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Abstract

In this paper we provide generalization bounds for
semiparametric regression with the so-called partially
linear models where the regression function is written
as the sum of a linear parametric and a nonlinear, non-
parametric function, the latter taken from a some set
H with finite entropy-integral. The problem is techni-
cally challenging because the parametric part is uncon-
strained and the model is underdetermined. Under nat-
ural regularity conditions, we bound the generalization
error as a function of the Rademacher complexity of H
and that of the linear model. Our main tool is a ratio-
type concentration inequality for increments of empiri-
cal processes, based on which we are able to give an ex-
ponential tail bound on the size of the parametric com-
ponent.

Introduction
In this paper we consider finite-time risk bounds for
empirical risk-minimization algorithms for partially
linear stochastic models of the form

Yi = φ(Xi)
>θ + h(Xi) + εi, 1 ≤ i ≤ n, (1)

where Xi is an input, Yi is an observed response, εi
is noise, φ is the known basis function, θ is an un-
known, finite dimensional parameter vector and h is
a nonparametric function component. The most well-
known example of this type of model in machine learn-
ing is the case of Support Vector Machines (SVMs) with
offset (in this case φ(x) ≡ 1). The general partially lin-
ear stochastic model, which perhaps originates from
the econometrics literature [e.g., Engle et al., 1986,
Robinson, 1988, Stock, 1989], is a classic example of
semiparametric models that combine parametric (in
this case φ(·)>θ) and nonparametric components (here
h) into a single model. The appeal of semiparamet-
ric models has been widely discussed in statistics, ma-
chine learning, control theory or other branches of ap-
plied sciences [e.g., Bickel et al., 1998, Smola et al.,
1998, Härdle et al., 2004, Gao, 2007, Kosorok, 2008, Gre-
blicki and Pawlak, 2008, Horowitz, 2009]. In a nut-
shell, whereas a purely parametric model gives rise to
the best accuracy if correct, it runs the risk of being

misspecified. On the other hand, a purely nonpara-
metric model avoids the risk of model misspecifica-
tion, therefore achieving greater applicability and ro-
bustness, though at the price of the estimates perhaps
converging at a slower rate. Semiparametric models,
by combining parametric and nonparametric compo-
nents into a single model, aim at achieving the best
of both worlds. Another way of looking at them is
that they allow to add prior “structural” knowledge to
a nonparametric model, thus potentially significantly
boosting the convergence rate when the prior is cor-
rect. For a convincing demonstration of the potential
advantages of semiparametric models, see, e.g., the pa-
per by Smola et al. [1998].

Despite all the interest in semiparametric modeling,
to our surprise we were unable to find any work that
would have been concerned with the finite-time predic-
tive performance (i.e., risk) of semiparametric methods.
Rather, existing theoretical works in semiparametrics
are concerned with discovering conditions and algo-
rithms for constructing statistically efficient estimators
of the unknown parameters of the parametric part.
This problem has been more or less settled in the book
by Bickel et al. [1998], where sufficient and necessary
conditions are described along with recipes for con-
structing statistically efficient procedures. Although
statistical efficiency (which roughly means achieving
the Cramer-Rao lower bound as the sample size in-
creases indefinitely) is of major interest, statistical ef-
ficiency does not give rise to finite-time bounds on the
excess risk, the primary quantity of interest in machine
learning. In this paper, we make the first initial steps
to provide these missing bounds.

The closest to our work are the papers of Chen
et al. [2004] and Steinwart [2005], who both consid-
ered the risk of SVMs with offset (a special case of
our model). Here, as noted by both authors, the main
difficulty is bounding the offset. While Chen et al.
[2004] bounded the offset based on a property of the
optimal solution for the hinge loss and derived finite-
sample risk bounds, Steinwart [2005] considered con-
sistency for a larger class of “convex regular losses”.
Specific properties of the loss functions were used to
show high probability bounds on the offset. For our



more general model, similarly to these works the bulk
of the work will be to prove that with high probability
the parametric model will stay bounded (we assume
supx ‖φ(x)‖2 < +∞). The difficulty is that the model is
underdetermined and in the training procedures only
the nonparametric component is penalized.1

Finally, let us make some comments on the compu-
tational complexity of training partially linear mod-
els. When the nonparametric component belongs to
an RKHS, an appropriate version of the representer
theorem can be used to derive a finite-dimensional
optimization problem Smola et al. [1998], leading to
quadratic optimization problem subject to linear con-
strains. Recent work by Kienzle and Schölkopf [2005]
and Lee and Wright [2009] concern specialized solvers
to find an approximate optimizer of the arising prob-
lem. In particular, in their recent work Lee and Wright
[2009] proposed a decomposition algorithm that is ca-
pable to deal with large-scale semiparametric SVMs.

The main tool in the paper is a ratio-type concentra-
tion inequality due to van de Geer [2000]. With this,
the boundedness of the parameter vector is derived
from the properties of the loss function: The main idea
is to use the level sets of the empirical loss to derive
the required bounds. Although our main focus is the
case of the quadratic loss, we study the problem more
generally. In particular, we require the loss function to
be smooth, Lipschitz, “non-flat” and convex, of which
the quadratic loss is one example.

