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Abstract

We derive an upper and a lower bound on the sam-
ple size needed for PAC-learning a concept class in
the presence of one-sided classification noise. The
upper bound is achieved by the strategy “Minimum
One-sided Disagreement”. It matches the lower bound
(which holds for any learning strategy) up to a log-
arithmic factor. Although “Minimum One-sided Dis-
agreement” often leads to NP-hard combinatorial prob-
lems, we show that it can be implemented quite effi-
ciently for some simple concept classes like, for ex-
ample, unions of intervals, axis-parallel rectangles, and
TREE(2, n, 2, k) which is a broad subclass of 2-level
decision trees. For the first class, there is an easy algo-
rithm with time bound O(m logm). For the second-one
(resp. the third-one), we design an algorithm that ap-
plies the well-known UNION-FIND data structure and
has an almost quadratic time bound (resp. time bound
O(n2m logm)).

1 Introduction

The classification noise variant of the PAC model (Valiant
1984) was introduced by (Angluin and Laird 1988). It is

known that Ω
(

d−1
ε(1−2η)2)

)

examples are needed for learn-

ing a concept class of VC-dimension d in this model (Simon
1996). A matching upper bound (up to a logarithmic factor)
is found in the book by (Laird 1988). It is achieved by the
strategy “Minimum Disagreement” which returns a hypoth-
esis that disagrees as seldom as possible with the (possibly
corrupted) labels of the instances in the empirical sample.
The interest in this learning model was pushed considerably
by the work of (Kearns 1998) who introduced the model of
learning from statistical queries (SQ-model) and proved the
following. First, any algorithm that works in the SQ-model
can be efficiently simulated by an algorithm that works in
the classification noise variant of the PAC model. Second,
almost every efficient PAC-learning algorithm can be rewrit-
ten as an efficient algorithm in the SQ-model.

The classification noise in the model introduced by (An-
gluin and Laird 1988) is two-sided, i.e., positive as well as
negative examples in the sample may obtain a wrong la-
bel. If the wrong label can be assigned to one type of ex-
amples only, say to the negative-ones, we obtain one-sided

classification noise — the main topic of this paper. PAC-
learning in the presence of one-sided classification noise
is a model of theoretical and practical interest. As shown
by (Blum and Kalai 1998), any algorithm that PAC-learns
a class C in the presence of one-sided classification noise
can be transformed (without much loss of efficiency) into an
algorithm that PAC-learns C from multiple-instance exam-
ples. The latter model, call it Multiple Instance Learning or
MIL for short, was introduced by (Dietterich, Lathrop, and
Lozano-Pérez 1997). MIL is the appropriate model for sev-
eral learning applications as they occur, for example, in drug
design (Dietterich, Lathrop, and Lozano-Pérez 1997), im-
age classification (Maron and Ratan 1998), web index page
recommendation (Zhou, Jiang, and Li 2005), and text cat-
egorization (Andrews 2007). On top of the motivation that
comes from MIL, one-sided errors within the labeling arise
naturally when the training data for the learner are prepared
in a way where the same “default-label” is assigned to any
sample point with an unclear classification.

It was noticed by several researchers already in an early
stage of learning theory that relatively simple and low-
dimensional classification-rules (e.g., axis-parallel rectan-
gles (Weiss and Kapouleas 1989; Weiss, Galen, and Tade-
palli 1990; Weiss and Kulikowski 1990), unions of inter-
vals (Holte 1993) or 2-level decision trees (Auer, Holte,
and Maass 1995)) can be quite successful on benchmark
data sets provided that these rules are given in terms of
the (few) most relevant attributes. It is precisely for this
reason that (Maass 1994) and (Auer, Holte, and Maass
1995) presented efficient implementations of “Minimum
Disagreement” for unions of k intervals, axis-parallel rectan-
gles and for TREE(2, n, p, k). These algorithms run in time
O(m(k2+logm)), O(m2 logm), and O(k2n2m logm), re-
spectively, where m denotes the sample size. The main re-
sults in this paper are as follows:

• “Minimum One-sided Disagreement” (a variant of “Min-
imum Disagreement” that is tailored to one-sided clas-
sification noise) can be implemented so as to run
faster than the algorithms for “Minimum Disagreement”
by (Maass 1994) and (Auer, Holte, and Maass 1995):
we achieve time bound O(m logm) for unions of k in-
tervals, an almost quadratic time bound for axis-parallel
rectangles, and time bound O(n2mlogm) for the class
TREE(2, n, 2, k).



• “Minimum One-sided Disagreement” learns from few ex-
amples: the number of examples needed almost matches
with a corresponding lower bound.

2 Definitions, Notations and Facts

For m ≥ 1, we define [m] = {1, . . . ,m}. For a set Z, 2Z

denotes the corresponding power-set (set of all subsets of
Z). Let R ⊆ 2Z be a family of subsets of Z. We say that a
set A ⊆ Z is shattered by R if, for any B ⊆ A, there exists
a set R ∈ R such that B = A ∩ R. The VC-dimension of
R is∞ if there exist arbitrarily large sets that are shattered
by R, and the cardinality of the largest set shattered by R
otherwise.

Prerequisites from Probability Theory

Assume now that R (or a σ-algebra containing R) is
equipped with a probability measure P . For any m ≥ 1,
Pm denotes the corresponding product measure. For R ∈ R

and S = (z1, . . . , zm) ∈ Zm, we define P̂S(R) as |i ∈

[m] : zi ∈ R}|/m. In other words, mP̂S(R) counts how of-

ten R is hit by components of S. Clearly, P̂S(R) approaches
P (R) when S is chosen at random according to Pm and m
is getting large. In learning theory, R may be a hypothesis
that is chosen in dependence of S (e.g., a hypothesis that fits
the data in S as good as possible). In this case, the relation

between P (R) and P̂S(R) is more delicate and its analy-
sis requires concentration bounds that hold uniformly for all
members of R. In the sequel, we remind the reader to some
well-known facts in this context.

