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Abstract

In this paper we present a new type of binary classifier
defined on the unit cube. This classifier combines some
of the aspects of the standard methods that have been
used in the logical analysis of data (LAD) and geomet-
ric classifiers, with a nearest-neighbor paradigm. We
assess the predictive performance of the new classifier
in learning from a sample, obtaining generalization er-
ror bounds that improve as the ‘sample width’ of the
classifier increases.

1 Introduction
In this paper we introduce a new method of classifying
points of [0, 1]n into two classes. The classifiers we use
combine the use of ‘boxes’ with a nearest-neighbor ap-
proach and for this reason we describe it as a hybrid classi-
fier. Both classification by boxes and nearest-neighbor clas-
sification have been widely used. For instance, the use of
boxes is integral to many of the standard methods used in
the logical analysis of data (LAD); see (Boros et al. 1997)
and (Boros et al. 2000), for instance.

The primary purpose of this paper is to quantify the per-
formance of the hybrid classifiers by bounding their general-
ization error. In doing so, we obtain bounds that depend on a
measure of how ‘robust’ the classification is on the training
sample.

In order to describe the hybrid classifiers, and to place
them in context, we first review the use of boxes in some of
the standard LAD methods. (It should be noted that classi-
fication by unions of boxes have been more widely studied,
not just in the context of LAD; see (Bshouty et al. 1998) for
instance.) We then describe the new hybrid classifiers of in-
terest here. Then, we describe how predictive performance
of classifiers can be quantified in a probabilistic model of
machine learning, and we derive generalization error bounds
for the hybrid classifiers.

2 Classification using unions of boxes
In standard logical analysis of date (LAD) for binary data,
we have a set D ⊆ {0, 1}n × {0, 1} of labeled observations
(or data-points, or training examples) (x, b). Here x is an
observation and b the corresponding binary label. The set of
observations is partitioned into a setD+ = {x : (x, 1) ∈ D}

of positive observations (labeled 1) and a set D− = {x :
(x, 0) ∈ D} of negative observations (labeled 0). The aim is
to find a classifier h : {0, 1}n → {0, 1} which fits the obser-
vations well, and, it is hoped, generalizes well to other data
points, so far unseen. In the standard LAD method for bi-
nary data described in (Crama, Hammer, and Ibaraki 1988),
a disjunctive normal form Boolean function (a DNF) is pro-
duced. The terms of this DNF are termed positive patterns.
A (pure) positive pattern is a conjunction of literals which is
satisfied by at least one positive observation in D (in which
case we say that the observation is covered by the pattern)
but by no negative observation. We then take as hypothe-
sis h the disjunction of a set of positive patterns. A more
general technique combines the use of positive patterns with
negative patterns, conjunctions which cover some negative
observations. A point of {0, 1}n is labeled as positive (that
is, assigned value 1) if it is covered by at least one positive
pattern, but no negative patterns; and it is labeled as negative
(that is, assigned value 0) if it is covered by at least one neg-
ative pattern, but no positive patterns. If a point is covered
by both types of pattern, then its classification is often de-
termined by using a discriminant, which takes into account
(perhaps in a weighted way) the number of positive and the
number of negative patterns covering it.

These standard LAD techniques apply when the data is
binary. However, many applications involve numerical data,
in which D ⊆ [0, 1]n × {0, 1}. Extending the methods of
LAD to numerical data has been investigated and used in
many applications; see (Boros et al. 2000), for instance. A
key initial step is to binarize the data, so that D ⊆ [0, 1]n ×
{0, 1} is converted into a binary dataset D∗ ⊆ {0, 1}d ×
{0, 1}, where, generally, d ≥ n. The standard way to do so
is to use cutpoints for each attribute (that is, for each of the n
geometrical dimensions). For each attribute (or dimension)
j = 1, 2, . . . , n, let

u
(j)
1 < u

(j)
2 < · · · < u

(j)
kj

be all the distinct values of the jth attribute of the members
of D. For each j, let

β
(j)
i =

u
(j)
i + u

(j)
i+1

2

for i = 1, . . . , kj − 1. These are the numbers halfway
between successive values of the attribute. For each j =