Problem Setting and Notation
Throughout the paper, the input spaceX will be a met-
ric space, and Y , the label space, will be a subset of the
reals R. In particular, we will assume that Y ⊂ [−Λ,Λ].
Given the independent, identically distributed sample
Z1:n = (Z1, ..., Zn), Zi = (Xi, Yi), Xi ∈ X , Yi ∈ Y , the
partially penalized empirical risk minimization prob-
lem with the partially linear stochastic model (1) is to
find a minimizer of

min
θ∈Rd,h∈H

1

n

n∑
i=1

`
(
Yi, φ(Xi)

>θ + h(Xi)
)

︸ ︷︷ ︸
Ln(φ(·)>θ+h(·))

,

where ` : Y ×R→ [0,∞) is a loss function, φ : X → Rd
is a basis function and H is a set of real-valued func-
tions over X , holding the “nonparametric” component

1 This suggests that to avoid the difficulty, one could mod-
ify the training procedure to penalize the parametric compo-
nent, as well. However, it appears that the semiparametric
literature largely rejects this approach. The main argument
is that a penalty would complicate the tuning of the method
(because the strength of the penalty needs to be tuned, too),
and that the parametric part is added based on a strong prior
belief that the features added will have a significant role and
thus rather than penalizing them, the goal is to encourage
their inclusion in the model. Furthermore, the number of
features in the parametric part are typically small, thus pe-
nalizing them is largely unnecessary.

h. We assume that 0 ∈ H. Our main interest is when
the loss function is quadratic, i.e., `(y, y′) = 1

2 (y − y′)2,
but for the sake of exploring how much we exploit the
structure of this loss, we will present the results in an
abstract form.

Introducing G =
{
φ(·)>θ : θ ∈ Rd

}
, the above prob-

lem can be written in the form
min

g∈G,h∈H
Ln(g + h). (2)

(Ln(f) = 1
n

∑n
i=1 `(Yi, f(Xi))). Typically, H arises as

the set {h : X → R : J(h) ≤ K} with some K > 0
and some penalty functional J that penalizes of the
“roughness” of the functions, hence we call this prob-
lem the constrained empirical risk-minimization prob-
lem over G +H .

= {g + h : g ∈ G, h ∈ H}.2
The goal of learning is to find a predictor with a

small expected loss. Given a measurable function f :
X → R the expected loss, or risk of f is defined to
be L(f) = E [`(Y, f(X))], where Z = (X,Y ) is an in-
dependent copy of Zi = (Xi, Yi) (i = 1, . . . , n). Let
(gn, hn) be a minimizer3 of (2) and let fn = gn + hn.

When analyzing a learning procedure, we compare
the risk L(fn) of the predictor fn it returns to the best
risk possible, i.e., to L∗ = ming∈G,h∈H L(g + h). A
bound on the excess risk L(fn)− L∗ is called a general-
ization (error) bound. In this paper, we seek bounds in
terms of the Rademacher complexity of H and an ap-
propriate subset of G. Our main result, Theorem 1, pro-
vides such a bound, essentially generalizing the ana-
logue result of Bartlett and Mendelson [2002]. In par-
ticular, our result shows that, in line with existing em-
pirical evidence, the price of including the parametric
component in terms of the increased estimation error is
modest, which, in favourable situations, can be far out-
weighed by the decrease of L∗ that can be attributed to
including the parametric part.

As usual, we start with the decomposition of the ex-
cess risk
L(fn)− L(f∗) = (L(fn)− Ln(fn))+ (3)

(Ln(fn)− Ln(f∗))︸ ︷︷ ︸
≤0

+(Ln(f∗)− L(f∗)) ,

where f∗ = arg minf∈G+H L(f). Here, the third term
can be upper bounded as long as f∗ is “reasonable”
(e.g., bounded). On the other hand, the first term is
more problematic, at least for unbounded loss func-
tions. Indeed, for such losses if fn can take on large
values then L(fn) could be rather large. If the prob-
lem was purely nonparametric, f ∈ H and an assump-
tion that essentially requires the uniform law of large

2 The penalized empirical risk-minimization problem,
ming∈G,h Ln(h+g)+J(h) is closely related to (2) as suggested
by the identity ming∈G,h Ln(g+h)+λJ(h) = minK≥0 λK +
ming∈G,h:J(h)≤K Ln(g+h) . The reader interested in this rela-
tionship is advised to check out the paper of Blanchard et al.
[2008], who explores this relationship in a specific context.

3For simplicity, we assume that this minimizer and in fact
all the others that we will need later exist.



numbers holds over H would imply that this will not
happen. However, in our case fn = gn + hn and while
hn ∈ H is well controlled, no uniform law holds over
G, the set that gn belongs to. Hence, the bulk of the
work will consist of showing that gn is well-controlled.

Before introducing our assumptions, let us in-
troduce some more notation. We will denote the
Minkowski-sum of G and H by F : F = G + H. The
L2 norm of a function is defined as ‖f‖22

.
= E

[
f2(X)

]
,

while given the random sample X1:n = (X1, . . . , Xn),
the n-norm of a function is defined as the `2-norm
of the restriction of the function to X1:n: ‖f‖2n =
1
n

∑
i f(Xi)

2. The vector (f(X1), . . . , f(Xn))> is de-
noted by f(X1:n). The matrix (φ(X1), . . . , φ(Xn))> ∈
Rn×d is denoted by Φ (or Φ(X1:n) if we need to indi-
cate its dependence on X1:n). We let Ĝ = 1

nΦ>Φ ∈
Rd×d be the empirical Grammian matrix and G =
E[φ(X)φ(X)>] be the population Grammian matrix
underlying φ. Denote the minimal positive eigenvalue
of G by λmin, while let λ̂min be the same for Ĝ. The
rank of G is denoted by ρ = rank(G). Lastly, let
Lh,n(g) = Ln(h + g), Ln(f) = E [Ln(f) |X1:n] and
Lh,n(g) = E [Ln(h+ g) |X1:n].

Assumptions and Result
In this section we state our assumptions, which will
be followed by stating our main result. We will also
sketch the steps of the proof, leaving the details for the
next section.

Assumptions
In what follows we will assume that the functions in
H are bounded by r > 0. If K is an RKHS space with
a continuous reproducing kernel κ and X is compact
(a common assumption in the literature, e.g., Cucker
and Zhou 2007, Steinwart and Christmann 2008), this
assumption will be satisfied if J(h) = ‖h‖K and H =
{h ∈ K : J(h) ≤ r}, where without loss of generality
(WLOG) we assume that the maximum of κ is below
one.

