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Abstract

This paper formalizes a latent variable inference prob-
lem we call supervised pattern discovery, the goal of
which is to find sets of observations that belong to a sin-
gle “pattern.” We discuss two versions of the problem
and prove uniform risk bounds for both. In the first ver-
sion, collections of patterns can be generated in an ar-
bitrary manner and the data consist of multiple labeled
collections. In the second version, the patterns are as-
sumed to be generated independently by identically dis-
tributed processes. These processes are allowed to take
an arbitrary form, so observations within a pattern are
not in general independent of each other. The bounds for
the second version of the problem are stated in terms of
a new complexity measure, the quasi-Rademacher com-
plexity.

1 Introduction

The problem of supervised pattern discovery is that of find-
ing sets of observations that belong together, given a set of
past patterns to learn from. This problem arises naturally in
domains ranging from computer vision to crime data min-
ing. We provide a formal definition and theoretical founda-
tion for pattern discovery. Unlike the classical problem of
classification, in pattern discovery we posit an infinite num-
ber of classes (“patterns”), each containing a finite number
of observations. Also, in contrast to standard classification
assumptions, we do not expect the observations to be cho-
sen i.i.d. On the contrary, the observations may be highly
correlated, whereas the latent patterns are chosen i.i.d., and
our goal is to locate these patterns among the full set of ob-
servations. We briefly outline three motivating examples.
The first is a problem that is faced every day by crime an-
alysts in police departments across the world (Chen et al.,
2004; Nath, 2006). These analysts spend much of their time
searching for patterns of crimes within databases of crime
reports. The identification of emerging patterns of crime as
been a key priority of the crime analysis profession since
its inception. Analysts have knowledge of past patterns of
crime, which they generalize to detect new patterns in re-
cent crimes. Each pattern thus corresponds to the (group of)
people committing the crimes. Since there are an unknown
number of criminals in the world, and as patterns of crimes
happen in myriad ways, we cannot assume a fixed, finite
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number of patterns. In addition, crimes committed by the
same individual are certainly not i.i.d. On the other hand,
the patterns are similar enough that sometimes the analysts
can identify them. Thus, instead of the usual i.i.d. assump-
tion of observations made generally in machine learning, we
might consider each observation (crime) as being generated
by one of many latent processes (the criminals), chosen i.i.d.
Observations generated by the same process are considered
part of a single pattern, and all of the observations are vis-
ible simultaneously. Automated methods for crime pattern
detection include a neural network approach (Dahbur and
Muscarello, 2003) and a greedy pattern-building algorithm
(Wang et al., 2013). Lin and Brown (2003) and Brown and
Hagen (2003) investigate the slightly easier task of finding
pairs of related crimes.

As a second example, consider the following simpli-
fied perceptual organization-style problem,! which involves
finding geometric patterns in an image (cf. Ferrari, Tuyte-
laars, and Van Gool, 2006 and Zhu et al., 2008, as well
as Payet and Todorovic, 2010 for an unsupervised variant).
Each observation is a line segment in R%. A robot or human
might observe an image with more than one pattern in it:
say, a star, a square, and a thombus (see Figure 1a), which
are placed according to a particular probability distribution
within the space. The goal is to find the patterns, where each
pattern consists of a subset of observations. In this case, a
single observation can only be classified in the context of the
other observations. We do not know in advance what consti-
tutes a pattern; we have only a labeled set of other patterns to
learn from. There may actually be an infinite number of pat-
tern types. For instance, while a human might quickly rec-
ognize the two patterns in Figures 1b, there are an infinite
number of other possible patterns they might also recognize
in some other collection of line segments.

