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Abstract

The prior literature on strategic reasoning by humans
of the sort, what do you think that I think that you
think, is that humans generally do not reason beyond a
single level. They think about others’ strategies but not
about others’ reasoning about their strategies. When
repeatedly faced with another who reasons about their
strategies, humans learn to think one level deeper but
the learning is generally slow and incomplete. However,
recent evidence suggests that if the games are made
competitive and therefore representationally simpler,
humans generally exhibited behavior that was more
consistent with deeper levels of recursive reasoning. We
seek to computationally model the judgment and be-
havioral data that is consistent with deep recursive rea-
soning in competitive games. We present process mod-
els built from agent frameworks that not only simulate
the observed data well but also exhibit psychological
intuition. Our goal is to gain insights into the strategic
thinking process, ultimately leading to agents which
can emulate human decision making and effectively in-
teract with humans in mixed settings.

Introduction

An important aspect of strategic reasoning is the depth
to which one thinks about others’ thinking about oth-
ers’ in order to decide on an action. Investigations in the
context of human recursive reasoning (Ficici and Pfeffer
2008; Hedden and Zhang 2002; Stahl and Wilson 1995)
reveal a pessimistic outlook: in general-sum games, hu-
mans think about others’ strategies but generally do
not ascribe further recursive thinking to others. Conse-
quently, the default level of recursive reasoning tends to
be shallower than imagined. When humans repeatedly
experience games where others do reason about others’
actions in deciding their own, humans learn to reason
about others’ reasoning, but the learning tends to be
slow, requiring many experiences, and incomplete, a sig-
nificant population continues to exhibit shallow think-
ing. 1

1Note that these systematic results pertain to the gen-
eral, adult population and should not be confused with anec-
dotal evidence of deeper thinking.

Recently though, Goodie et al. (2010) reported that
in fixed-sum, competitive games human behavior is gen-
erally consistent with deeper levels of recursive reason-
ing. In games designed to test two and three levels of
recursive reasoning, the observed actions were broadly
consistent with these deeper levels by default. On ex-
periencing these games repeatedly, the proportion of
participants exhibiting the deeper thinking leading to
rational behavior in those games increased even further,
which is indicative of learning. In the context of the
previous pessimism, these results are important in that
they better align systematic observations with our ex-
pectations. Many of these experiments utilized a modifi-
cation of Rosenthal’s Centipede game (Rosenthal 1981),
which is a two-player game well suited to evaluate how
deep players think that the other could be reasoning
about other’s action.

Given the availability of these behavioral data, com-
putationally modeling them may facilitate an under-
standing of the underlying cognitive processes. The
models, if successful, may also provide insights to-
ward ultimately building agents that emulate human
strategic decision making and that effectively interact
with humans in mixed settings. Frameworks for de-
cision making in multiagent settings, and specifically
those that integrate recursive reasoning, offer a suitable
point of departure as potential models. One such frame-
work is the interactive partially observable Markov de-
cision process (I-POMDP) (Gmytrasiewicz and Doshi
2005), that generalizes the well-known POMDP to mul-
tiagent settings. An I-POMDP is particularly appro-
priate because it elegantly integrates modeling others
and others’ modeling of others in the subject agent’s
decision-making process. Previously, Doshi et al. (2010)
utilized an empirically informed I-POMDP, simplified
and augmented with psychologically plausible learning
and choice models, to computationally model behav-
ioral data pertaining to recursive reasoning up to the
second level. Data from both general- and fixed-sum
games, providing evidence of predominantly level 1 and
level 2 reasoning, respectively, was successfully mod-
eled.