The first result that we mention, Theorem 2.1, gives an
answer to the following question: how large do we have to
choose a random sample of points such that, with high prob-
ability, any set of probability mass greater than ε is hit by at
least one sample point?

Theorem 2.1 ((Blumer et al. 1989)) Let d be the VC-
dimension ofR ⊆ 2Z , and letRε ⊆ R be the subclass of all
sets R ∈ R such that P (R) > ε. Then, for any 0 < δ, ε < 1
and any

m ≥ max

{
4

ε
log

2

δ
,
8d

ε
log

13

ε

}

,

the following holds:

Pm{S : (∃R ∈ Rε : P̂S(R) = 0)} ≤ δ

The next three results use the notation from Theorem 2.1.
The first of them is concerned with the danger that, for some

R ∈ R, P̂S(R) significantly underestimates P (R):

Theorem 2.2 ((Blumer et al. 1989)) For any 0 < δ, ε, γ <
1 and any

m ≥ max

{
8

γ2ε
ln

8

δ
,
16d

γ2ε
ln

16

γ2ε

}

,

the following holds:

Pm{S : (∃R ∈ Rε : P̂S(R) ≤ (1− γ)P (R))} ≤ δ

We are not aware of a result that is directly concerned with
the dual danger of having an empirical overestimation of the
true probability by a factor 1 + γ (or more). However such
a result, see Corollary 2.4 below, can easily be derived from
the following (more general) result:

Theorem 2.3 ((Haussler 1992)) For any 0 < α, δ < 1, any
0 < ν ≤ 8, and any

m ≥
8

α2ν

(

2d ln
8e

αν
+ ln

8

δ

)

, (1)

the following holds:

Pm

{

S :

(

∃R ∈ R :
|P̂S(R)− P (R)|

ν + P̂S(R) + P (R)
> α

)}

≤ δ

(2)

Corollary 2.4 For any 0 < δ, ε < 1, any 0 < γ < 3, and
any

m ≥
8(3 + γ)2

γ2ε

(

2d ln
8e(3 + γ)

γε
+ ln

8

δ

)

the following holds:

Pm{S : (∃R ∈ Rε : P̂S(R) ≥ (1 + γ)P (R))} ≤ δ

Proof: The probability in (2) upper-bounds the probability
of the event E1 given by

P̂S(R)− P (R) > α(ν + P̂S(R) + P (R)),

which is equivalent to

(1− α)
P̂S(R)

P (R)
> 1 + α+

αν

P (R)
.

Setting ν = ε < P (R), we see that the probability of E1

upper-bounds the probability of the event E2 given by

P̂S(R)

P (R)
≥

1 + 2α

1− α
= 1 +

3α

1− α
.

Note that 3α
1−α

= γ for α = γ
3+γ

. Thus in order to bound the

probability for
P̂S(R)
P (R) ≥ 1 + γ by δ, it suffices to set ν = ε,

α = γ
3+γ

, and to choose m according to (1). This leads us

to Corollary 2.4. •

An easy monotonicity argument shows that, for m chosen
as in Corollary 2.4, the following holds:

Pm{S : (∃R ∈ R : P̂S(R) ≥ (1 + γ)max{ε, P (R))} ≤ δ
(3)

Prerequisites from Learning Theory

In learning theory a family C ⊆ 2X of subsets of X is called
a concept class over domain X . Members f ∈ C are some-
times viewed as functions from X to {0, 1} (with the obvi-
ous one-to-one correspondence between these functions and
subsets of X). An algorithm A is said to (properly) PAC-
learn C with sample size m(ε, δ) if, for any 0 < ε, δ < 1,
any (so-called) target concept f ∈ C, and any domain distri-
bution P the following holds:



1. If A is applied to a (so-called) sample S =
(x1, f(x1)), . . . , (xm, f(xm)), it returns (a “natural” rep-
resentation of) a hypothesis h ∈ C.

2. If m = m(ε, δ) and the instances x1, . . . , xm in S are
drawn at random according to Pm, then, with probability
at least 1 − δ, P{x : h(x) = 0 ∧ f(x) = 1} + P{x :
h(x) = 1 ∧ f(x) = 0} ≤ ε.

We briefly note that in the original definition of PAC-
learning (Valiant 1984) m(ε, δ) is required to be polynomi-
ally bounded in 1/ε, 1/δ andA has to be polynomially time-
bounded. In this paper, we do obtain polynomial bounds on
the sample size, but these bounds are proved for a strategy
that cannot always be implemented in polynomial time. In
Section 4, however, we will come back to the issue of effi-
ciency.

In the presence of classification noise with noise-rate η,
the task for the learner is made harder by corrupting some of
the labels in the sample. For any instance xi in the sample,
we flip a coin with bias η for showing “heads”. If the coin
shows “heads”, we set bi = 1 − f(xi); otherwise we set
bi = f(xi). The learner then obtains as input the corrupted
sample S = (x1, b1), . . . , (xm, bm) (and still has to satisfy
the same success criterion as before). We can think of S as
being drawn at random according to Pm

f,η where, for any P -

measurable set A, Pf,η{(x, f(x)) : x ∈ A} = (1−η)·P (A)
and Pf,η{(x, 1− f(x)) : x ∈ A} = η · P (A).