We will also assume that R = supx∈X ‖φ(x)‖2 is fi-
nite. Again, if φ is continuous and X is compact, this
assumption will also be automatically satisfied. In fact,
by rescaling the basis functions if needed, WLOG we
will assume thatR = 1. We will also assume that 0 ∈ H
(i.e., the identically zero function is an element ofH).

To recap, let (gn, hn) = arg ming∈G,h∈H Ln(f) and
fn = gn + hn. We assume that the minimizers exist,
but this is done only for the sake of convenience. Fur-
ther, at this stage the uniqueness of the minimizers is
unimportant.

Let us start with our assumptions on the loss func-
tion, `.

Assumption 1 (Loss function). (i) Convexity: The
loss function ` is convex with respect to its second

argument, i.e., `(y, ·) is a convex function for all
y ∈ Y .

(ii) Lipschitzness: The loss function ` is Lipschitz with
respect to both of its arguments over Y × [−c, c] for
any c > 0. In particular, we will denote the Lips-
chitz coefficient of ` over Y × [−c, c] by K`(c): for
any y, y1, y2 ∈ Y and y′, y′1, y′2 ∈ [−c, c], |`(y, y′1) −
`(y, y′2)| ≤ K`(c)|y′1−y′2|, and |`(y1, y

′)−`(y2, y
′)| ≤

K`(c)|y1 − y2|.
(iii) For any X1:n ⊂ X , and any c ≥ 0, Rc =

supf∈F :E[Ln(f)|X1:n]≤c ‖f‖n is finite and independent
of n.

Remark 1. The convexity assumption is standard,
while the Lipschitz assumption is unrestrictive due to
the boundedness of the ranges involved.
Remark 2. Unlike the first two assumptions, As-
sumption 1(iii), which requires that the sublevel sets
of E [Ln(·) |X1:n] are bounded in ‖·‖n, is nonstan-
dard. This assumption will be crucial for showing
the boundedness of the parametric component of the
model. We argue that in some sense this assumption,
given the method considered, is necessary. The idea
is that since fn minimizes the empirical loss it should
also have a small value of E [Ln(·) |X1:n] (in fact, this
is not that simple to show given that it is not known
whether fn is bounded). As such, it will be in some
sublevel set of E [Ln(·) |X1:n]. Otherwise, nothing pre-
vents the algorithm from choosing a minimizer (even
when minimizing E [Ln(·) |X1:n] instead of Ln(·)) with
an unbounded ‖·‖n norm.
Remark 3. One way of weakening this assumption
would be to assume that for any distribution P(X,Y ) of
(X,Y ) there exist a minimizer of E [Ln(·) |X1:n] over F
that has a bounded norm and then modify the proce-
dure to pick the one with the smallest ‖·‖n norm.
Example 1 (Quadratic Loss). In the case of
quadratic loss, i.e., when `(y, y′) = 1

2 (y − y′)2,
R2
c ≤ 2c + 2Λ2: Indeed, this follows from ‖f‖2n ≤

1
n

∑
i 2(E

[
(f(Xi)− Yi)2 |X1:n

]
+ E

[
Y 2
i |X1:n

]
) ≤

2E [Ln(f) |X1:n] + 2E
[
Y 2
i |X1:n

]
and our assumption

that |Y | ≤ Λ.
Example 2 (Exponential Loss). In the case of exponen-
tial loss, i.e., when `(y, y′) = exp(−yy′) and if Y =
{+1,−1} the situation is slightly more complex. Rc
will be finite as long as the posterior probability of
seeing either of the labels is uniformly bounded away
from one, as assumed e.g., by Blanchard et al. [2008].
Specifically, if η(x)

.
= P(Y = 1|X = x) ∈ [ε, 1 − ε]

for some ε > 0 then a simple calculation shows that
R2
c ≤ c/ε.
Given h ∈ H, let gh,n = arg ming∈G Ln(h + g) =

arg ming∈G Lh,n(g) and gh,n = arg ming∈G Lh,n(g) (Lh,n
and Lh,n are defined at the end of the previous sec-
tion). If there are multiple minimizers, choose one.

It will be convenient to introduce the alternate
notation `((x, y), f) for `(y, f(x)) (i.e., `((x, y), f)

.
=



`(y, f(x)) for all x ∈ X , y ∈ Y , f : X → R. The next
assumption states that the loss function is locally “not
flat”:

Assumption 2 (Non-flat Loss). Assume that there exists
ε > 0 such that for any h ∈ H and vector a ∈ [−ε, ε]n ∩
Im(Φ),

ε

n
‖a‖22 ≤ E

[
1

n

∑
i

`(Zi, h+ gh,n + ai)
∣∣∣X1:n

]

− E

[
1

n

∑
i

`(Zi, h+ gh,n)
∣∣∣X1:n

]
holds almost surely (a.s.), where recall that Zi = (Xi, Yi).
Remark 4. It is easy to see that if for all y ∈ Y , y′ ∈
R, a ∈ [−ε, ε], `(y, y′ + a) − `(y, y′) ≥ εa2 holds then
Assumption 2 will also hold. This condition, although
stronger than Assumption 2, may be easier to verify in
some cases, e.g. Lp loss for p ≥ 3.
Example 3 (Quadratic loss). In the case of the
quadratic loss, note that g(X1:n) = Φ(X1:n)θ. Let
θh,n be the minimizer of Lh,n(·). Then θh,n =(
Φ>Φ

)+
Φ>(E [Y1:n|X1:n] − h(X1:n)). A simple calcu-

lation (where we exploit that a ∈ Im(Φ)) shows that
the assumption holds with equality and with ε = 1.