1, 2, . . . n and i = 1, 2, . . . kj − 1, and for each x ∈ D, we
define b(j)i (x) to be 1 if and only if xj ≥ β(j)

i . Let x∗ be the
resulting binary vector

x∗ = (b
(1)
1 (x), . . . , b

(1)
k1

(x), . . . , b
(n)
1 (x), . . . , b

(n)
kn

(x)),

where d =
∑n
j=1 kj . Then we have a ‘binarized’ version

D∗ = {(x∗, b) : (x, b) ∈ D} of the dataset D and we
could apply standard LAD techniques to this binary dataset.
There are a number of ways, however, in which this binariza-
tion might be non-optimal and, usually, some cutpoints can
be eliminated, reducing the dimensionality of the binarized
dataset. In (Boros et al. 1997) and (Boros et al. 2000), the
authors consider the problem of finding a minimal suitable
set of cutpoints. This problem is phrased as a set-covering
problem, which has an efficient greedy approximation algo-
rithm, yielding a near-minimal number of cutpoints. In (An-
thony and Ratsaby ), variants on these approaches are dis-
cussed, the aim being to find ‘robust’ cutpoints; that is, cut-
points which define hyperplanes geometrically at least a cer-
tain distance from the data points.

Suppose, then, that a set C(j) of Kj cutpoints is selected
for attribute j, and suppose the members of C(j) are

a
(j)
1 < a

(j)
2 < · · · < a

(j)
Kj
.

A typical binarized x ∈ [0, 1]n will be x∗ ∈ {0, 1}d where
x∗ is

(b
(1)
1 (x), . . . , b

(1)
K1

(x), . . . , b
(n)
1 (x), . . . , b

(n)
Kn

(x)),

where b(j)i (x) = 1 if and only if xj ≥ a(j)i . Let the Boolean
literal u(j)i be given by I[xj ≥ a

(j)
i ], where I[P ] has logical

value 1 if P is true and value 0 otherwise. Then a positive
pattern is a conjunction of some of the Boolean variables
u
(j)
i . Evidently, since (by definition of u(j)i ) u(j)i = 1 im-

plies u(j)i′ = 1 for i > i′, and any j, it follows that a typi-
cal positive pattern can be written in terms of these Boolean
variables as

n∧
j=1

u(j)rj ū
(j)
sj ,

where sj > rj . (Here, ∧ denotes the Boolean conjunction,
the ‘and’ operator.) Geometrically, this positive pattern is
the indicator function of the ‘box’

[a(1)r1 , a
(1)
s1 )× [a(2)r2 , a

(2)
s2 )× · · · × [a(n)rn , a

(n)
sn ).

With this approach, then, the simplest LAD classifier, which
corresponds to a disjunctive normal form, is the indicator
function of a union of boxes of this type; and all other re-
gions of [0, 1]d are classified as negative. With the use also
of negative patterns, we then have two separate unions of
boxes: one labeled as positive, and the other negative. The
other regions of [0, 1]d must also be classified and, as men-
tioned above, this is often done by a discriminator, the sim-
plest approach being to classify a point as positive if and
only if it is covered by at least as many positive patterns as
negative patterns. This would, by default, classify as posi-
tive a point or a region which is covered by no patterns at
all, of either type.

3 A hybrid classifier based on boxes and
distance

3.1 Definition of the classifiers
The classifiers we introduce here are in many ways similar
to those that result, as just described, from the use of posi-
tive and negative patterns in the logical analysis of numerical
data. (But their use is not confined to LAD.) However, we
combine the use of boxes with the use of a nearest-neighbor
paradigm. Explicitly, if a point of [0, 1]n is not in the union
of ‘positive’ boxes (the region covered by positive patterns)
or in the union of ‘negative’ boxes, then it is not simply clas-
sified as positive; instead, we take into account the distance
of the point from these two unions of boxes. If it is ‘closer’
to the positive boxes than the negative ones, we classify it as
positive. We now describe the classifiers.