A semi-random model of classification-noise is the fol-
lowing (more malicious) variant of the model just described.
The coin with bias η is flipped m-times and the instances
xi for which the coin showed “heads” are marked. Then an
adversary of the learner decides whether the labels of the
marked instances are flipped or not. At first glance it looks
as if a delivery of the true label instead of the flipped-one
could be to the advantage of the learner only. This, however,
is spurious thinking. There do exist learning strategies that
rely on the statistics resulting from flipping the label at the
precise rate η. These algorithms can easily be fooled by an
adversary. In other words: algorithms that work fine in the
semi-random model of classification noise can be consid-
ered more robust against noise.

In the model with one-sided classification noise, the label
of a negative example is flipped with probability η (as be-
fore), but the labels of the positive examples are not touched.
Again one can consider the semi-random variant of this
model.

The notion “Minimum Disagreement” refers to a learn-
ing strategy that returns a hypothesis with a smallest number
of disagreements with the (possibly corrupted) labels in the
sample.

In this paper, the notion “Minimum One-sided Disagree-
ment” refers to a strategy that returns a hypothesis which
minimizes the number of disagreements with the 1-labels
in the sample S subject to the constraint of having perfect
agreement with the 0-labels in S. This strategy is reason-
able when learning takes place in the presence of one-sided
classification noise.

3 Tight Bounds on the Sample Size

We begin this section with the analysis of “Minimum One-
sided Disagreement”:

Theorem 3.1 Let C be a concept class of VC-dimension d.
“Minimum One-sided Disagreement” PAC-learns C in the
presence of one-sided classification noise from

O

(
1

ε(1− η)

(

d ln
1

ε(1− η)
+ ln

1

δ

))

(4)

examples.

Proof: Assume that the sample size m has order (4) of
magnitude (with sufficiently large constants). Let S =
(x1, b1), . . . , (xm, bm) be a sample drawn at random accord-
ing to Pm

f,η , where f denotes the target concept. The follow-

ing statements are the main building stones in the proof:

Claim 1: With a probability of at least 1− δ/3, the follow-
ing holds for any h ∈ C with one-sided disagreement on
S:

P{x : h(x) = 1 ∧ f(x) = 0} ≤
ε

5
(5)

Claim 2: With probability at least 1 − δ/3, the following
holds for any h ∈ C such that P{x : h(x) = 0 ∧ f(x) =
1} > 4ε/5:

P̂S{x : h(x) = 0 ∧ f(x) = 1} ≥

1

2
P{x : h(x) = 0 ∧ f(x) = 1} (6)

Claim 3: With probability at least 1 − δ/3, the following
holds for any h ∈ C such that P{x : h(x) = 1 ∧ f(x) =
0} > ε/5:

P̂S{x : h(x) = 1 ∧ f(x) = 0} ≤

2P{x : h(x) = 1 ∧ f(x) = 0} (7)

Claim 4: The hypothesis returned by “Minimum One-sided
Disagreement”, say hS , satisfies the following condition:

P̂S{x : hS(x) = 0 ∧ f(x) = 1} ≤

P̂S{x : hS(x) = 1 ∧ f(x) = 0} . (8)

Before proving the claims, we show how they are applied.
Note that, with probability at least 1−δ, the inequalities (5),
(6), (7), are valid. It therefore suffices to show that these in-
equalities together with (8) imply that hS errs with probabil-
ity at most ε. We analyze the two types of errors separately.
According to Claim 1, P{x : hS(x) = 1 ∧ f(x) = 0} ≤
ε/5. Assume for sake of contradiction that P{x : hS(x) =
0 ∧ f(x) = 1} > 4ε/5 so that hS satisfies (6). This leads to
a contradiction as follows:

P{x : hS(x) = 0 ∧ f(x) = 1}
(6)

≤

2P̂S{x : hS(x) = 0 ∧ f(x) = 1}
(8)

≤

2P̂S{x : hS(x) = 1 ∧ f(x) = 0}
(3)

≤
4ε

5



In the final inequality, we made use of Claim 1, and we ap-
plied (3) with γ = 1 and ε/5 in the role of ε. The proof of the
theorem can now be accomplished by the verification of the
claims. As for Claim 1, we observe first that the following
holds for any h ∈ C:

P{x : h(x) = 1 ∧ f(x) = 0} =

1

1− η
· Pf,η{(x, 0) : h(x) = 1} . (9)

We apply Theorem 2.1 with the following set-up of the rele-
vant parameters:

• Z = {(x, b) ∈ X × {0, 1} : b ≥ f(x)}, where condi-
tion b ≥ f(x) reflects our assumption that the labels of
positive examples are not affected with noise.

• R ⊆ 2Z is the family of sets of the form {(x, 0) : h(x) =
1} for some h ∈ C.

• P from Theorem 2.1 is identified here with Pf,η.

• ε from Theorem 2.1 is identified here with ε(1− η)/5.

The VC-dimension ofR equals the VC-dimension of {h\f :
h ∈ C} and is therefore upper-bounded by d. It follows now
from Theorem 2.1 that the sample size m is large enough
so that, with probability at least 1 − δ/3, any hypothesis h
with Pf,η{(x, 0) : h(x) = 1} > ε(1 − η)/5 is hit at least
once by an example labeled 0 in S. Since such a hypoth-
esis has not one-sided disagreement, we can conclude that
any hypothesis h with one-sided disagreement on S satisfies
Pf,η{(x, 0) : h(x) = 1} ≤ ε(1 − η)/5. According to (9),
this implies that P{x : h(x) = 1 ∧ f(x) = 0} ≤ ε/5.
In order to verify Claim 2, we observe first that

P{x : h(x) = 0 ∧ f(x) = 1} =

Pf,η{(x, 1) : h(x) = 0 ∧ f(x) = 1} .