A final example that falls within the pattern discovery
framework comes from personalized medicine (Ginsburg
and McCarthy, 2001; Hamburg and Collins, 2010). In per-
sonalized medicine, an individual’s molecular and genetic
profile is used to develop a specialized treatment for that per-
son. To accomplish this, patterns must be found within indi-
viduals’ molecular/genetic profiles, the progressions of their

'Tdeas from perceptual organization have proven to be very use-
ful in the field of computer vision (Sarkar, 2003).



symptoms, and the results of their treatments. These patterns
are used not just to decide between one or two possible treat-
ments. Instead, a large number of treatment regimens may
be discovered, with each regimen potentially applying to
only a small number of patients. For example, personalized
medicine approaches have found particular success in using
genome-wide gene-expression data for the treatment of can-
cer (Sgrlie et al., 2001; van’t Veer et al., 2002; van’t Veer
and Bernards, 2008; Wang et al., 2011; Berger et al., 2012).
“Cancer” is a highly amorphous term. While certain can-
cers are caused by a few well-understood gene mutations,
in many cancers there are a large number of infrequent mu-
tations that each make a small contribution to tumorigene-
sis (Vogelstein et al., 2013). For example, breast cancer is
caused by hundreds if not thousands of different mutations,
with only three point mutations and perhaps ten recurrent
mutations occurring in more than 10% of cases (The Can-
cer Genome Atlas Network, 2012). Thus, flexible pattern
discovery methods like those used by Sgrlie et al. (2001) and
van’t Veer et al. (2002) are required. For a range of personal-
ized medicine examples and references, see the proceedings
of the recent NIPS 2010 Workshop on Predictive Models in
Personalized Medicine?.

In this paper we develop a statistical learning theory
framework for two versions of the problem of supervised
pattern discovery, providing a theoretical foundation for ap-
plications that are already used in practice for pattern discov-
ery. In particular, we develop uniform risk bounds that can
be used for empirical risk minimization (Vapnik, 1998). We
call the first version of the pattern discovery problem block
pattern discovery. The block problem assumes there are col-
lections of patterns. The collections are i.i.d. but the pattern-
generating mechanisms within each collection are not nec-
essarily independent. The second version is the individual
pattern problem, in which the patterns are presented as a
single collection and the pattern generating processes (with
each generating a single pattern) are i.i.d.

To our knowledge, there are no other learning theory
frameworks which, like pattern discovery, allow for an in-
finite number of latent patterns, each with a finite number
of observations. Statistical learning theory for classification
(Vapnik, 1998) supposes a finite number of possible classes
each containing an infinite number of observations in the
limit of infinite data, and many other supervised problems
(e.g., supervised ranking) are similar. Supervised clustering
(Balcan, 2008; Awasthi and Zadeh, 2010) similarly posits a
known, finite number of clusters to which observations in
some fixed data set belong. In the clustering model there is
a “teacher” who provides feedback about the correctness of
the proposed clustering and the clustering rule is assumed to
come from some known concept class. Algorithms operat-
ing within the framework are concerned with finding the true
rule using a polynomial number of queries to the teacher. Fi-
nally, standard clustering is an unsupervised method (Hastie,
Tibshirani, and Friedman, 2008), whereas pattern discovery
is concerned with supervised learning.

The remainder the paper is organized as follows. In Sec-
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Figure 1: Examples of block patterns using lines, with extra
lines that do not belong to a multi-line pattern.

tion 2, notation is established and the block pattern discovery
problem is defined. In Section 3, we give risk bounds for the
block problem in terms of covering numbers. The individ-
ual pattern discovery problem is defined in Section 4 while
Section 5 gives risk bounds for the individual pattern dis-
covery problem based on an adaptation of the Rademacher
complexity measure that is appropriate for pattern discovery.

2 The Block Pattern Discovery Problem

We first investigate what we call the block pattern discovery
problem. The observations are a sequence of i.i.d. collec-
tions of patterns. For example, these could be images with
lines that form patterns, as in Figure 1. The goal is then to
find the patterns in new groups of observations, such as in
new images.