In this paper, we model human judgment and be-
havioral data, reported by Goodie et al. (2010), that



is consistent with three levels of recursive reasoning in
the context of Centipede games. In doing so, we inves-
tigate principled modeling of data up to levels rarely
performed before. The previous I-POMDP based model
utilized underweighted belief learning, parameterized
by γ, and a quantal response choice model (McKelvey
and Palfrey 1995) for the subject agent parameterized
by λ. We extend this model to make it applicable to
games evaluating up to level three reasoning. Although
it employs an empirically supported choice model for
the subject agent, it does not ascribe plausible choice
models to the opponent who in the experiments is also
projected as being human. In previous work, the per-
formance of this modeling on prediction scores is not
as good as that on achievement scores. The simulated
prediction scores using this model are higher than that
in the study data. Hence, our second candidate model
generalizes the previous by intuitively utilizing a quan-
tal response choice model for selecting the opponent’s
actions at level 2. We evaluate how well these models
fit the data and simulate it, and also compare between
the two. The competitive nature of the game discour-
ages the influence of essentially cooperative social con-
structs such as positive reciprocity and altruism, other-
wise prevalent in strategic games (Camerer 2003). How-
ever, other processes such as inequality aversion may
not be ruled out, and we analyze its relevance.

Background: Level 3 Recursive

Reasoning

The experiments utilized a two-player alternate-move
game of complete and perfect information. In order to
test level 3 recursive reasoning, Goodie et al. (2010)
extended the Centipede game to five states. The game
and its tree are depicted in Fig. 1. It starts at state A
where player I may choose to move or stay. If player I
chooses to move, the game goes to state B where player
II needs to decide between moving or staying. If a move
is taken, the game proceeds to the next state and the
other player takes its turn to choose. Game continues
up to two moves of player II. An action of stay by either
player also terminates the game. In the study, the focus
is on how player I plays the game when it starts at A.

Outcomes on staying or when the game terminates
at E are probabilities of winning in a different task for
each player. In Fig. 1(b), the outcomes are for player I,
player II ’s outcomes are one minus player I ’s outcomes.
Rational choice is the action that maximizes the proba-
bility of winning. In order to decide whether to move or
stay at state A, a rational player I must reason about
whether player II will choose to move or stay at B. A
rational player II ’s choice in turn depends on whether
player I will move or stay at C. And a rational player
I ’s choice in turn depends on whether player II will
move or stay at D. Thus, the game lends itself natu-
rally to recursive reasoning and the level of reasoning is
governed by the height of the game tree.
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Figure 1: A four-stage, fixed-sum, sequential game in (a)
matrix and (b) tree form. The fixed-sum payoffs are different
from those in Rosenthal’s Centipede game.

Methodology

In order to test up to the third level of recurse rea-
soning, Goodie et al. designed the computer opponent
(player II ), projected as a human player, to play a game
in three ways if player I chooses to move and game
proceeds to state B: (i) Player II decides on its action
by simply choosing rationally between the default out-
comes of staying at states B and C in Fig 1(b); II is
a zero-level player and is called myopic. (ii) II reasons
that player I will choose rationally between the default
outcomes of stay at C and stay at D, and based on this
action, II selects an action that maximizes its outcomes;
II is a first-level player who explicitly reasons about I ’s
subsequent choice and is called predictive. (iii) II rea-
sons that player I is predictive and who will act ratio-
nally at C reasoning about II ’s rational action at D; II
is a second-level player who explicitly reasons about I ’s
subsequent choice which is decided by rationally think-
ing about II ’s subsequent action at D. We call this type
of II as super-predictive. Therefore, if player I thinks
that II is super-predictive, then I is reasoning deeply
to three levels.
To illustrate, in the game of Fig. 1(b), if player I

chooses to move, then she thinks that a myopic player II
will stay to obtain a payoff of 0.6 at state B compared
to move which will obtain 0.3 at state C. She thinks
that a predictive II thinking that I being myopic will
move to D thereby obtaining 0.8 instead of staying at
C, will decide to move thinking that he can later move
from D to E, which gives II an outcome of 0.8. A super-
predictive II knows that I is predictive, knowing that if
I moves from C to D then II will move to E which gives
I only 0.2, hence I will choose to stay at C, therefore
II will stay at B.
The rational choice of players in the game depends

on the preferential ordering of states of the game rather
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Figure 2: (a) Mean achievement scores (b) mean prediction scores and (c) mean rationality errors of participants for the
opponent groups across test blocks.