For each j between 1 and d, suppose there is a set C(j) =

{a(j)1 , a
(j)
2 , . . . , a

(j)
Kj
} ⊆ [0, 1]. We call these the cutpoint

sets. An open box (defined with respect to the cutpoint sets)
is a set of the form

(a(1)r1 , a
(1)
s1 )× (a(2)r2 , a

(2)
s2 )× · · · × (a(n)rn , a

(n)
sn ),

where 0 ≤ rj < sj ≤ Kj + 1 (and where a(j)0 is interpreted
as 0 and a(j)Kj+1 as 1). Note that the ‘sides’ of the box in
each dimension, j, are defined by two cutpoints from C(j)

(or the end-points 0, 1) and that these need not be adjacent
cutpoints. The cutpoint sets C(j) define

∏n
j=1

(
Kj+2

2

)
open

boxes. Now take S+ and S− to be unions of some such
boxes, in such a way that S+ and S− are disjoint. The boxes
in S+ are positive (labeled 1) and those in S− negative (la-
beled 0); and, generally, there are unlabeled boxes, not in
S+ or S−.

For a point x ∈ X = [0, 1]n let
‖x‖ := ‖x‖∞ = max

1≤j≤n
|xj |

denote the max-norm of x. For two points x, x′ ∈ X the
distance between them is ‖x − x′‖ and for a set S ⊆ X
we define the distance from x to S to be dist (x, S) =
infx′∈S ‖x− x′‖. Clearly, for x ∈ S, dist (x, S) = 0.

Given the pair S+ and S− of unions of open boxes, de-
note their closures by S+ and S−. (So, these are just the
same unions of boxes, but with the boundaries included.)
We define

f+(x) = dist
(
x, S+

)
, f−(x) = dist

(
x, S−

)
and we let

f(x) =
f−(x)− f+(x)

2
. (1)

So each pair (S+, S−) has a unique f associated with it.
Our classifiers will be the binary functions of the form

h(x) = sgn (f(x)) ,

where sgn(z) = 1 if z ≥ 0 and sgn(z) = 0 if z < 0. So, if
F is the set of all real-valued functions of the form

f =
f− − f+

2
,

where f+ and f− correspond to unions of boxes S+ and S−,
then the set of classifiers is

H = {sgn(f) | f ∈ F}



3.2 Example
Figure 1 shows a 2-dimensional example. We have five cut-
points in each dimension. The white boxes form S+ and the
black boxes form S−. The grey region is the region which
will be classified, in our method, using the distance to the
boxes of each type (the ‘nearest-neighbor’ paradigm). When
the whole domain is classified in the way described above,
we obtain the partition indicated in Figure 2: the white re-
gion is labeled 1 and the black region 0.

Figure 1: ‘Before classification’: the labeled boxes.

Figure 2: ‘After classification’: the classification of the
whole domain.

3.3 Rationale
We are interested in this particular kind of classifier for sev-
eral reasons. A special case of it corresponds quite naturally
to a very simple and intuitive learning algorithm. Assume
that the cutpoints have the property that we can find boxes
defined by them, each of which contains only positive or
only negative observations from the known data set. (The
standard LAD algorithms for cutpoint selection guarantee
this.) Then we could simply take S+ to be the union of all

boxes containing positive observations and S− the union of
those containing negative observations. Any other point x
of the domain is then classified according to whether it is
closer to the positive boxes or the negative ones.

Furthermore, these classifiers can be used in conjunction
with LAD-type methods. One could run an LAD-type algo-
rithm to produce positive and negative patterns. Each pat-
tern corresponds to a box. Let R+ be the union of the boxes
defined by positive patterns and R− the union of the boxes
defined by negative patterns. The fact that some points (and
indeed some box regions) could be covered by both posi-
tive and negative patterns means that R+ and R− need not
be disjoint. The intersection R+ ∩ R− would itself be a
union of boxes, and these could be classified, as in standard
LAD procedures, using a discriminant. This would assign
a box in the intersection a positive classification if and only
if the number of positive patterns covering it (that is, boxes
of R+ containing it) is at least the number of negative pat-
terns covering it (boxes of R− containing it). The classifi-
cation of these (sub-) boxes would then be resolved, and we
could then form S+ and S− as the unions of the boxes now
labeled 1 and 0, respectively. Then, any point not falling
into S+ ∪ S− (that is, any point not covered by any pattern,
positive or negative) is not simply classified as positive by
default, but is classified according to whether it is closer to
the positive region or the negative region.

Another attractive feature of the classifier produced is that
it has a representation which, unlike ‘black-box’ classifica-
tion schemes (for instance, based on neural networks), can
be described and understood: there are box-shaped regions
where we assert a known classification, and the classification
anywhere else is determined by an arguably fairly sensible
nearest-neighbor approach.