Let X be the observation space and define 8(X) to be the
set of finite, non-empty subsets of X. A pattern will con-
sist of one or more observations from X, so S(X) defines
the collection of all possible patterns that could be observed.
Also, let 82(X) := 8(8(X)) denote all finite collections of
patterns. For example, X might consist of line segments in
R2. A possible observed pattern P € 8§(X) would be the
unit square

P = {{(0,0),(0,1)},{(0,1), (1, 1)},
{(1,0), (1,1)},{(0,0), (1,0)}}

and 82(X’) might be the collection of possible sets of unit
length line segments with endpoints on the integers between
-100 and 100.

Define a distribution D over collections of patterns, so
Q ~ D is an element of 82(X) and can be written as
Q = {P1,..., P}, where each P, € §(X) is a single pat-
tern. Note that k is itself random. () can be thought of as
representing a labeled version of the observations — that is,
indicating which observations are part of the same pattern.
Let Xg = Upeg P € (&) be the set of observations as-
sociated with @), which would correspond to an unlabeled
dataset with latent patterns defined by Q.

Let S : 82(X) — 82(X) be a selector function, which
maps each collection of patterns Q € 8?(X) to a subset
of §(X¢), the subsets of observations derived from Q). The
function S(Q) is used to select out which subsets of the set
of observations X the loss function will depend on. Since



S is a function of (@, these subsets can depend on the true
patterns in the observations. We will be interested in choos-
ing a pattern discovery function f : §(X) x 8(X) — [0, 1].
The function f(X,U) outputs a score between 0 and 1,
where 1 (resp. 0) indicates complete confidence that U is
part (resp. not part) of a pattern from X. Let F be a family
of pattern discovery functions. We assume throughout that
for f € F, f(X,U) =0if U € X, since in this case it is
obvious that U cannot be part of a pattern from X.

The block loss functional Lg under selector S measures
the performance of the pattern discovery function f € F on
a collection of patterns ) € 8?(X) and is defined to be

1/2
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where Zg s = [S(Q)| is the normalization function so

Ls € [0,1] and £,,(f,U,Q) € [0,1] is the local loss
of f on a subset U when the true pattern collection is Q.
In the following section, we will focus on the case where
((£,U.Q) = [IU C P € Q) — f(Xq,U)|, which pe-
nalizes f for how far it is from the indicator of whether U is
part of a pattern.

One particular case of interest is when the selector func-
tionis A : Q — 8(Xq), which selects all subsets of the
data. This maximal selector can be thought of as the ideal
one, in the sense that £ 4 considers the performance of f on
all possible subsets. However, since there are an exponential
number of subsets, evaluating £ 4 is not usually practical. In
such cases, a selector that picks out subsets deemed “impor-
tant” could be used. For example, the selector might choose
all subsets of true patterns as positive examples and subsets
of true patterns with one additional data point not from that
pattern as negative examples. This particular selector func-
tion is useful for training greedy algorithms that build pat-
terns incrementally. These kinds of greedy algorithms for
finding patterns have been used both in supervised settings
(e.g. that of Wang et al., 2013) and unsupervised settings
(e.g. work on set expansion, Wang and Cohen, 2008).

3 Risk Bounds for the Block Problem
Let the true risk for f € F be

R(f) =Eq~pLs(f; Q) ()
and the empirical risk for f given Qq,...,Q, “ D be
1 n
== Ls(f;Qi). 3
i

We develop bounds on the difference L, (f) = R(f) —

R, (f) between the true and empirical risk. These bounds
adapt and expand on classical learning theory results to the
new pattern detection problem. Indeed, our main goal in this
section is to point out that certain pattern discovery problems
can framed such that they inherit standard i.i.d. learning the-
ory guarantees.