than specific probabilities. Let a ≺ b indicate that
the player prefers state b over a. In contrast to three-
stage sequential games, we cannot find a single pref-
erence ordering in four-stage games that distinguishes
between the actions of the three opponent reasoning
types. Therefore, Goodie et al. employed two differently
ordered games to diagnose each level of reasoning from
the other two.
The game depicted in Fig. 1(b), which has the pref-

erence ordering of E ≺ B ≺ A ≺ C ≺ D for player I,
is the only ordering that permits I ’s second level rea-
soning to be distinguished behaviorally from her third
and first levels of reasoning. As we analyzed above,
player I with level 2 reasoning will choose to move
while with first and third levels, she will choose to
stay. Preference orderings C ≺ B ≺ A ≺ D ≺ E and
C ≺ B ≺ A ≺ E ≺ D are the two orderings which dis-
tinguish level 1 reasoning from levels 2 and 3. In these
games, player I with level 1 reasoning will choose to
move while with levels 2 and 3 will choose to stay.

Results

Participants were assigned randomly to different groups
that played against a myopic, predictive or super-
predictive opponent. Each participant experienced 30
trials with each trial consisting of two games whose pay-
off orderings are diagnostic and a catch trial controlling
for inattention. For convenience of presentation, the 30
trials are grouped into 6 blocks of 5 trials each.
From the participants’ data in each of the three types

of opponent groups, Goodie et al. measured the achieve-
ment score, which is the proportion of trials in a block
in which the participants played the conditionally ratio-
nal action given the opponent’s level of reasoning. They
also reported the prediction score, which is the propor-
tion of trials in which the participants’ prediction about
the opponent’s action was correct given the opponent
type, and the rationality error which measured the pro-
portion of trials in which participants’ actions were not
consistent with their predictions of the opponent’s ac-
tions.
In Figure 2(a), we show the mean achievement scores

across all participants for each of the 3 opponent
groups. 2 We define a metric, L, as the trial after which

2Our charts recomputed from the data may be slightly
different from those in (Goodie, Doshi, and Young 2010).

performance over the most recent 10 trials never failed
to achieve statistical significance (cumulative binomial
probability < .05). This implies making no more than
one incorrect choice in any window of 10 trials. For
participants who never permanently achieved statistical
significance, L was assigned a value of 30. We observe
that participants in super-predictive opponent group
had the highest overall achievement score with an aver-
age L score of 11.3, followed by those in myopic oppo-
nent group with L score, 27.2. These L scores are con-
sistent with the observations that achievement scores
in these two groups are increasing. Participants in pre-
dictive opponent group had achievement score close to
zero and L score of 30, which means they never truly
achieved a corresponding strategy. Similar to the mean
achievement score, participants in the super-predictive
opponent group exhibited the highest prediction scores
while those in the predictive opponent group had the
lowest scores (Fig. 2(b)).
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Figure 3: Mean achievement scores for just the myopic op-
ponent group computed given myopic, predictive and super-
predictive opponent types.

In order to investigate the comparatively low achieve-
ment scores for the myopic opponent group, we further
computed the mean achievement scores for just this
group given the three types of opponents, in Fig. 3.
Notice that the achievement scores of this group given
a super-predictive opponent are high indicating that a
large proportion of participants are reasoning at the
deepest level of 3, but this proportion gradually reduces
due to learning.

Computational Modeling

We seek process-oriented and principled computational
models whose predictions are consistent with the ob-
served data of the previous section. These models dif-



fer from statistical curve fitting by providing some in-
sights into the cognitive processes of judgment and de-
cision making that possibly led to the observed data.
In order to computationally model the results, a mul-
tiagent decision-making framework that integrates re-
cursive reasoning in the decision process is needed.
Finitely-nested I-POMDPs (Gmytrasiewicz and Doshi
2005) are a natural choice which meets the requirements
of explicit consideration of recursive beliefs and decision
making based on such beliefs.