It is also useful that there is an underlying real-valued
function f . This, as we will see, is useful in analyzing the
performance of the classifier. Moreover, the value of f (not
just its sign) has some geometrical significance. In particu-
lar, if f(x) is relatively large, it means that x is quite far from
boxes of the opposite classification: it is not the case that x
is very near the boundary of a box which has the opposite
classification. If all points of the data set satisfy this, then
it means that the classification is, in a sense, ‘robust’. (In
related work in (Anthony and Ratsaby ), a similar notion of
robustness of the cutpoints for standard LAD methods is in-
vestigated and algorithms for selecting robust cutpoints are
discussed.) We could interpret the value of the function f as
an indicator of how confident we might be about the classi-
fication of a point: a point in the domain with a large value
of f will be classified as positive, and more ‘definitely’ so
than one with a smaller, but still positive, value of f . We
might think that the classification of the first point is more
reliable than that of the second, because the large value of f ,
indicating that the point is far from negative boxes, provides
strong justification for a positive classification. For instance,
consider again the example we’ve been studying. A contour
plot of the function f is shown in Figure 3. The darkest re-
gions are those with lowest (that is, most negative) values of
f and the lightest are those with highest value of f . The very
dark or very light regions are, arguably, those for which we



can most confidently classify the points. Figure 4 has some
contour lines indicated, and Figure 5 is a colored version of
Figure 3.

Figure 3: Contour plot of the underlying real-valued func-
tion f .

Figure 4: A contour plot of f , with contour lines idicated.

Figure 5: Colored contour plot of f .

4 Predictive performance of the classifier
4.1 Probabilistic modeling of learning
To quantify the performance of a classifier after training, we
use a form of the popular ‘PAC’ model of computational
learning theory (see (Anthony and Biggs 1992), (Vapnik
1998), (Blumer et al. 1989)). This assumes that we have
some training examples zi = (xi, bi) ∈ Z = [0, 1]n×{0, 1},
each of which has been generated randomly according to
some fixed probability measure P on Z. These training ex-
amples are, in the LAD terminology, the positive and nega-
tive observations we are given at the outset. Then, we can
regard a training sample of length m, which is an element
of Zm, as being randomly generated according to the prod-
uct probability measure Pm. Suppose that F is the set of
functions we are using to classify. (So, recall that F is a
set of real-valued functions and that the corresponding bi-
nary classification functions are the functions h = sgn(f)
for f ∈ F .

The natural way to measure the predictive accuracy of
f ∈ F in this context is by the probability that the sign of
f correctly classifies future randomly drawn examples. We
therefore use the following error measure of the classifier
h = sgn(f):

erP (sgn(f)) = P ({(x, b) ∈ Z : sgn(f(x)) 6= b}) .

Of course, we do not know this error: we only know how
well the classifier performs on the training sample. We could
quantify how well f ∈ F matches the training sample by
using the sample error of h = sgn(f):

erz(h) =
1

m
|{i : sgn(f(xi)) 6= bi}|

(the proportion of points in the sample incorrectly classified
by the sign of f ). But we will find it more useful to use
a variant of this, involving a ‘width’ or ‘margin’ parame-
ter γ. Much emphasis has been placed in practical machine
learning techniques, such as Support Vector Machines (Cris-
tianini and Shawe-Taylor 2000), on ‘learning with a large
margin’. (See, for instance (Smola et al. 2000), (Anthony
and Bartlett 1999), (Anthony and Bartlett 2000) and(Shawe-
Taylor et al. 1996).) Related work involving ‘width’ (ap-
plicable to binary-valued rather than real-valued functions)
rather than ‘margin’ has also been carried out (Anthony and
Ratsaby 2010) and, similarly, shows that ‘definitive’ classi-
fication is desirable. If h = sgn(f), we define

erγz(h) =
1

m
|{i : f(xi)bi < γ}|.

This is the proportion of zi = (xi, bi) in the sample for
which either sgn(f(xi)) 6= bi, or sgn(f(xi)) = bi but
|f(xi)| < γ. So it is the fraction of the sample that is ei-
ther misclassified by the classifier, or is correctly classified
but not definitively so, in the sense that the value of f(xi) is
only just of the right sign (and not correct ‘with a margin’ of
at least γ).