Because we have now packaged the block discovery
problem into a learning theoretic framework, we can ap-
ply Rademacher complexity bounds, which we then re-
late to empirical /5 covering numbers via Dudley’s en-
tropy bound. Define the loss class to be G := Lg o F :=
{9 = Ls(f;)|f € Froand G = {Q — Ls(f;Q) —
Ls(0;Q)| f € F} to be the offset loss class. Also define
the empirical metric

n 1/2
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Definition. For metric space (7', d), the e-covering number
N(T,d,e) is defined to be the smallest integer K such that
there are points z1,...,xx € T satisfying UlK 1 Be(;) C
T, where B.(z;) is the open ball in 7" of radius € centered at
Z;.

Theorem 3.1. Let Q1,...,Q, D, Then for any posi-

tive integer n and any 0 < § < 1, with probability 1 — ¢
over samples of length n, every f € F satisfies

log N'(G, d, €) J
n

L(f) <E 81n(2/4) .

Proof sketch. This follows from the standard argument
combining a Rademacher complexity bound with Dudley’s
entropy bound (cf. Mendelson, 2002). O

We next derive a risk bound in terms the covering number
for the underlying class F of pattern discovery functions. In
some sense this is a more natural covering number to con-
sider than the covering number of the shifted loss class G
used in Theorem 3.1, since the ultimate goal is to choose
a function from F, not Q . To obtain a relationship between
covering numbers for F and Q , we must define a metric on
JF and relate it to the metric on QN . First, for f1, fo € F, de-
fine the (squared) metric for a single collection to be (with

2 Y h(Xe,U) ~ h(Xe, U)P.

Ues(@)

0o(f1, f2) =

The empirical metric we are interested in is

1/2
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Theorem 3.2. Under the same hypotheses as Theorem 3.1,

e

Proof. Let Ig(Xq,U) :=1(U C P € Q). Then forg € G
we have

9(Q) = Ls(f;Q)

Ln(f)<E IOgM%"’E)

- Es(o; Q) = éQ(f, IQ) — éQ(O,IQ), SO
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Hence N(G,d,,e) < N(F,{y,€), which together with
Theorem 3.1 gives the result. O

4 The Individual Pattern Discovery Problem

The block formulation of the pattern discovery problem ap-
plies to the examples from vision, crime, and medicine out-
lined in the introduction, but in many cases the structure
of the problem may be different. Instead of working from
blocks of patterns, and learning across blocks, we might
wish to learn across patterns within a single block. In the
crime example, each pattern collection (Q; represents an en-
tire set of crimes, perhaps from several cities or different
intervals of time. For a police department wanting to eval-
uate their pattern detection ability on individual patterns of
crime, rather than crimes within blocks, then we should try
to predict when only a single pattern collection () is avail-
able.

In the individual pattern discovery problem, the learner
must use one collection ) as training data instead of mul-
tiple collections ()1, ..., Q,. The task is then to partition
newly observed data X € $(X) into patterns. We assume
the finite patterns arise from stochastic processes that are
chosen i.i.d. from an unknown probability distribution over
processes. We allow these processes to take an arbitrary
form (since, for example, a single criminal’s crimes certainly
are not i.i.d.). The task is to identify patterns in the obser-
vations that are not labeled as such. The individual pattern
problem can thus be viewed as a kind of supervised, latent
variable problem, where the pattern generating processes are
the latent variables.

To formally define the individual pattern problem, let P
be a distribution over patterns, so if P ~ P, then P € $(X).
We are given data Py, ..., P, "% P, which together form
a collection of patterns @ = {P,...,P,}. Note that ¢
now indexes over patterns and n denotes the number of pat-
terns, not the number of pattern collections. Although the
processes could themselves be random, since we assume all
observations from each process are part of (), all of the ran-
domness of the processes can be absorbed into P. It is there-
fore safe to equate each process with the pattern it generates.