Empirically Informed I-POMDP

Interactive POMDPs generalize POMDPs to multia-
gent settings by including other agents’ models as part
of the state space. A finitely-nested I-POMDP of agent
i with a strategy level l interacting with another agent,
j, is defined as the tuple:

I-POMDPi,l =〈ISi,l, A,Ωi, Ti, Oi, Ri, OCi〉

where:

• ISi,l denotes a set of interactive states defined as,
ISi,0 = S and ISi,l = S × Mj,l−1 for l ≥ 1, where
S is the set of states of the physical environment;
Mj,l−1 = Θj,l−1 ∪ SMj is the set of possible models
of agent j with a strategic level l − 1 where Θj,l−1

is the set of computable intentional models of agent
j; SMj is the complementary set of subintentional
models of j. Intentional models of agent j : θj,l−1 =

〈bj,l−1, θ̂j〉, where bj,l−1 is j’s level l − 1 belief; the

frame, θ̂j = 〈A,Ωj , Tj, Oj , Rj , OCj〉.
• A = Ai×Aj is the set of joint actions of both agents.
• Ti is a transition function, Ti : S × A × S → [0, 1],
which describes the results of the agents’ actions on
the physical states of the world.

• Ωi is the set of agent i’s observations.
• Oi is an observation function, Oi : S×A×Ωi → [0, 1],
which gives the likelihood of perceiving observations
in the state resulting from performing the action.

• Ri is defined as, Ri : ISi × A → R. An agent is
allowed to have preferences over physical states and
models of other agents, usually only the physical state
will matter.

• OCi gives the criterion for measuring optimality,
which is typically the discounted sum of rewards in
an extended interaction.

Agent i’s level l belief bi,l is a probability distri-
bution over i’s interactive states ISi,l which contains
not only physical states but agent j’s possible models.
Agent j’s model θj,l−1 contains agent j’s level l − 1
belief, bj,l−1, a probability distribution over j’s interac-
tive states ISj,l−1 which in turn is defined as S×Mi,l−2,
physical states and agent i’s level l − 2 possible mod-
els. This recursive defintion for agent beliefs continues
until level 0 is reached where belief b0 is a probability
distribution over only physical states.
Previously, Doshi et al. (2010) modeled the individual

three-stage Centipede games using I-POMDPi,2. We ex-
tend this modeling to the four-stage games considered

here using I-POMDPi,3. As Doshi et al. noted, the de-
cisions at the different points in the game are naturally
modeled recursively rather than sequentially. The phys-
ical state space, S = {A,B,C,D,E}, is perfectly ob-
servable; i’s actions, Ai = {Stay,Move} are determin-
istic and j has similar actions; i observes other’s actions,
Ωi = {Stay,Move}; Oi is not needed; and Ri captures
the diagnostic preferential ordering of the states con-
tingent on which of the three games in a trial is being
considered.
Given the opponent types used in the experimenta-

tion, intuitively, model set, Θj, contains three models of
agent j (participant’s opponent), that is {θj,0, θj,1, θj,2},
where θj,0 is the level 0 (myopic) model of the oppo-
nent, θj,1 is the level 1 (predictive) model and θj,2 is
the level 2 (super-predictive) model. Predictions about
the opponent’s action by the participants were consis-
tent with these three models being attributed. Param-
eters of these models of agent j are analogous to the
I-POMDP for agent i, except for Rj which reflects the
preferential ordering of the states for the opponent. The
super-predictive model of agent j, θj,2, includes the level
1 model of agent i, θi,1, which includes the level 0 model
of agent j, θj,0, in its interactive state space.
Agent i’s level 3 initial belief, bi,3 , assigns a probabil-