Thus it suffices to show that P̂S{h(x) = 0 ∧ f(x) = 1} ≥
1
2Pf,η{(x, 1) : h(x) = 0 ∧ f(x) = 1} holds with probabil-
ity at least 1 − δ/3, which can easily be verified by means
of Theorem 2.2 and the following set-up of the relevant pa-
rameters:

• Z = {(x, 1) ∈ X × {1} : f(x) = 1}.

• R ⊆ 2Z is the family of all sets of the form {(x, 1) :
h(x) = 0 ∧ f(x) = 1}.

• Pf,η plays the role of P in Theorem 2.2.

• ε in Theorem 2.2 is replaced here by 4ε/5, and γ is set to
1/2.

It is easy to fill in the missing details.
The verification of Claim 3 is similar to the verification of
Claim 2. One can first observe that P{x : h(x) = 1∧f(x) =
0} = Pf,η{(x, b) : h(x) = 1 ∧ f(x) = 0 ∧ b ∈ {0, 1}} and
then apply Corollary 2.4. Again, it is easy to fill in the miss-
ing details.
We finally verify Claim 4. Note first that |{i ∈ [m] :
hS(xi) = 0 ∧ bi = 1}| ≤ |{i ∈ [m] : f(xi) = 0 ∧ bi = 1}|
since “Minimum One-sided Disagreement” minimizes the
number of 0-labels that are assigned to examples having la-
bel 1 in the sample. It follows that |{i ∈ [m] : hS(xi) =

0∧f(xi) = 1∧bi = 1}| ≤ |{i ∈ [m] : f(xi) = 0∧h(xi) =
1∧ bi = 1}|. Since hS(xi) = f(xi) = 0 for all i ∈ [m] such
that bi = 0, we conclude that

=m·P̂S{x:hS(x)=0∧f(x)=1}
︷ ︸︸ ︷

|{i ∈ [m] : hS(xi) = 0 ∧ f(xi) = 1}| ≤

|{i ∈ [m] : f(xi) = 0 ∧ hS(xi) = 1}|
︸ ︷︷ ︸

=m·P̂S{x:hS(x)=1∧f(x)=0}

,

which proves (8). •

We briefly note that the proof of Theorem 3.1, after some
minor modifications, shows that (4) upper-bounds the num-
ber of examples needed by ”Minimum One-sided Disagree-
ment” even in the semi-random model.

Here comes the (almost) matching lower bound on the
sample size (valid for any algorithm).

Theorem 3.2 Let C be a concept class of VC-dimension d.
C cannot be PAC-learned in the presence of one-sided clas-

sification noise from fewer than Ω
(

d−1
ε(1−η)

)

examples.

Proof: The proof is similar to the proof for the correspond-
ing lower bound in the noise-free setting (Ehrenfeucht et
al. 1989). Let t = d − 1, and let X0 = {x0, x1, . . . , xt}
be a set of size d that is shattered by C. Assign probabil-
ity 1 − 4ε to x0 and distribute the remaining probability
mass, 4ε, equally among the points x1, . . . , xt. The target
concept is chosen at random by assigning label 1 to x0 and
by flipping a perfect coin independently t times in order
to determine the labels for x1, . . . , xt, respectively. Let the
sample size m be upper-bounded by t

16ε(1−η) . It suffices to

show that, with a probability of at least 1/2, the error of
the learner, averaged over the 2t possible target concepts, is
at least ε. To this end, let S = (x′

1, b1), . . . , (x
′
m, bm) with

x′
1, . . . , x

′
m ∈ X0 be the random sample, and let Y be the

random variable that counts the number of sample points
with label 0, i.e., Y = |{i ∈ [m] : bi = 0}. Since positive
examples are always presented with label 1, and negative ex-
amples are labeled 0 with probability 1 − η, it follows that
E[Y ] ≤ 4ε(1 − η)m ≤ t/4. According to Markov’s in-
equality, Y ≤ t/2 with a probability of at least 1/2. If this
happens, a learner cannot do better than randomly guessing
the labels of the t/2 (or more) points that did not occur with
label 0 in the sample. Thus, with a probability of at least
1/2, the average error of the learner is at least ε (= half of
probability mass of t/2 points from {x1, . . . , xt}). •

4 Efficient Learners for Simple Classes
In this section, we show that “Minimum One-sided Dis-
agreement” can be implemented quite efficiently for some
simple (but arguably important) concept classes. There will
be no loss of efficiency when the input S contains items of
the form (x,w, b) ∈ X × R+ × {0, 1} so that a disagree-
ment on (x, b) is penalized by w. For this reason, we deal
with such “weighted labeled samples” throughout this sec-
tion, and the objective is to minimize the total “weighted
one-sided disagreement” on the input sample S.



Theorem 4.1 For the concept class consisting of unions of
k (or less) intervals of the real line, “Minimum One-sided
Disagreement” has an implementation with time bound
O(m logm).

Proof: Let S = (x1, w1, b1), . . . , (xm, wm, bm) denote the
weighted labeled sample that serves as input. The algorithm
for “Minimum One-sided Disagreement” is based on sorting
and proceeds as follows:

1. Sort S in increasing order of xi and return the sorted se-
quence, say S′ = (x′

1, w
′
1, b

′
1), . . . , (x

′
m, w′

m, b′m) such
that x′

1 ≤ · · · ≤ x′
m.