We will need an assumption that the entropy of H
satisfies an integrability condition. For this, recall the
definition of entropy numbers:

Definition 1. For ε > 0, the ε-covering number
N(ε,H, d) of a set H equipped with a pseudo-metric d is
the number of balls with radius ε measured with respect to
d necessary to coverH . The ε-entropy ofH isH(ε,H, d) =
logN(ε,H, d).

Note that if d′ ≤ d then the ε-balls w.r.t. d′ are bigger
than the ε-balls w.r.t. d. Hence, any ε-cover w.r.t. d
is also an ε-cover w.r.t. d′. Therefore, N(ε,H, d′) ≤
N(ε,H, d) and also H(ε,H, d′) ≤ H(ε,H, d).

Let ‖·‖∞,n be the infinity empirical norm: For f :

X → R, ‖f‖∞,n = max1≤k≤n |f(Xk)|. Note that triv-
ially ‖f‖n ≤ ‖f‖∞,n ≤ ‖f‖∞. For the next two
assumptions we introduce Gλmin

as the event when
λ̂min ≥ λmin/2. We use ‖·‖∞,n in our integrability as-
sumption:

Assumption 3 (Integrable Entropy Numbers of H).
There exists a (non-random) constant CH such that,∫ 1

0
H1/2(v,H, ‖·‖∞,n) dv < CH holds a.s. on Gλmin

.

Remark 5. Assumption 3 is well-known in the literature
of empirical processes to guarantee the uniform laws
of large numbers [Dudley, 1984, Giné and Zinn, 1984,
Tewari and Bartlett, 2013]. The assumption essentially
requires that the entropy numbers of H should not
grow very fast as the scale approaches to zero. For ex-
ample, this assumption holds if for any 0 < u ≤ 1,
H(u,H, ‖·‖∞,n) ≤ cu−(2−ε) for some c > 0, ε > 0.

Based on our previous discussion, H(u,H, ‖·‖∞,n) ≤
H(u,H, ‖·‖∞); the latter entropy numbers are well-
studied for a wide range of function spaces (and en-
joy the condition required here). For examples see,
e.g., [Dudley, 1984, Giné and Zinn, 1984, Tewari and
Bartlett, 2013].
Assumption 4 (Lipschitzness of the Parametric Solu-
tion Path). There exists a constant Kh such that on Gλmin

for [PX ] almost all x ∈ X , h 7→ gh,n(x) is Kh-Lipschitz
w.r.t. ‖·‖∞,n overH.

Remark 6. When gh,n is uniquely defined, Assump-
tion 4 will be satisfied whenever ` is sufficiently
smooth w.r.t. its first argument, as follows, e.g., from
the Implicit Function Theorem.
Example 4 (Quadratic loss). In the case of the quadratic
loss, by Example 3,

gh,n(x) = 〈φ(x),
(
Φ>Φ

)+
Φ>(E [Y1:n|X1:n]− h(X1:n))〉

=
1

n

∑
i

〈φ(x), Ĝ+φ(Xi) (E [Yi|X1:n]− h(Xi))〉

Thus, for h, h′ ∈ H, on Gλmin
, a simple calculation

shows that

|gh,n(x)− gh′,n(x)| ≤ 2

λmin
‖h′ − h‖∞,n

where we used that [PX ] a.e. ‖φ(x)‖2 ≤ 1.

Results
Now, we are at the stage to state our main result. As
suggested beforehand, we will state this result in terms
of the Rademacher complexity of the function spaces
of interest:
Definition 2. Given a random sample X1:n =
(X1, ..., Xn) and a set F of real-valued functions with a
common bounded range, we will denote the Rademacher
complexity of F by

Rn(F) =
1

n
E

[
sup
f∈F
|
n∑
i=1

σif(Xi)

]
,

where σ1, . . . , σn are Rademacher random variables which
take value from {−1,+1} with equal probability and are in-
dependent of each other and X1:n.

With this, we are ready to state our main result:
Theorem 1. Let Assumptions 1 to 4 hold and let f∗ = g∗+
h∗ be a minimizer of L over G +H (i.e., g∗ ∈ G, h∗ ∈ H).
There exist positive constants C0, L0, and U ≥ ‖g∗‖∞ such
that for any 0 < δ < 1 and

n ≥ max

(
16L4

0,
2

λmin log( e2 )
log
(

4ρ
δ

)
,

4 log( 4
δ )

C0

)
,

with probability at least 1− δ,

L(fn)− L(f∗) ≤2K̂` {Rn(H) +Rn(G(U))}+

K̂`(Λ + r + U)

√
2 ln(4/δ)

n
,

(4)



where fn = hn + gn is the minimizer of Ln(·) over H + G,
Rn(F) denotes the Rademacher complexity of F and K̂` =
K`(r + U).
Remark 7. The actual value of U can be read out from
the proof of Theorem 3 below (the value is inversely
proportional to λmin and depends on (Rc)c from the
level-set assumption, the range of losses and r). The
dependence on ρ and λmin also show in the lower
bound constraint of n. Further, the entropy integra-
bility constraint forH controls the size of L0 and C0.
Remark 8. Kakade et al. [2009] gives bounds on the
Rademacher complexity of various class of linear func-
tions, which can be useful to bound Rn(G(U)), while
Bartlett and Mendelson [2002] provides several exam-
ples for bounding the Rademacher complexity for var-
ious classes of functions. With the normalization used
here, the Rademacher complexity for linear function
class will typically be of order O(1/

√
n). For further

examples and connection to other measures of com-
plexity, see Tewari and Bartlett [2013].