Much effort has gone into obtaining high-probability
bounds on erP (h) in terms of erγz(f). A typical result would



be of the following form: for all δ ∈ (0, 1), with probability
at least 1− δ, for all f ∈ F ,

erP (sgn(f)) < erγz(f) + ε(m, γ, δ),

where ε decreases with m and δ. We obtain a bound of a
similar, but slightly different form, in this paper for the set
of hybrid classifiers we are considering.

4.2 Covering the set of classifiers
We now consider covering numbers, in order to deploy some
results on probabilistic learning. Suppose that F is a set of
functions from a domain X to some bounded subset Y of
R. For a finite subset S of X , the l∞(S)-norm is defined
by ‖f‖l∞(S) = maxx∈S |f(x)|. For γ > 0, a γ-cover of F
with respect to l∞(S) is a subset F̂ of F with the property
that for each f ∈ F there exists f̂ ∈ F̂ with the property
that for all x ∈ S, |f(x)− f̂(x)| < γ. The covering number
N (F, γ, l∞(S)) is the smallest cardinality of a covering for
F with respect to l∞(S) and the uniform covering number
N∞(F, γ,m) is the maximum of N (F, γ, l∞(S)), over all
S with S ⊆ X and |S| = m.

We will make use of the following result from (An-
thony and Bartlett 1999). (It is a consequence of Theo-
rem 13.7 there, which is a slight improvement of a result
from (Bartlett 1998). More standard bounds do not have a
factor of 2 in front of the erγz(f) but involve ε2 rather than ε
in the negative exponential. This type of bound is therefore
potentially more useful when erz(f) is small.)

Theorem 4.1 Suppose that F is a set of real-valued func-
tions defined on a domain X and that P is any probability
measure on Z = X × {0, 1}. Then, for any ε ∈ (0, 1), any
γ > 0 and any positive integer m,

Pm ({z ∈ Zm : erP (sgn(f)) ≥ 2 erγz(f) + ε for some f ∈ F})
is at most

≤ 4N∞(F, γ/2, 2m)e−εm/8.

One approach to bounding the covering number of a func-
tion class F with respect to the l∞(S)-norm is to construct
and bound the size of a covering with respect to the sup-
norm ‖f‖∞ on X . This clearly also serves as a covering
with respect to l∞(S), for any S, since if ‖f − f̂‖∞ < γ

then, by definition of the sup-norm, supx∈X |f(x)−f̂(x)| <
γ and, hence, for all x ∈ X (and, therefore, for all x ∈ S

where S is some subset of X), |f(x) − f̂(x)| < γ. This is
the approach we now take.

The following result will be useful to us.

Lemma 4.2 Suppose f+ is defined as above, and that it cor-
responds to the set S+, a union of boxes based on cutpoints
a
(j)
i (for 1 ≤ j ≤ n and 1 ≤ i ≤ Kj). Then, for any
x ∈ [0, 1]n, there exists a pair of indices 1 ≤ q ≤ n,
1 ≤ p ≤ Kq such that the distance between x and S+ satis-

fies dist
(
x, S+

)
=
∣∣∣xq − a(q)p ∣∣∣.

Proof: We have

dist
(
x, S+

)
= inf
x′∈S+

φ (x, x′)

where, for each fixed x, φ(x, x′) = max1≤j≤n |xj − x′j | is
continuous in x′. Since the set S+ is closed, by the extreme-
value theorem φ(x, x′) attains its greatest lower bound on
S+. If x ∈ S+ then it is attained at x′ = x. If x 6∈ S+

then it is attained at some point on the boundary of S+. This
boundary consists of a union of ‘sides’, each side being a set
of the form

V
(j)
i =

{
z
∣∣∣ zj = a

(j)
i , a(k)rk

≤ zk ≤ a(k)sk
, k 6= j

}
.

A closest point z∗ to x on V (j)
i is one each of whose coor-

dinate values (on dimension k where k 6= j) either equals
the corresponding coordinate value of x or equals a cutpoint
value a(k)rk or a(k)sk . Thus the distance ‖x− z∗‖ either equals∣∣∣xj − a(j)i ∣∣∣; or

∣∣xk − ark(k)
∣∣ or

∣∣∣xk − a(k)sk

∣∣∣, for some k 6= j.