2. Find (as few as possible) sub-intervals of [x′
1, x

′
m], say

I1, . . . , Il, that do not include any instance occurring in
S′ with label 0 but cover the remaining instances in S′.
For j = 1, . . . , l, let Wj denote the total weight of all
items from S′ that belong to Ij .

3. Sort the l intervals in decreasing order of Wj and return
the union of the min{k, l} first intervals in this ordering.

The second step can be implemented in linear time by one
pass through S′. The run-time is dominated by the two calls
of the sorting procedure. •

The proof of the next result is an application of the well-
known UNION-FIND data structure. This data structure is
used for the administration of a collection of pairwise dis-
joint sets and supports the operations FIND (given an ele-
ment, return the set to which it belongs) and UNION (given
two sets, return their union). It is well-known that, given a
partition of n elements, a sequence of m UNION- or FIND-
operations can be performed in “almost” linear time. Here
the word “almost” hides an additional factor α(n) that is
a close relative of the inverse of the Ackermann function.
Since α(n) ≤ 4 for all n ≤ 16512, this factor can be consid-
ered as a small constant in practice. For more details about
the UNION-FIND data structure, the reader is referred to
any standard book about Efficient Algorithms (e.g. (Cormen
et al. 2009)).

Theorem 4.2 Let B2 denote the class of axis-parallel rect-
angles in the Euclidean plane (also called two-dimensional
boxes). For this concept class, “Minimum One-sided Dis-
agreement” has an implementation with an almost quadratic
time bound.

Proof: Let S = ((x1, y1), w1, b1), . . . , ((xm, ym), wm, bm)
be the given weighted labeled sample. In the sequel, we
think of S as a list that is sorted lexicographically according
to y in decreasing order. Clearly, this list can be produced
in O(m logm) steps. Let ymax (resp. ymin) be the largest
(resp. smallest) y-coordinate of an instance in S. Let y′ be
a (plane-sweep) variable that ranges from ymax to ymin and
takes the values attained by y-coordinates of points in S in
between. Let S↑(y

′) denote the initial part of the list S con-
taining all points from S whose y-coordinate is at least y′.
Let T = T (y′) denote a binary search tree that contains the
elements of S↑(y

′) and is organized with respect to the x-
coordinates of these elements. T is initialized by T (ymax)

and, as y′ decreases and the set S↑(y
′) becomes larger, is

extended incrementally (thereby maintaining a balance cri-
terion if we want to). Since every sample point is inserted
into T only once, the total number of steps required for
the administration of T is bounded by O(m2) (or even by
O(m logm) when we decided before to keep the search tree
balanced). Let us now consider a fixed value of y′. The the-
orem is obvious from the following

Claim 5: Given the data structures mentioned above, a best
box (i.e., a box with minimum weighted one-sided dis-
agreement) among the boxes with one-sided disagreement
and with a bottom line at level y′ can be computed in al-
most linear time.

The key observation is that T (y′) can be used to initialize a
UNION-FIND data structure which enables us to efficiently
find a best box in the sense of Claim 5. To this end, we tra-
verse T (y′) in inorder (in direction from small to large x-
coordinates) and, on the way, compute the following parti-
tion S1, . . . , Sl of S↑(y

′):

• Every point in Si is to the left of every point in Si+1,
i.e., the partition S1, . . . , Sl is induced by a left-to-right
partition of the plane into vertical stripes.

• For every Si exactly one of the following conditions
holds:

– Si contains positive examples only (set of “positive
type”).

– Si contains negative examples only (set of “negative
type”).

– Si contains both types of examples (set of “mixed
type”) and all examples in Si share the same x-
coordinate (i.e., every set of a mixed type is located on
a vertical line).

• If Si is of positive (resp. negative) type, then Si+1 is not,
i.e., sets of positive (resp. negative) type extend to left and
right as much as possible.

Let W1(i) (resp. W0(i)) denote the total weight of pos-
itive (resp. negative) examples in Si. We initialize a
UNION-FIND data structure with the partition S1, . . . , Sl.
Specifically, we use the tree-implementation with path-
compression (see Chapter 21.4 of (Cormen et al. 2009)) so
that every set Si is stored in a tree Ti. We furthermore con-
nect the roots of the trees T1, . . . , Tl, so as to form a doubly
linked list, and we store the values W0(·),W1(·) at the re-
spective roots. It is easy to see that the described initializa-
tion of the UNION-FIND data structure can be done within
O(m) steps by means of an inorder-traversal of T (y′). For
any finite set M ⊂ R2, let 〈M〉 denote the smallest box
containing M . It is easy to check that a best box among the
ones with the bottom-line at level y′ and the top-line at level
ymax must be among the boxes 〈Si〉 such that i ∈ [l] and
Si is of positive type. Claim 5 is now proved by using an-
other (plane-sweep) variable y′′ that ranges from ymax to
y′ so that, for every fixed value of y′′, the UNION-FIND
data structure enables us to efficiently perform a comparable
search through all (promising) boxes with the bottom-line at
level y′ and the top-line at level y′′. To this end, we ana-
lyze what happens when y′′ is decreased to the next possible



value, say from y′′old to y′′new. Let S=(y′′) be the segment
of the list Sy that contains the examples whose y-coordinate
equals y′′. When we assign the value y′′new to the variable
y′′, we have to (virtually) eliminate the elements of S=(y′′old)
from the UNION-FIND data structure and to perform the re-
sulting updates. Specifically, we do the following for every
element ((x, y), w, b) in S=(y′′old):

1. FIND the set, say Si, that contains ((x, y), w, b). Retrieve
the neighbors of Si, say Si′ and Si′′ , in the doubly linked
list.