As explained earlier, the main difficulty in proving
this result is that gn is not penalized and hence show-
ing that it is bounded requires substantial effort. As
such, and also because we believe that the behavior
of gn may be of indepedent interest, we state this as a
separate theorem. Once we know that gn is bounded
(with high probability), the proof of Theorem 1 is stan-
dard (this argument is presented in the next section).
Before stating the result on the boundedness of gn,
we state an easy corollary that bounds the expected
excess risk of the truncated predictor f cn defined by
f cn(x) = max(min(f(x),Λ),−Λ). Note that the trun-
cation cannot increase the loss of fn.
Corollary 2. Let M(n) =

max

(
16L4

0,
2

λmin log( e2 )
log (4nρ) , 4 log(4n)

C0

)
and consider

any n ≥M(n). Then,

E [L(f cn)− L(f∗)] ≤ 2K̂` {Rn(H) +Rn(G(U))}+

K̂`(Λ + r + U)

{√
2 ln(4n)

n
+

2

n

}
.

Proof. It is not hard to see that the range of the loss
`(y, f(x)) when |f(x)| ≤ U + r is W = 2K̂`(Λ + r+U).
Denote by E the event when (4) holds and let Bn(n, δ)
be the bound on the right-hand side of (4). Take
δ = 1/n. Then, for n ≥ M(n), E [L(f cn)− L(f∗)] =
E [IE(L(f cn)− L(f∗))] +WP (Ec) ≤ Bn(n, 1/n) +W/n,
and the result follows by plugging in the definitions of
Bn and W .

The result guaranteeing that gn is bounded with
high probability is as follows:
Theorem 3. Let Assumptions 1 to 4 hold. Then, there exist
constants C0, L0, U such that for any 0 < δ < 1, and n
such that n ≥ 2

λmin log( e2 )
log
(

2ρ
δ

)
, n ≥ 16L4

0 and n ≥

4 log( 2
δ )

C0
, it holds that

P
(

sup
h∈H
‖gh,n‖∞ ≥ U

)
≤ δ . (5)

The rest of the paper is devoted to the proof of these
two results. In the next section we show how Theo-
rem 3 gives rise to Theorem 1. This is followed by the
proof of Theorem 3.

The Proof of Theorem 1
In this section we assume that Theorem 3 holds true
and based on this we prove Theorem 1. We start from
the excess risk bound (3). Thus, our goal is to bound
L(fn)− Ln(fn) and L(f∗)− Ln(f∗).

Let U be as in Theorem 3 and let E denote the
event when suph∈H ‖gh,n‖∞ ≤ U . Define G(U) =
{g ∈ G : ‖g‖∞ ≤ U} and C = H+ G(U). On E, fn ∈ C,
we claim that fn ∈ C. We have fn = hn + gn and since
hn ∈ H by definition, it remains to show that gn ∈
G(U). By appropriately selecting gh,n, we can arrange
for gn = ghn,n. Hence, ‖gn‖∞ ≤ suph∈H ‖gh,n‖∞ ≤ U
and so on E,

L(fn)− Ln(fn) ≤ sup
f∈C
|L(f)− Ln(f)| =: ∆n(C) .

Furthermore, by increasing U if necessary, we can al-
ways arrange for that f∗ = h∗ + g∗ ∈ C (for this we
may need to increase U so that ‖g∗‖∞ ≤ U ). Hence,
by (3),

L(fn)− L(f∗) ≤ 2∆n(C) a.s. on E.

and thus for any z > 0,

P (L(fn)− L(f∗) > z) = P (L(fn)− L(f∗) > z,Ec) +

P (L(fn)− L(f∗) > z,E)

≤ P (Ec) + P (2∆n(C) > z,E)

≤ P (Ec) + P (2∆n(C) > z) .
(6)

Thus, it remains to bound ∆n(C).
This is done by means of using two standard re-

sults. The first result bounds ∆n(C) in terms of the
Rademacher complexity of C.
Theorem 4 (Tewari and Bartlett 2013, Section 3.2). Fix
any n and let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample of
size n over X ×Y , Y ⊂ R. Let ` : Y × [−a, a]→ [β, β+ b]
be a loss that is c-Lipschitz in its second argument and let
C ⊂ [−a, a]X . Then, for any positive integer n and 0 < δ <
1, with probability 1− δ,

sup
f∈C
|L(f)− Ln(f)| ≤ 2cRn(C) + b

√
ln(2/δ)

2n
,

where L(f) = E [`(Y, f(X))] and Ln(f) =
1
n

∑n
i=1 `(Yi, f(Xi)).4

4 Bartlett and Mendelson [2002] gives essentially this re-
sult, with slightly worse constants.



Applying this result to our setting gives

∆n(C) ≤ 2K̂`Rn(C) + K̂`(Λ + r + U)

√
2 ln(2/δ)

n
,

where K̂` = K`(r + U) with K`(·) being the Lipchitz
coefficient in Assumption 1 (ii). It remains to bound
Rn(C). By Part 7 of Theorem 12 of Bartlett and Mendel-
son [2002], Rn(C) ≤ Rn(H) +Rn(G(U)).

Combining this with (6) and using

zδ = 2K̂` {Rn(H) +Rn(G(U))}+K̂`(Λ+r+U)

√
2 ln(4/δ)

n

gives P (L(fn)− L(f∗) > zδ) ≤ P (Ec) + δ
2 . Finally,

by Theorem 3, P (Ec) ≤ δ/2 provided that n ≥
2

λmin log( e2 )
log
(

4ρ
δ

)
, n ≥ 16L4

0 and n ≥ 4 log( 4
δ )

C0
, thus

finishing the proof.

The Proof of Theorem 3
In this section we present the proof of Theorem 3,
which calls for a bound of suph∈H ‖gh,n‖∞ that holds
with high probability. Fix h ∈ H. Then, gh,n(x) =
〈θ, φ(x)〉 ≤ ‖θh,n‖2 ‖φ(x)‖2, where θh,n is the param-
eter vector of gh,n. Since ‖φ(x)‖2 ≤ 1, it suffices to
bound ‖θh,n‖2. OnGλmin

, which is defined as the event
{λ̂min ≥ λmin/2}, we have

g2
h,n(x) ≤ ‖θh,n‖22 ≤

θ>h,nĜ θh,n

λ̂min

=
2 ‖gh,n‖n
λmin

. (7)

Hence, the problem is reduced to proving a uniform
(h-independent) upper bound on the empirical norm
of gh,n and showing that Gλmin

happens with “large
probability”.