The distance between x and S+ equals the minimal distance
between x and any of the sides V (j)

i . It follows that this dis-

tance equals
∣∣∣xs − a(q)p ∣∣∣ for some 1 ≤ q ≤ n, 1 ≤ p ≤ Ks.

�

We now bound the covering number of the set of clas-
sifiers that derive from at most some fixed number, B, of
boxes, each of which is defined with respect to some set
of Kj cutpoints in dimension j. To be specific, suppose
B ∈ N and that, for each j between 1 and n, Kj ∈ N.
Let k = (K1,K2, . . . ,Kn) ∈ Nn and let F (k, B) be the set
of all the classifiers obtained as follows: (i) for each j, there
is a set C(j) = {a(j)1 , a

(j)
2 , . . . , a

(j)
Kj
} ⊆ [0, 1]; and, (ii) the

boxes taken to form S+ ∪ S− are at most B in number, and
each of the form

(a(1)r1 , a
(1)
s1 )× (a(2)r2 , a

(2)
s2 )× · · · × (a(n)rn , a

(n)
sn ).

where 0 ≤ rj < sj ≤ Kj + 1 (and where a(j)0 is interpreted
as 0 and a(j)Kj+1 as 1). (Note: we specify here the numbers
Kj of cutpoints in each dimension, but we do not fix the sets
of cutpoints. Note also that the boxes need not be disjoint.)

We have the following bound.

Theorem 4.3 Let B ∈ N and k = (K1,K2, . . . ,Kn) ∈
Nn. Then, if F (k, B) is as just defined, we have

lnN∞(F (k, B), γ,m)

≤
n∑
j=1

Kj ln

(
3

γ

)
+ 2B

n∑
j=1

ln(Kj + 2) +B,

for all m ∈ N and all γ ∈ (0, 1).

Proof: As indicated in the preceding discussion, we con-
struct a covering of F (k, B) with respect to the sup-norm
on F (k, B). Let N = d1/γe and let

Gγ =

{
0, γ, 2γ, . . . ,

⌊
1

γ

⌋
γ, 1

}
⊆ [0, 1].

Note that |Gγ | ≤ b1/γc+2 ≤ b3/γc. Let us define the class
F̂ (k, B) of classifiers to be those satisfying: (i) for each j,



there are Kj cutpoints in dimension j, and each belongs to
Gγ ; and, (ii) the boxes taken to form S+ ∪S− are at most B
in number. Then we claim that F̂ (k, B) is a γ-covering of
F (k, B) with respect to the sup-norm.

Given any f ∈ F (k, B) let C(j) be the set of cut-
points {a(j)1 , a

(j)
2 , . . . , a

(j)
Kj
}, for 1 ≤ j ≤ n . For each

a
(j)
i there exists a corresponding â

(j)
i ∈ Gγ that satisfies∣∣∣a(j)i − â(j)i ∣∣∣ ≤ γ. For each box Q in S+, where

Q = (a(1)r1 , a
(1)
s1 )× (a(2)r2 , a

(2)
s2 )× · · · × (a(n)rn , a

(n)
sn ),

let Q̂ be the box

Q̂ = (â(1)r1 , â
(1)
s1 )× (â(2)r2 , â

(2)
s2 )× · · · × (â(n)rn , â

(n)
sn ).

Let Ŝ+ be the union of the boxes Q̂ corresponding to the
boxes Q forming S+. In an analogous way, define Ŝ−. The
function class F̂ (k, B) is precisely the set of all functions f̂ ,
defined by

f̂(x) =
f̂−(x)− f̂+(x)

2
,

where

f̂−(x) = dist(x, Ŝ−), f̂+(x) = dist(x, Ŝ+).

