 3-Horn formula with all k-
tuples good. Then every k-element set S of variables must
contain at least one pair of vertices forming a body in ϕ,
otherwise forward chaining started from S cannot mark any
variables. Thus the undirected graph formed by the bodies in
ϕ contains no empty subgraph on k vertices, and the lower
bound follows by Turán’s theorem.

For the upper bound we construct a formula based on the
complement of T (n, k−1) over the vertex set {x1, . . . , xn},
consisting of k−1 cliques of size differing by at most 1. As-
sume that each clique has size at least 3. In each clique do
the following. Pick a hamiltonian path, direct it, and intro-
duce clauses as in (1) (with the exception of the last edge
closing the cycle). For every other edge (u, v), introduce
a clause u, v → w where w is a vertex on the hamiltonian
path that is adjacent to u or v. For each edge e closing a
hamiltonian cycle, add two clauses with body e, and heads
the endpoints of the first edge on the hamiltonian path of
the next clique (where ‘next’ assumes an arbitrary cyclic or-
dering of the cliques). For cliques of size 2 the single edge
in the clique plays the role of the unassigned edge and the
construction is similar.

8 Open Problems
We list only a few of the related open problems. As comput-
ing hydra numbers is a special case of Horn minimization,
it would be interesting to determine the computational com-
plexity of computing hydra numbers and recognizing single-
headed graphs. What is the maximal hydra number among
n-vertex graphs, and, in particular, among n-vertex trees?
Can the line graphs of single-headed graphs have arbitrar-
ily high path cover numbers? Can the path cover number
of the line graph be used to get a lower bound for the hydra
number?
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