ity distribution to its interactive state ISi,3, which in-
cludes agent j’s models based on the game being consid-
ered. This belief will reflect the general de facto think-
ing of the participants about their opponent. It also
assigns a marginal probability 1 to state A indicating
that agent i decides at that state. Agent j’s beliefs bj,0,
bj,1 and bj,2 that are part of agent j’s three models,
respectively, assign a marginal probability 1 to B indi-
cating that agent j acts at that state. Agent i’s belief
bi,1, that is part of θi,1 , assigns a probability of 1 to
state C. Additionally, agent j’s belief bj,0, that is part
of θj,0, assigns a probability of 1 to state D.
Previous investigations of strategic behavior in

games, including Rosenthal’s Centipede games, at-
tribute social models such as reciprocity and altruis-
tic behavior to others (McKelvey and Palfrey 1992;
Gal and Pfeffer 2007). Reciprocity motivates partici-
pants to reward kind actions and punish unkind ones
and is usually observed when the sum of payoffs for
both players has a potential to increase through these
actions. However, the setting of fixed-sum with no in-
crease in total payoffs makes the games we consider
competitive and precludes these models. Another so-
cial process that could explain some of the participants’
behavior is a desire for inequality aversion (Fehr and
Schmidt 1999), which would motivate participants to
choose an action that leads to similar chances of win-
ning for both players. For example, such a desire should
cause participants to move proportionately more if the
chance of winning at state A is 0.6 and this chance is
preferentially in the middle, than say, when the chance
at A is between 0.45 and 0.55. However, participants
displayed a lower move rate of about 12% in the former
case compared to a move rate of 14.5% in the latter



case. Hence, we believe that inequality aversion did not
motivate a significant number of the participants.

Judgment and Decision Models From Fig. 2(a, b)
and our analysis, notice that some of the participants
learn about the opponent model as they continue to
play. However, the rate of learning varies across par-
ticipants, and, in general, the learning is slow and par-
tial. This is indicative of the cognitive phenomenon that
the participants could be underweighting the evidence
that they observe. We may model this by making the
observations slightly noisy and augmenting normative
Bayesian learning in the following way:

Pr(θj,l|oi; γ) = αPr(θj,l) Pr(oi|θj,l)
γ (1)

where α is the normalization factor, l is the nested level
of the model, if γ < 1, then the evidence oi ∈ Ωi is un-
derweighted while updating the belief over j’s models.
In Fig. 2(c), we observed significant rationality errors

in the participants’ decision making. Such noisy play
was also observed by McKelvey and Palfrey (McKelvey
and Palfrey 1992), and included in the model for their
data. We utilize the quantal response model to simu-
late human non-normative choice. This model is based
on the finding that rather than always choosing the op-
timal decision which maximizes the expected utility, in-
dividuals are known to select actions proportionally to
their utilities. The quantal response model assigns a
probability of choosing an action as a sigmoidal func-
tion of how close to optimal is the action. In the exper-
iment, a rationality error occurs when a participant’s
action is not the best response to her prediction of the
opponent’s action.
Previously, Doshi et al. (2010) augmented I-POMDPs

with both these models in order to simulate human re-
cursive reasoning up to level two. As they continue to
apply to our data, we extend the I-POMDP model to

longer Centipede games and label it as I-POMDPγ,λ
i,3 .

The methodology for the experiments reveals that
the participants are deceived into thinking that the op-
ponent is human. Therefore, participants may justify
unexpected actions of the opponent as errors in their
decision making rather than due to their level of rea-
soning. Hence, we generalize the previous model by at-
tributing quantal response choice to opponent’s action
selection as well. Let λ1 be the quantal response param-
eter for the participant and λ2 be the parameter for the
opponent’s action. Then,

Q(a∗i ; γ, λ1, λ2) =
eλ1·U(bi,3,λ2,a

∗

i )

∑
ai∈Ai

eλ1·U(bi,3,λ2,ai)
(2)

where parameters, λ1, λ2 ∈ [−∞,∞]; a∗i is an action
of the participant and Q(a∗i ) is the probability assigned
to the action by the model. U(bi,3, λ2, ai) is the utility
for i on performing the action, ai, given its belief, bi,3,
with λ2 parameterizing j’s action probabilities in the
computation of the utility function. We label this model

as I-POMDPγ,λ1,λ2

i,3 .