We now show that ‖f − f̂‖∞ ≤ γ.
Fix any x ∈ X . Let us compute the values of f+(x) and

f̂+(x). From Lemma 4.2, there exist indices r, s such that
f+(x) = dist

(
x, S+

)
=
∣∣∣xs − a(s)r ∣∣∣. Denote by â(s)r ∈ Gs

the cutpoint in Gγ that satisfies
∣∣∣â(s)r − a(s)r ∣∣∣ ≤ γ. Then we

have,

f+(x) =
∣∣∣xs − a(s)r ∣∣∣

≥
∣∣∣xs − â(s)r ∣∣∣− γ

≥ inf{‖x− z‖ : z ∈ Ŝ+} − γ

= dist
(
x, Ŝ+

)
− γ

= f̂+(x)− γ.
Also, from Lemma 4.2, there exist indices p, q such that
f̂+(x) = dist

(
x, Ŝ+

)
=
∣∣∣xp − â(p)q ∣∣∣. Hence we have,

f̂+(x) =
∣∣∣xp − â(p)q ∣∣∣

≥
∣∣∣xp − a(p)q ∣∣∣− γ

≥ inf{‖x− z‖ : z ∈ S+} − γ
= dist

(
x, S+

)
− γ

= f+(x)− γ.

It follows that ‖f+ − f̂+‖ ≤ γ. The same argument holds
for the pair f− and f̂−, and so it follows that

‖f − f̂‖∞

= sup
x∈X

∣∣∣f(x)− f̂(x)
∣∣∣

=
1

2
sup
x∈X

∣∣∣f+(x) + f−(x)− f̂+(x)− f̂−(x)
∣∣∣

≤ 1

2
sup
x∈X

∣∣∣f+(x)− f̂+(x)
∣∣∣+

1

2
sup
x∈X

∣∣∣f−(x)− f̂−(x)
∣∣∣

≤ γ.

Thus for each f ∈ F (k, B) there exists f̂ ∈ F̂ (k, B) such
that ‖f − f̂‖∞ ≤ γ, and F̂ (k, B) is therefore a γ-covering
of F (k, B) in the sup-norm.

We now bound the cardinality of F̂ (k, B). Note that since
there areKj cutpoints in each dimension j, and each of these
is fromGγ , a set of cardinality at most b3/γc, it follows that
there are at most

∏n
j=1

(b3/γc
Kj

)
possible ways of choosing

he cutpoints for a function in F̂ (k, B). A box is defined
by choosing a pair of cutpoints in each dimension (allowing
also for the possibility that one end of the interval defining
the box in any given dimension can be 0 or 1). We then
choose B boxes, and, next, each box is assigned either a 0

label or a 1 label (that is, it is chosen to be part of Ŝ− or Ŝ+).
Thus, we have

|F̂ (k, B)| ≤
n∏
j=1

(
b3/γc
Kj

)(∏n
j=1

(
Kj+2

2

)
B

)
2B

≤
n∏
j=1

⌊
3

γ

⌋Kj n∏
j=1

(Kj + 2)2B2B .

It follows, therefore, that lnN∞(F, γ,m) is at most

|F̂ (k, B)| ≤
n∑
j=1

Kj ln

(
3

γ

)
+ 2B

n∑
j=1

ln(Kj + 2) +B.

�

4.3 A generalization error bound
Theorem 4.1, together with Theorem 4.3, could now be used
to bound the generalization error of a classifier when B and
K1,K2, . . . ,Kn are prescribed in advance. However, the
following more useful result does not require these to be
known or prescribed.
Theorem 4.4 Suppose δ ∈ (0, 1), and suppose P is any
probability measure on X = [0, 1]n. Then, with Pm-
probability at least 1− δ, a sample z is such that:
• for all γ ∈ (0, 1);
• for all K1,K2, . . . ,Kn ∈ N;
• for all B ∈ N;
• if f ∈ F (k, B), then

erP (sgn(f)) ≤ 2 erγz(f) + ε(m, γ, δ,k, B),

where ε(m, γ, δ,k, B) is

8

m

ln

(
12

γδ

)
+

n∑
j=1

Kj ln

(
24

γ

)
+ 2B + 2B

n∑
j=1

ln(Kj + 2)

 .



Proof: Theorems 4.1 and 4.3 have the following immediate
consequence: for k ∈ Nn and B ∈ N, with probability at
least 1− δ, for all f ∈ F (k, B),

erP (f) < 2 erγz(f) + ε1(m, γ, δ,k, B)

where ε1(m, γ, δ,k, B) is

8

m

ln

(
4

δ

)
+

n∑
j=1

Kj ln

(
6

δ

)
+B + 2B

n∑
j=1

ln(Kj + 2)

 .