As in the block case, we wish to choose a pattern discov-
ery function f : 8§(X) — [0,1] € F to minimize a loss
functional, though now f does not have access to the whole
set of observations X, only the subset U C X, that it is
making a decision on. Writing X in place of X when the
underlying partition is unknown, the loss function is defined

to be:
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where Zp = |8(P)| and Zpx = |S_(P,X)| are nor-
malization functions. The functionals ¢,,¢_ € [0, 1] de-
fine the losses on positive and negative examples, respec-
tively. S_(P, X) is the negative example selector function,
which plays an analogous role to selector function for the
block loss functional. The weight factor 0 < o < 1 de-
termines the relative importance of positive examples com-
pared to negative examples, making the loss cost sensitive. It
is necessary to weight the two sums, since otherwise in the
limit as n — oo, the value of the loss would be determined
solely by the negative examples. This is because as n — oo,
|X| — oo and thus |S_(P, X)| — oo while |S(P)| remains
finite.

As with the general selector function S for the block loss,
choosing S_ to select all negative examples would involve
an exponentially large (in |X|) number of subsets. There-
fore, instead we might define

S_(P,X)={UU{a}|Ue8(P),xe X\ P}. (1)

That is, we look at how f performs on sets that are almost
patterns. This choice of selector is particularly relevant for
greedy algorithms, and is used by Wang et al. (2013). We
will assume that S_ takes the form of equation (7), though
our results can easily be adapted to other choices of S_ that
treat the elements of X uniformly.

5 Risk Bounds for the Individual Pattern

Discovery Problem
We will prove two results inspired by Bartlett and Mendel-
son (2002). We will first introduce a new Rademacher
complexity-like quantity to use in place of the covering
number term. We will also show this quantity can be well-
estimated empirically. As before, we define the empirical
risk

Ran(f) :=n""Y_ La(f, P, Xq), ®)
j=1

the true risk Ry ,(f) := ERq . (f), and denote the differ-
ence by Ly ,(f) := Ram(f) — Ran(f). Note that unlike

with the risks R,, and R,, in the block problem, the terms in

the sum defining }A%a,n (f) are not independent since they are
all a function of Xg. Let

QA'IL(EOM‘F) = ]EE ;Lelg|n71 Z;L:l 6j£0¢(f7 PMXQ)"Q]a
)

where the ¢; are independent uniform {+1}-valued random
variables. Define the quasi-Rademacher complexity to be

Q0 (Lo, F) :=EqQn(La, F). (10)



The quasi-Rademacher complexity is distinct from standard
Rademacher complexity because the terms in the sum defin-
ing Q,,(La, F) are dependent via X(,.

The two main results in this section are based on McDi-
armid’s inequality (McDiarmid, 1998). For independent ran-
dom variables Y7, ...,Y,, taking values in a set V/, assume
that the function F' : V" — R satisfies the condition that,
foralll <i<mn,

yn)| < e
(11)

In “expectation form,” McDiarmid’s inequality states that
for any 0 < § < 1, with probability at least 1 — 4,

sup [F(yiy -y yn) — Fy1, .o, Ul ..
YiseeosYn,Yi EV

2log(1/4
F(Yi,...,Y,) <EF(Yi,...,Y,) + \/%g(/) .
(12)
In order to apply McDiarmid’s inequality, we require the
following lemma.

Lemma 5.1. Assuming |P;| < B almost surely, then if

one P; changes, the value of Ram( f) changes by at most
B,/n=(14+2(1-«)B) /n.

Proof. See the Appendix. O

To ensure generalization, we impose a constraint on the
distribution of the number of observations |P| in a pattern
P ~ P. The first result assumes that | P| is bounded.
Theorem 5.2. Let P, ..., P, "*" P and assume |P;| < B
almost surely. Then for any positive integer n and any 0 <
0 < 1, with probability 1 — § over samples of length n, every
f € F satisfies

. S$BZ1n(2/6

La;n(f) SQQn(‘Cou]:)'i_ #a (13)
where By, =1+ 2(1 —a)Band Lo (f;-,) :== Lo(f;-, ) —
L(0;-,-) is the shifted loss.