Learning Parameters from Data

In I-POMDPγ,λ1,λ2

i,3 , three parameters are involved: γ
representing participants’ learning rate, λ1 and λ2 rep-
resenting non-normative actions of the participant and
her opponent, respectively. The empirically informed
I-POMDP model gives a likelihood of the experiment
data given specific values of the three parameters.
We begin by learning λ2 first. Because this parame-

ter characterizes expected opponent behavior, we utilize
the participants’ predictions of their opponent’s action
in each game as the data. Denoting this set of predic-
tions as P , the likelihood of P is obtained by taking the
product of Q(a∗ij ;λ2) over G games and N participants
because the probability is hypothesized to be condition-
ally independent between games given the model and is
independent between participants.

L(P ;λ2) =

N∏

i=1

T∏

g=1

Q(a∗ij ;λ2)

Here, a∗ij is the observed prediction by participant i

of opponent j’s action, and Q(a∗ij ;λ2) is the probability
assigned by the model to the action, whose computation
is analogous to Eq. 2 except that j’s lower-level belief
replaces i’s belief and j does not ascribe non-normative
choice to its opponent.
In order to learn parameters, γ and λ1 (or γ and λ

in I-POMDPγ,λ
i,3 ), we utilize the participants’ actions at

state A. Data consisting of these actions is denoted as
D. The likelihood of this data is given by the probability
of the observed actions of participants i as assigned by
our model over all games and participants.

L(D; γ, λ1, λ2) =
N∏
i=1

G∏
g=1

Q(a∗i ; γ, λ1, λ2)

=
N∏
i=1

G∏
g=1

e
λ1·U(b

g
i,3

,λ2,a∗
i )

∑
ai∈Ai

e
λ1·U(b

g
i,3

,λ2,ai)
(from Eq. 2)

We may simplify the computation of the likelihoods
by taking its log:

LL(P ;λ2) =
N∑
i=1

T∑
g=1

log Q(a∗ij ;λ2)

LL(D; γ, λ1, λ2) =
N∑
i=1

G∑
g=1

log Q(a∗i ; γ, λ1, λ2)

(3)

To estimate the values of the three parameters (γ, λ1,
λ2) in our empirically informed I-POMDP model, we
maximize the log likelihoods in Eq. 3 using the Nelder-
Mead simplex method (Nelder and Mead 1965). Notice
that the ideal Q functions will assign a probability of 1
to the observed actions resulting in a log likelihood of
zero, otherwise the likelihoods are negative.

Model Performance

We use stratified, five-fold cross-validation to learn the
parameters and evaluate the models.



Parameters In order to learn λ2, we use the predic-
tion data for the catch games only. This is because no
matter the type of the opponent, the rational action for
the opponent in catch games is to move. Hence, pre-
dictions of stay by the participants in the catch trials
would signal a non-normative action selection for the
opponent. This also permits learning a single λ2 value
for participants in the three groups. However, this is
not the case for the other parameters. In Fig. 2, we ob-
serve that for different opponents, the learning rate, L,
is different. Also, in Fig. 2(c), we observe that the ratio-
nality errors differ considerably between the opponent
groups. Therefore, we learn parameters, γ and λ1 given
the value of λ2, seperately from each group’s diagnostic
games. We report the learned parameters averaged over
the five folds in Table 1.

param. myopic predictive super-predictive
λ2 1.959
γ 0.297 0.081 0.305
λ1 3.254 3.892 3.785

Table 1: Parameter values learned from the experiment data
for I-POMDPγ,λ1,λ2

i,3 .

From Table 1, we see that γ for the predictive oppo-
nent group is close to zero. This is consistent with the
observation that participants in this group did not make
much progress in learning the opponent type. Conse-
quently, we focus our analysis on the myopic and super-
predictive opponent groups here onwards.

model log likelihood
myopic super-predictive

Random -1455.605 -1414.017

I-POMDPγ,λ
i,3 -732.401 -437.6919

I-POMDPγ,λ1 ,λ2
i,3 -706.377 -431.4761

Table 2: Log likelihood of the different models with param-
eters as in Table 1.