For the latter, we use a result of Gittens and Tropp
[2011]. This is summarized in the lemma which also
includes some observations that will prove to be useful
later:
Lemma 5. The following hold:

(i) With probability one, for any θ ∈ Rd, θ>Ĝθ ≤ θ>Gθ
λmin

.
(ii) Assuming that n ∈ N and δ ∈ (0, 1) are such that

n ≥ 2

λmin log
(
e
2

) log
(ρ
δ

)
, (8)

where ρ and λmin are respectively the rank and the
smallest positive eigenvalue of G, with probability at
least 1− δ, it holds that λ̂min ≥ λmin

2 > 0.
(iii) For any n, δ satisfying (8), with probability 1 − δ it

holds that for any θ ∈ Rd and [PX ] almost every x ∈
X , |〈θ, φ(x)〉| ≤

√
2θ>Ĝθ
λmin

.

The (easy) proof of the lemma is omitted.
To get an upper bound on the empirical norm of gh,n,

we will use
‖gh,n‖n ≤

∥∥gh,n − gh,n∥∥n +
∥∥gh,n∥∥n (9)

and develop uniform bound on the two terms on the
right-hand side.

Lemma 6. We have suph∈H
∥∥gh,n∥∥n ≤ R̄, where R̄ =

RC0 + r and C0 = `(0, 0) +K`(0) Λ +K`(r) r.
The constant RC0

that appears in the statement is
defined in our “level-set assumption” (cf. Assump-
tion 1(iii)).

Proof. Fix some h ∈ H. We have
∥∥gh,n∥∥n =∥∥h+ gh,n + (−h)

∥∥
n
≤

∥∥h+ gh,n
∥∥
n

+ ‖−h‖n ≤∥∥h+ gh,n
∥∥
n

+ r thanks to ‖h‖∞ ≤ r. Hence, it remains
to bound

∥∥h+ gh,n
∥∥
n

.
By Assumption 1(iii), for this it suffices if we show

a bound on Ln(h + gh,n) since by this assumption if
Ln(h + gh,n) ≤ c then

∥∥h+ gh,n
∥∥
n
≤ Rc. By the op-

timizing property of gh,n, we have Ln(h + gh,n) =

Ln,h(gh,n) ≤ Ln,h(0) = Ln(h). Now, by definition

Ln(h) = E

[
1

n

∑
i

`(Yi, h(Xi))
∣∣∣X1:n

]
,

hence, it suffices to bound `(Yi, h(Xi)). For this, we
have `(Yi, h(Xi)) ≤ `(0, 0) + K`(0) Λ + K`(r)r, where
we used that ` is K`(c)-Lipschitz on [−c, c] × Y , Y =
[−Λ,Λ], Yi ∈ Y , and |h(Xi)| ≤ r. Putting together the
inequalities, we obtain that Ln(h + gh,n) ≤ `(0, 0) +

K`(0) Λ +K`(r)r
.
= c and thus

∥∥h+ gh,n
∥∥
n
≤ Rc.

Let us now consider bounding
∥∥gh,n − gh,n∥∥n. In

fact, we will only bound this on the event Gλmin when
λ̂min ≥ λmin/2. Since we use this event to upper
bound 1/λ̂min by 2/λmin, there is no loss in bound-
ing

∥∥gh,n − gh,n∥∥n on this event only. Note that by
Lemma 5 (ii),Gλmin

holds with probability at least 1−δ.

Lemma 7. There exist problem-dependent positive con-
stants C0 and L0 ≥ 1 such that for any n ≥ 16L4

0, it holds
that

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1 , Gλmin

)
≤ exp

(
−C0n

4

)
.

(10)
The proof of this lemma follows the proofs in the

paper of van de Geer [1990], who studied the devia-
tions

∥∥gh,n − gh,n∥∥n for h = 0 (see also van de Geer
2000). As it turns out the techniques of the mentioned
paper are just strong enough to bound the uniform de-
viation suph∈H

∥∥gh,n − gh,n∥∥n. As the proof is lengthy
and technical, it is developed in a separate section.

Now, combining (7), (9) and Lemma 6 we get that on
Gλmin ,

Gn,∞
.
= sup
h∈H
‖gh,n‖∞ ≤

2

λmin
sup
h∈H
‖gh,n‖n

≤ 2

λmin

(
R+ sup

h∈H

∥∥gh,n − gh,n∥∥n) .

(11)



Since for any A > 0,

P (Gn,∞ > A) ≤ P
(
Gcλmin

)
+ P (Gn,∞ > A,Gλmin)

and by (11), P (Gn,∞ > A,Gλmin
) ≤

P
(

2
λmin

(
R+ suph∈H

∥∥gh,n − gh,n∥∥n) > A,Gλmin

)
,

choosing A = 2
λmin

(
R+ 1

)
, we see that

P
(
Gn,∞ > 2

λmin

(
R+ 1

))
≤ P

(
Gcλmin

)
+

P
(

suph∈H
∥∥gh,n − gh,n∥∥n ≥ 1, Gλmin

)
. By Eq. (8)

and Lemma 7, provided that n ≥ 2

λmin log( e2 )
log
(

2ρ
δ

)
,

n ≥ 16L4
0 and n ≥ 4 log( 2

δ )
C0

we get that

P
(
Gn,∞ > 2

λmin

(
R+ 1

))
≤ δ, which is the de-

sired statement. In particular, we can choose
U = 2

λmin

(
R+ 1

)
.