2. Decrement Wb(i) by w.

3. If Wb(i) = W1−b(i) = 0 (i.e., Si is empty), then delete
Si from the doubly linked list. If Si′ and Si′′ are of the
same non-mixed type, then apply the operation UNION
to them.

4. If Wb(i) = 0 and W1−b(i) 6= 0 (so that the type of Si

changes from “mixed” to either “positive” or “negative”),
then apply the operation UNION to Si′ (resp. Si′′ ) and Si

provided that Si′ (resp. Si′′ ) is of the same type as Si.

5. If UNION operations have taken place, update the infor-
mation in the records associated with the roots of the af-
fected trees accordingly.

For a fixed value of y′, let S∗
y′ denote the set of positive

type with the largest total weight that was build within
the UNION-FIND data structure during the loop which de-
creases y′′ from its start value ymax to its final value y′. It is
easy to see that 〈S∗

y′〉 is a best box in the sense of Claim 5.
Clearly, S∗

y′ can be computed on the way by keeping track
of the currently “heaviest” set of positive type (the “cham-
pion”) and its total weight. The run-time is dominated by the
administration of the UNION-FIND data structure. For ev-
ery fixed y′, the operations FIND and UNION are called at
most m times, respectively. This yields Claim 5. •

The proof of the following result (given for sake of com-
pleteness) is completely analogous to the proof of a similar
result in (Maass 1994):

Corollary 4.3 “Minimum One-sided Disagreement” can
implemented in almost quadratic time for the concept class
of unions of two disjoint axis-parallel rectangles.

Proof: Given S = ((x1, y1), w1, b1), . . . , ((xm, ym), wm, bm),
let us assume that a “best” union of two disjoint boxes
B1, B2 has the property that B1, B2 can be separated by a
horizontal line, say at level y∗. (The case where they can be
separated by a vertical line is similar.) We use the notation
from the proof of Theorem 4.2. For every fixed value of y′,
we can find a best box B↑(y

′) for S↑(y
′) in almost linear

time. For reasons of symmetry, we find a best box B↓(y)
for S↓(y

′) = {((xi, yi), wi, b) ∈ S : yi < y′} in the same
amount of time. When y′ (which takes at most m values
between ymax and ymin) reaches the lowest level above y∗,
the algorithm will find the two boxes that form a best union.
Clearly, the whole procedure still runs in almost quadratic
time. •

By combining arguments from the proofs of the preced-
ing two theorems, we can show that “Minimum One-sided
Disagreement” can be solved efficiently for 2-level decision
trees. Details follow.

Let y′ ∈ R and let I = (I1, . . . , Ik) and J =
(J1, . . . , Jk) be two collections of pairwise disjoint intervals
being ordered from left to right, respectively. The function
hy′,I,J : R2 → {0, 1} is defined by setting hy′,I,J (x) = 1
if and only if

either y < y′ and x ∈ ∪kℓ=1Iℓ or y ≥ y′ and x ∈ ∪kℓ=1Jℓ .

The concept class T2,k consisting of all concepts of this form
corresponds to 2-level decision trees of the following kind:

• At the root node, it is tested whether a continuous attribute
y is below a threshold y′.

• At the nodes on level 1 (the two children of the root), it is
tested whether a continuous attribute x falls into a union
of k intervals (where the interval collections associated
with the left and the right child of the root, respectively,
can be chosen independently from each other).

Let S = {((x1, y1), w1, b1), . . . , ((xm, ym), wm, bm)}
denote a weighted labeled sample. Let Y = {y1, . . . , ym}.
Given a threshold y′ ∈ Y , S partitions into the following
two sets:

S↓(y
′) = {((xi, yi), wi, bi) : yi < y′}

S↑(y
′) = {((xi, yi), wi, bi) : yi ≥ y′}

Once we have committed ourselves to a partition of S into
S↓(y

′) and S↑(y
′), the y-coordinates of the sample points

become irrelevant. For example, in order to minimize the
weighted one-sided disagreement on S↓(y

′), we have to find
k vertical stripes (corresponding to k intervals on the x-axis)
that include a maximum total weight of positive examples
in S↓(y

′) subject to the constraint of excluding all negative
examples in S↓(y

′). For fixed y′, this problem can be cast
as Minimum One-sided Disagreement for the concept class
“Union of (up to) k Intervals”. But what causes trouble is
that the search for the best y′ is intertwined with the search
for the best collections of intervals on the x-axis.

Let d↓(y
′) denote the minimum weighted one-sided dis-

agreement that can be achieved on S↓(y
′) by a union of (up

to) k vertical stripes. Let d↑(y
′) denote the corresponding

quantity for S↑(y
′).

Lemma 4.4 With the above notations the following holds.
There is a procedure that, on input S, runs for
O(m logm) steps and returns the sequences (d↓(y

′))
y′∈Y

and (d↑(y
′))

y′∈Y
.

Proof: For reasons of symmetry, we may restrict ourselves
to the procedure that returns the sequence (d↓(y

′))
y′∈Y

.