We show the average log likelihoods of the different
models, including a random one that predicts other’s
actions randomly and chooses its own actions randomly,
in Table 2. The randommodel serves as our null hypoth-

esis. We point out that I-POMDPγ,λ1,λ2

i,3 has the highest
likelihood among all three models, although the likeli-
hoods of the other I-POMDP based model is not much
different especially for the super-predictive group.

Achievement and Prediction Scores We utilize
the learned values in Table 1 to parameterize the under-
weighting and quantal responses within the I-POMDP
based models. We cross-validated the models on the test
folds. Using a participant’s actions in the first 5 games,
we initialized the prior belief distribution over the op-
ponent types. The average simulation performance of

the I-POMDPγ,λ1,λ2

i,3 model is displayed in Fig. 4.
As we see in Fig. 4, model-based achievement and

prediction scores have similar values and trends as the
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Figure 4: Comparison of model predictions with actual data
in test folds: (a) Mean achievement scores and (b) Mean
prediction scores.

experiment data. However, there is some discrepancy in
the first block. This is caused by the difficulty in deter-
mining an accurate measure of the participant’s initial
beliefs as they started the experiment. Each model data
point is the average of 500 simulation runs.

We also measure the goodness of the fit by computing
the mean squared error (MSE) of the output by the

models, I-POMDPγ,λ
i,3 , I-POMDPγ,λ1,λ2

i,3 , and compare

it to those of the random model (null hypothesis) for
significance. We show the MSE for the achievement and
prediction scores based on the models in Table 3.

Notice from Table 3, that both I-POMDP based
models have MSE that are significantly lower than
the random model. Although the log likelihood of I-

POMDPγ,λ1,λ2

i,3 is higher than the other for both oppo-

nent groups (see Table 2), MSE values do not signifi-
cantly distinguish one model over the other across both
groups. Hence, the improvement in log likelihood (small
as it is) does not result in a better simulation perfor-

mance for I-POMDPγ,λ1,λ2

i,3 across both scores and op-
ponent groups. While attributing non-normative action
selection to the opponent results in more accurate pre-
dictions for the super-predictive opponent, it does not
translate to actions that better models the observed
data. This could be because of some inconsistency be-
tween the participants’ predictions of the opponent ac-
tions and their own actions possibly due to inattention
to the prediction screen. As such, our results do not
conclusively distinguish between the performance of the
two models although both fit well.



Mean Squared Error (MSE)
Opponent type Achievement score Prediction score

Random I-POMDPγ,λ
i,3 I-POMDPγ,λ1 ,λ2

i,3 Random I-POMDPγ,λ
i,3 I-POMDPγ,λ1 ,λ2

i,3

myopic 0.01170 0.00248 0.00139 0.00316 0.00157 0.00200
super-predictive 0.34458 0.00076 0.00094 0.28529 0.00142 0.00098

Table 3: Goodness of the fit of different models with the study data.

Discussion

An alternate explanation of the high achievement score
in super-predictive group could be that participants em-
ployed backward induction (or minimax) to solve the
game instead of recursively thinking about opponent
behavior. However, significant achievement scores in the
myopic group indicates that the participant pool likely
did not apply these methods. Also, presence of learning
of opponent models as subjects played the games pro-
vides further evidence of recursive reasoning. Finally,
Goodie et al. (2010) report that a debriefing question-
naire in prior experiments did not reveal evidence that
the population was aware of these techniques.
The models that we apply here fall within the class of

belief learning models as classified by Camerer (2003).
Other belief learning models have enjoyed good empir-
ical support as well, one of which is the weighted fic-
titious play. This model maintains a distribution over
possible actions of the opponent and updates it based
on the frequency of the observed actions. Hence, it rep-
resents a simple way to update beliefs and could apply
here. We plan to compare our existing models with this
one as part of future work.
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