The Proof of Lemma 7
The proof follows the ideas from the paper of van de
Geer [1990]. Lemma 7 calls for a uniform (in h ∈ H)
bound for

∥∥gh,n − gh,n∥∥n. Fix h ∈ H. We consider a
self-normalized “version” of the differences gh,n−gh,n,
which are easier to deal with. This is done as follows:
For g ∈ G, define

ωg,h =
g − gh,n

1 +K
∥∥g − gh,n∥∥n and Ωh,n = {ωg,h : g ∈ G} ,

where K > 0 is to be chosen later. Then, for any ω ∈
Ωh,n, ‖ω‖n <

1
K and

∥∥g − gh,n∥∥n =
‖ωg,h‖n

1−K ‖ωg,h‖n
. (12)

Thus, we see that is enough to control the empirical
norm of

ω̂h,n = ωgh,n,h =
gh,n − gh,n

1 +K
∥∥gh,n − gh,n∥∥n .

The first step is to bound this norm in terms of the in-
crements of the empirical process

∆h,n(g)
.
= Lh,n(g)− Lh,n(g) .

Lemma 8 (“Basic Inequality”). Let Assumption 2 hold.
There exists a constant η, such that on the event Gλmin

, for
any h ∈ H,

η ‖ω̂h,n‖2n ≤∆h,n(gh,n)−∆h,n(gh,n + ω̂h,n) .

The proof, which is omitted, follows standard ar-
guments. Based on this, we can reduce the study
of the supremum of the empirical norm of ω̂h,n to
that of the supremum of the increments Vh,n(ω) =

√
n
(
∆h,n(gh,n) −∆h,n(gh,n + ω)

)
normalized by ω. In

particular, it follows from Lemma 8 that for L, σ > 0,

P
(

sup
h∈H
‖ω̂h,n‖n ≥ Lσ ,Gλmin

)
= P

(
∃h ∈ H : ‖ω̂h,n‖n ≥ Lσ,

Vh,n(ω̂h,n)

‖ω̂h,n‖2n
≥ η
√
n ,Gλmin

)
≤ P

(
sup

(g,h)∈G×H:‖ωg,h‖n≥Lσ

Vh,n(ωg,h)

‖ωg,h‖2n
≥ η
√
n ,Gλmin

)
.

(13)

The supremum of normalized increments similar to
the one appearing above was studied by van de Geer
[1990]. In fact, we will adapt Lemma 3.4 of this paper
to our purposes. The lemma requires minimal modi-
fications: In our case, the empirical process is indexed
with elements of {ωg,h : g ∈ G, h ∈ H}, the product set
G ×H, whereas van de Geer [1990] considers a similar
result for h = 0. As a result, whereas van de Geer
[1990] reduces the study of this probability to bound-
ing the “size” of balls in the the index space, we will
reduce it to bounding the size of “tubes”.

To state the generalization of Lemma 3.4 of van de
Geer [1990], we introduce the following abstract set-
ting: Let (V, dV,k), (Λ, dΛ,k) be pseudo-metric spaces
(k = 1, . . . , n), d2

k be the pseudo-metric on V × Λ,
which for γ = (ν, λ), γ̃ = (ν̃, λ̃) in V × Λ is defined by
d2
k(γ, γ̃) = d2

V,k(ν, ν̃) + d2
Λ,k(λ, λ̃). Further, let d2 be the

pseudo-metric on V × Λ defined by d2 = 1
n

∑n
k=1 d

2
k.

Consider the real-valued processes U1, U2, . . . , Un on
V × Λ and the process Zn = 1√

n

∑n
k=1 Uk . For σ > 0,

denote by H(ε, σ)
.
= H(ε, T (σ), d), the metric entropy

of the σ-“tube”

T (σ) = ∪ν∈V {ν}×{λ ∈ Λν : dΛ(λν , λ) ≤ σ} ⊂ V ×Λ ,

where for ν ∈ V , Λν ⊂ Λ and dΛ (defining the “tube”)
is the a pseudo-metric on Λ defined by d2

Λ(λ, λ̃) =
1
n

∑
k d

2
Λ,k(λ, λ̃). For L > 0, define

αn(L, σ) =

∫ 1

0

√
H(uLσ,Lσ)du
√
nLσ

.

With this, we are ready to state our generalization of
Lemma 3.4 of van de Geer [1990]:
Lemma 9. Assume that the following conditions hold:

(i) U1, U2, · · · , Un are independent, centered; for all ν ∈
V , Zn(ν, λν) = 0 for some λν ∈ Λ, and

|Uk(γ)− Uk(γ̃)| ≤Mkdk(γ, γ̃) , γ, γ̃ ∈ V × Λ,

where M1,M2, · · · ,Mn are uniformly subgaussian,
i.e., for some positive β and Γ,

E[exp(|βMk|2)] ≤ Γ <∞, k = 1, 2, . . . , n.

(ii) Assume that σ > 0 is such that
√
nσ ≥ 1 and suppose

lim
L→∞

αn(L, σ) = 0 .



Then, there exist constants L0 ≥ 1 and C0, depending only
on (β,Γ) and the map L 7→ αn(L, σ), such that for all L ≥
L0,

P
(

sup
ν∈V

sup
λ∈Λν :

dΛ(λν ,λ)>Lσ

|Zn(ν, λ)|
d2

Λ(λν , λ)
≥
√
n
)
≤ exp(−C0L

2σ2n).

Remark 9. The proof is obtained by modifying the
proof of van de Geer [1990]’s Lemma 3.4 in a straight-
forward manner and hence it is omitted. A careful
investigation of the original proof will find that the
result also holds if we find L0 and C0 depending on
an upper bound α̃n(L, σ) for αn(L, σ) provided that
limL→∞ α̃n(L, σ) = 0 still holds. Moreover, if the up-
per bound is selected such that it does not depend on
n and σ but only on L and the “size” of the spaces V ,
(Λν)ν∈V , then L0 and C0 will depend only on (β,Γ)
and the mentioned “size”.