Given S, we build up two lists, say Sx and Sy . Sx contains
the items of S sorted according to increasing values of x
whereas Sy contains the elements of S sorted according to
decreasing values of y. Clearly, both list can be produced in
O(m logm) steps. In addition, the following data structures
are used:



1. A UNION-FIND data structure P that maintains a par-
tition of S↓(y

′), say S1, . . . , Sl. This partition is build
in analogy to the partition of S↑(y

′) that was described
within the proof of Theorem 4.2. Specifically, P is in-
duced by a left-to-right partition of the plane into vertical
stripes, and the sets S1, . . . , Sl are of type either “pos-
itive” (also called type 1), “negative” (also called type
0) or “mixed”. All sample points in a set of mixed type
share the same x-coordinate, whereas the stripes induced
by non-mixed sets extend to left and right as much as pos-
sible. For ease of later reference, the vertical stripes asso-
ciated with S1, . . . , Sl are denoted 〈S1〉, . . . , 〈Sl〉, respec-
tively. We use the well-known list-implementation of P
(see Chapter 21.2 of (Cormen et al. 2009)) so that we may
think of every set Si as a list. A FIND-operation is then
executed in constant time and m UNION-operations take
time O(m logm). The heads of the lists S1, . . . , Sl are
connected by a doubly linked list, and with every i ∈ [l]
and b = 0, 1, we associate the total weight Wb(i) of all
sample points in Si that are labeled b.

2. PRIORITY QUEUES Q1 and Q2 that, in combination,
contain exactly the items (i,W1(i)) such that W1(i) > 0
and W0(i) = 0 (i.e., the items corresponding to sets
of positive type): Q1 contains the items (i,W1(i)) with
the (up to) k largest W1-values (breaking ties arbitrar-
ily), and Q2 contains the remaining-ones. Both priority
queues are organized according to the weights W1(i) with
highest priority and according to i with second priority.
Q1 supports the operations INSERT, DELETE and MIN
whereas Q2 supports the operations INSERT, DELETE
and MAX so that every single operation can be executed
in O(logm) steps.

3. A global variable C whose value equals the total W1-
weight of the items which are stored in Q2.

The above invariance properties of our data structures make
sure that the following holds:

• The minimum weighted one-sided disagreement d↓(y
′)

that can be achieved on S↓(y
′) by a union of (up to) k

vertical stripes is achieved by the union of the stripes 〈Si〉
such that (i,W1(i)) is stored in Q1.

• Thus, d↓(y
′) equals the total W1-weight of the items that

are stored in Q2, which coincides with the current value
of the global variable C.

The variable y′ runs from ymax = 1 + maxY to ymin =
minY , attaining all values of the y-coordinates of items in
Sy in between. Initially, y′ = ymax so that S↓(y

′) coincides
with the full sample S. It is easy to see that, given the list Sx,
the data structures P , Q1 and Q2 can be initialized within
O(m logm) steps. As y′ becomes smaller and smaller, more
and more items of S disappear from S↓(y

′). The central part
of the proof is the analysis of the updates that are caused
by a single item ((x, y), w, b) which leaves S↓(y

′). These
updates (except for the updates of C) are as follows:

1. FIND the set, say Si, that contains ((x, y), w, b).

2. Decrement Wb(i) by w, which can be seen as a virtual
removal of ((x, y), w, b) from Si.

3. If Wb(i) = W1−b(i) = 0 (i.e., Si is empty), then do the
following:

(a) If b = 1, then DELETE the item (i, w) from Q1 and
fromQ2. (Note that w is the W1-value of i within either
Q1 or Q2, and note that the operation DELETE has no
effect on the priority queue which does not contain the
item (i, w).)

(b) Delete the head of Si from the doubly linked list. If the
former neighbors to the left and right of Si, say Si′ and
Si′′ , are of the same non-mixed type b′ ∈ {0, 1}, then
do the following:

Update 1: Apply the operation UNION to i′ and i′′ so
that Si′ ← Si′ ∪Si′′ and change the doubly linked list
accordingly.

Update 2: If b′ = 1, then DELETE the two items
(i′,W1(i

′)), (i′′,W1(i
′′)) from Q1 and from Q2, and

INSERT (i′,W1(i
′) +W1(i

′′)) into Q2.

Update 3: Wb′(i
′)←Wb′(i

′) +Wb′(i
′′).

4. If Wb(i) = 0 and W1−b(i) 6= 0 so that the type of Si

changes from “mixed” to b′ = 1−b, then do the following:

(a) If b′ = 1, then DELETE (i,W1(i) + w) from Q1 and
from Q2. INSERT (i,W1(i)) into Q2.

(b) Retrieve the neighbors of Si in the doubly linked list,
say these are the sets Si′ and Si′′ .

(c) If Si′ (resp. Si′′ ) is of the same type as Si, then perform
the Updates 1, 2 and 3 described above where the role
of i′′ (resp. the role of i′) is taken by i.

5. If b = 1, Wb(i) 6= 0 and W1−b(i) = 0 (so that Si is not
empty and of positive type, then DELETE (i,W1(i)+w)
from Q1 and Q2 and INSERT (i,W1(i)) into Q2.

6. In order to restore the property that Q1 contains the (up
to) k items with the largest W1-values, do the following:

(a) While Q1 contains fewer than k items and Q2 is
non-empty, the item with the maximal key in Q2 is
moved from Q2 to Q1 (at the expense of one operation
MAX, one DELETION fromQ2 and one INSERTION
into Q1).

(b) While the minimal key in Q1 is smaller than the max-
imal key in Q2, the items occupying these keys are
swapped (at the expense of one operation MIN, one
operation MAX, two DELETIONS and two INSER-
TIONS).