For α1, α2, δ ∈ (0, 1), let E(α1, α2, δ) be the set of
z ∈ Zm for which there exists some f ∈ F (k, B) with
erP (f) ≥ 2erα2

z (f) + ε1(m,α1, δ,k, B). Then, as just
noted, Pm(E(α, α, δ)) ≤ δ and, also, if α1 ≤ α ≤ α2

and δ1 ≤ δ, then E(α1, α2, δ1) ⊆ E(α, α, δ). It follows,
from (Bartlett 1998) and (Anthony and Bartlett 1999), that

Pm

 ⋃
α∈(0,1]

E(α/2, α, δα/2)

 ≤ δ.
In other words, for fixed k and B, with probability at least
1− δ, for all γ ∈ (0, 1], we have

erP (f) < 2 erγz(f) + ε2(m, γ, δ,k, B),

where ε2(m, γ, δ,k, B) is

8

m

ln

(
4

δ

)
+

n∑
j=1

Kj ln

(
12

δγ

)
+B + 2B

n∑
j=1

ln(Kj + 2)

 .

(Note that γ now need not be prescribed in advance.) It now
follows that the probability that for some k and for some B,
we have

erP (f) ≥ 2erγz(f) + ε2

(
m, γ,

δ

2(B+
∑n

j=1Kj)
,k, B

)
for some γ ∈ (0, 1) is at most

∞∑
B,K1,...Kn=1

δ

2(B+
∑n

j=1Kj)
=

∞∑
B=1

δ

2B

∞∑
K1,...,Kn=1

n∏
j=1

1

2Kj

=

∞∑
B=1

δ

2B

n∏
j=1

∞∑
Kj=1

1

2Kj

=

∞∑
B=1

δ

2B

n∏
j=1

1 = δ.

The result now follows.
�

For any classifier of the type considered, there will be
some maximal value of γ such that erγz(f) = 0. We call
this value of γ the width of f on z. This terminology is mo-
tivated by the earlier observation that the value of f(x) mea-
sures the distance from x to the nearest box with the opposite
classification. (The term ‘margin’ might be more standard in
the general context of using real-valued functions for classi-
fication, but ‘width’ seems more geometrically appropriate
here.) Theorem 4.4 does not specify γ in advance, so we
have the following immediate corollary.

Theorem 4.5 With the same notation as above, with Pm-
probability at least 1 − δ, a sample z is such that for any
f ∈ F , erP (sgn(f)) is at most

4

m

ln

(
12

γ(f, z)δ

)
+

n∑
j=1

Kj ln

(
24

γ(f, z)

)
+ 2B(f) +B(f)

n∑
j=1

ln(Kj + 1)

 ,

where γ(f, z) is the width of f on z, and f involves B(f)
boxes, defined with respect to some set of Kj cutpoints in
dimension j (for 1 ≤ j ≤ d).

We could also use Theorem 4.4 as a guide to ‘model se-
lection’. The theorem states that, with probability at least
1− δ,

erP (sgn(f)) < E(m, γ, δ,k, B)

= 2 erγz(f) + ε(m, γ, δ,k, B).

For fixed m and δ, ε(m, γ, δ,k, B) decreases as γ in-
creases, and erγz(f) increases as γ increases. There-
fore E(m, γ, δ,k, B) is the sum of two quantities, one of
which increases and one of which decreases as γ increases,
and there is hence a trade-off between the two quantities.
Clearly, also, the parameters k and B can be varied. This
motivates the use of a learning algorithm that returns a clas-
sifier which minimizes the combination E(m, γ, δ,k, B).
The (high-probability) generalization error bound for such
an algorithm take the form

erP (sgn(f))

≤ inf
γ,k,B

inf{2 erγz(f) + ε(m, γ, δ,k, B) : f ∈ F (k, B)}.

5 Conclusions and further work
This paper has introduced a new classifier, which is a hybrid
between classical LAD (or unions of boxes) approaches and
nearest-neighbor. We analyzed its generalization error, ob-
taining, in particular, error bounds that depend on a measure
of the classifier’s robustness, which we term its ‘width’. In
related ongoing work, we are addressing some of the algo-
rithmic issues associated with this means of classification.
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