To apply Lemma 9 to our problem, we choose the
spaces to be V = H, Λ = ∪h∈HΛh, were Λh =
Ωh,n. Further, we choose the pseudo-metrics to be
d2
V,k(h, h̃) = |h(Xk)− h̃(Xk)|2 + ‖h− h̃‖2∞,n (h, h̃ ∈ V ),

and dΛ,k(ω, ω̃) = |ω(Xk) − ω̃(Xk)| (ω, ω̃ ∈ Λ). We also
choose Λh = Ωh,n ⊂ Λ. Since these pseudo-metrics
are random (they depend on X1:n), for a proper use of
Lemma 9 we need to “condition” on X1:n when using
this lemma.

To make our argument formal, let (W,W,P) be the
probability space that holds our random variables.
Note that with no loss of generality, we can assume
that (W,W) is a Borel-space (this is because all our ran-
dom variables are real-valued). Now, let (Px1:n)x1:n∈Xn
be the disintegration of the probability measure P with
respect to X1:n, also known as the regular conditional
probability measure obtained from P by conditioning
on X1:n.5 We will use Lemma 9 with the probability
spaces (W,W,Px1:n) for x1:n ∈ Xn fixed, the expecta-
tion operator corresponding to Px1:n will be denoted
by Ex1:n

, or E[·|X1:n = x1:n], where the latter notation
is justified by the definition of Px1:n

.
For f ∈ L1(X , PX), ω ∈ Λ, h ∈ H set

∆k(f) =
1

η
(`(Zk, f)− Ex1:n [`(Zk, f)]) ,

Uk(h, ω) = ∆k(h+ gh,n)−∆k(h+ gh,n + ω) .

5 The defining properties of (Px1:n) are that for each
x1:n ∈ Xn, Px1:n is a probability measure on (W,W) con-
centrated on {X1:n = x1:n}, x1:n 7→ Px1:n is measurable
and for any f : (W,W) → [0,∞) measurable function∫
f(w)P(dw) =

∫
(
∫
f(w)Px1:n(dw))PX1:n(dx1:n). The ex-

istence of (Px1:n), which is also called a regular conditional
probability distribution is ensured thanks to the assumption
that (W,W) is Borel. Moreover, (Px1:n) is unique up to an
almost sure equivalence in the sense that if (P̂x1:n) is an-
other disintegration of P w.r.t. X1:n then PX({x1:n : Pux 6=
P̂x1:n}) = 0. For background on disintegration and condi-
tioning, the reader is referred to Chang and Pollard [1997].

(We remind the reader that, although not shown to
minimize clutter, ∆k and Uk do depend on x1:n.)

Now, for h ∈ H, we set λh = 0. Thus,
Uk(h, λh) = Uk(h, 0) = 0. Furthermore, for Zn(h, ω) =

1√
n

∑n
k=1 Uk(h, ω) we have Zn(h, ω) = 1

ηVh,n(ω) and
therefore (using that λh = 0 and dΛ(ω, ω̃) = ‖ω − ω̃‖n)

sup
h∈H

sup
ω∈Λh:

dΛ(λh,ω)>Lσ

Zn(h, ω)

d2
Λ(λh, ω)

= sup
h∈H

sup
ω∈Ωh,n:
‖ω‖n>Lσ

Vh,n(ω)

η ‖ω‖2n
=: Qn(Lσ) ,

(14)
showing that the conclusion of the lemma suffices to
bound the quantity of interest appearing in (13). One
can then show that the conditions of Lemma 9 are
satisfied for [PX ] almost every x1:n ∈ Xn such that
λmin(x1:n)

.
= λmin(Φ(x1:n)>Φ(x1:n)) ≥ λmin/2 (details

are omitted due to the lack of space).
Further, one can show that αn(L, σ) ≤ 2C′

√
nLσ2 ≤ 2C′

L

provided that
√
nσ2 ≥ 1, where C ′ is a constant that

is independent of x1:n, L, n,K, σ and we assumed that
σ ≤ 1. Therefore, L0 and C0 can be selected indepen-
dently of x1:n, K, n and σ.

Therefore, using (14) we conclude that for any L ≥
L0, K,n, σ such that

√
nσ2 ≥ 1 and Kσ ≤ 1/2 and

K ≥ 1, for [PX ] almost all x1:n such that λmin(x1:n) ≥
λmin/2, Px1:n

(
Qn(Lσ) ≥

√
n
)
≤ exp(−C0L

2σ2n).
Now, by the definition of Px1:n ,

P
(
Qn(Lσ) ≥

√
n,Gλmin

)
exp(−C0L

2σ2n) .

Hence, by combining (12) and (13), using the defini-
tion of Qn(Lσ) in (14) and choosing L = L0,

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ L0σ

1−KL0σ
,Gλmin

)
≤ P

(
Qn(Lσ) ≥

√
n,Gλmin

)
≤ exp(−C0L

2
0σ

2n) .

Choosing σ = 1/(2L0) and K = 1, noting that n ≥ σ−4

then translates into n ≥ 16L4
0 gives that

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1, Gλmin

)
≤ exp(−C0n/4),

which is the desired result (we also used thatL0 ≥ 1 by
assumption and hence σ ≤ 1 which gives that

√
nσ ≥√

nσ2 ≥ 1).

Conclusions and Future Work
While the present paper makes the first steps in ana-
lyzing the excess risk of semiparametric models, much
work remains to be done: The current excess risk is
slower than what is expected when using the squared
(or similarly smooth) loss. By using the boundedness
result with more advanced techniques (that exploit the
curvature of losses), one should be able to prove faster
rates. However, perhaps more interesting is to con-
sider other losses, like the hinge loss, to which the cur-
rent results cannot be applied. In particular, the hinge
loss lacking any curvature seems to call for entirely
new ideas.
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