In order to keep the specification of the updates simple, we
did not explicitly mention the updates of the global vari-
able C. These updates are given implicitly by the modifica-
tions ofQ2: whenever an item (i,W1(i)) is DELETED from
(resp. INSERTED into)Q2, C must be updated according to
C ← C −W1(i) (resp. C + W1(i)). The key observation,
which concludes the proof of Lemma 4.4, is that every sin-
gle item of Sy causes updates that can be executed with con-
stantly many of the supported operations (UNION, FIND,
INSERT, DELETE, MIN, MAX) plus little additional over-
head. •

We are now ready to state the final main results in this sec-
tion:



Theorem 4.5 For the concept class T2,k, “Minimum One-
sided Disagreement” has an implementation with time
bound O(m logm).

Proof: We can proceed as follows:

1. Run the procedure mentioned in Lemma 4.4 on input S
and obtain the sequences (d↓(y

′))
y′∈Y

and (d↑(y
′))

y′∈Y
.

2. Pick a minimizer y∗ ∈ Y of d↓(y
′) + d↑(y

′).

3. Project the weighted samples S↓(y
∗) and S↑(y

∗) on the x-
axis (in the obvious manner), which yields two weighted

samples on the real line, say S̃↓(y
∗) and S̃↑(y

∗), respec-
tively.

4. Run the algorithm mentioned in Theorem 4.1 on input

S̃↓(y
∗) and obtain k intervals I = (I1, . . . , Ik) whose

union produces one-sided disagreement of weight d↓(y
∗)

on S̃↓(y
∗) (so that the corresponding vertical stripes pro-

duce the one-sided disagreement of the same weight on
S↓(y

∗)).

5. Proceed analogously for S̃↑(y
∗) and obtain k intervals

J = (J1, . . . , Jk) whose union produces one-sided dis-

agreement of weight d′(y∗) on S̃↑(y
∗).

6. Return hypothesis hy∗,I,J .

The whole procedure clearly runs in O(m logm) steps. •

The class T2,k is a close relative of the class
TREE(2, n, p, k) that is considered in the paper by (Auer,
Holte, and Maass 1995), but the following features of
TREE(2, n, p, k) make it slightly different:

• The two attributes y, x that are used at levels 0 and 1 of the
decision tree are chosen from n possible attributes (which
blows up the time bound by factor n2).

• In addition to the continuous attributes there can be
attributes with finite range (so-called “categorical at-
tributes”).

• There is a constant number p ≥ 2 of classification labels.
Furthermore, sample points can have missing attribute
values.

Exploiting the fact that categorical attributes are easier to
handle than continuous-ones, it is easy to see that our algo-
rithm for T2,k can be modified so that the following holds:

Corollary 4.6 For the concept class TREE(2, n, 2, k),
“Minimum One-sided Disagreement” has an implementa-
tion with time bound O(n2m logm).

5 Some Closing Remarks:

The dual one-sided disagreement: What happens if we
want to find a hypothesis that perfectly classifies all posi-
tive examples and makes as few mistakes as possible on the
negative-ones? We briefly note that this problem is trivial for
axis-parallel hyper-rectangles because the best hypothesis is
simply the unique smallest hyper-rectangle that contains all
positive examples. For the other two concept classes, the
problem has the same computational complexity as before.

The key observation for proving this is that a union of (up
to) k intervals is optimal iff it excludes the (up to) k − 1
“negative intervals” with the largest total weights (among
the “negative intervals” located in between “positive inter-
vals”). This makes the dual problem sort of “isomorphic” to
the problem that we discussed before.

Two-sided disagreement harder to handle than one-sided
disagreement: In this paper “Minimum One-sided Dis-
agreement” could be implemented more efficiently than
“Minimum Disagreement”. This no accident: any algorithm
for the latter problem can be used to solve the former simply
by setting the weights of negative examples in S to a suffi-
ciently large value, respectively.
The following result by (Blum and Kalai 1998) is similar in
spirit: any algorithm that PAC-learns a class C in the pres-
ence of two-sided classification noise can be transformed
(without much loss of efficiency) into an algorithm that
PAC-learns class C in the presence of one-sided classifica-
tion noise.

The agnostic setting: It is well-known that a hypothe-
sis class H is PAC-learnable in the (so-called) agnostic
setting (with no a-priori assumptions about the data) iff
the corresponding Minimum Disagreement Problem for H
can be solved in polynomial time (Kearns, Schapire, and
Sellie 1994). The completely analogous remark holds for
“Minimum One-sided Disagreement” and “Agnostic PAC-
learning with One-sided Empirical Error”.

Learning from multiple-instance examples (MIL): We
finally would like to add some more remarks about MIL. In
this model, a so-called “r-bag” with r instances is labeled
1 iff it contains at least one positive example. The learner
obtains a labeled sample of bags and should return a good
classification-rule for bags. In the original model, it is as-
sumed that the r instances in the bag are chosen according
to the product distribution P r. If we instead allow an arbi-
trary distribution on bags (so that the instances in a bag may
exhibit statistical dependencies), the learning problem be-
comes harder. It follows from recent results of (Sabato and
Tishby 2011) that an algorithm for “Minimum One-sided
Disagreement” can be transformed (without much loss of
efficiency) into an algorithm that is successful in the hard
version of the MIL model. The learning problem for the hard
version of the MIL model is known to be NP-hard for axis-
parallel hyper-rectangles of variable dimension (according
to a result by (Auer, Long, and Srinivasan 1998))1 and for
Euclidean halfspaces of variable dimension (according to
results by (Diochnos, Sloan, and Turan 2011). On the posi-
tive side, our algorithms for the classes “Unions of k Inter-
vals”, “Axis-parallel Rectangles”, T2,k and TREE(2, n, 2, k)
can be used as sub-routines to solve the hard version of the
corresponding MIL problem.

1The same paper presents quite efficient algorithms for learning
hyper-rectangles in the classical MIL model.
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