Proof. See the Appendix. O

Even though all of the £, terms in the risk are related
through Xg, we are able to control the effect of changing
one P; on the losses L, (f; Pj, Xq) when j # . This is the
key to being able to design a bound for problems as com-
plex as supervised pattern detection. If the distribution on
| P;| is arbitrary, it is not in general possible to obtain bounds
such as the one above. However, we can relax the assump-
tion that the size is bounded and instead assume geomet-
ric tails for | P;|. Under this weaker condition we achieve an
O(logn/+/n’) convergence rate instead of O(1/+/n).
Theorem 5.3. Let P, ..., P, i ‘P and assume that there
exists a natural number By, a constant C, and a rate 0 <
A < 1 such that for any B > By, Pr[|P;| > B] < C\5.
Furthermore, assume that

o log(2Cn/6)
B""'[ log(1/) W = Bo. (1

Then for any positive integer n for which equation (14) holds
and all 0 < § < 1, with probability 1 — 6 over samples of
length n, every f € F satisfies

- 8B2 log(4/§
Lon(f) <204(La, F) + %(/) , o (15)
where
Bpo=1+2(1—-a)B,. (16)

Proof. If we choose some fixed B > By, then consider the
probability that the size of all patterns is at most B,
Pr[|P| < BYi=1,...,n] = (1—Pi|P|> B])"
> 1—nPr[|P]| > B
> 1—nC\B ,
so the hypotheses required for Theorem 5.2 hold with prob-
ability at least 1 — nCAB. If we set nCAE < 0/2 and make
the substitution 6 — §/2 in the statement of Theorem 5.2,

by the union bound, with probability at least 1 — §, every
f € F satisfies

V

Lan(f) < 2Qn(La, F) + w.

Solving nCAZ < §/2 for B implies that the minimal choice

for B is
B Fog(QC’n/zS)l
" o) |
The result now follows by substituting B,, for B in the ex-
pression for B,,. O

Remark The theorems proven in this section are stated
in terms of the number of patterns. However, risk bounds
are typically given in terms of the number of observations
made. While the bounds in terms of the number of patterns
are tighter, they are, essentially, asymptotically equivalent
to those stated in terms of the number of observations. To
see this, first consider the case where |P| is almost surely
bounded by B and let m be the number of observations
made. Then

n
i=1
Hence, the bound in Theorem 5.2 can be rewritten in terms
of m, sacrificing at most a factor of v/B'.

Corollary 5.4. Under the same hypotheses as Theorem 5.2,
if m is the number of observations taken, then for any pos-
itive integer n and any 0 < § < 1, with probability 1 — §
over samples of length n, every f € F satisfies

8B BIm@/) o
m

Lan(f) <2Qn(La, F) +
An analogous result for the case when |P;| has geometric
tails can be state based on the following simple fact.

Lemma 5.5. If |P;| has geometric tails, then the expected
number of observations in a pattern is at most

CABott
Brc = By + ———
AC o+t Ty

)

(Bo+1/(1=A). (18



Proof. Follows by standard geometric series properties. See
the Appendix.

So, with high probability, the bound in Theorem 5.3, re-
stated in terms of m as in Corollary 5.4, is only worsened by

a factor of O(1/Bi ¢ ).

5.1 Estimating O,

Like Rademacher complexity, quasi-Rademacher complex-
ity can be empirically estimated efficiently.

Theorem 5.6. Assuming |P;| < By almost surely for
P i ‘P, then for any natural number n and any 0 <
0 < 1, with probability 1 —

8 A A 2
’Qn(ﬁa,f) — sup|Qn(£a,f)|’ < /8BaIn/0)
feF n
and
A A5 2
‘Qn(ﬁa,f) Qn(ﬁa,}')‘ < %@/5)

where

Qn(im f) =n"" 22;1 5j£a(fa P, XQ)~
Proof. An equivalent to Lemma 5.1 can be proven for
On(Lq, f) in place of R, (f), since they are the same up
to changes in signs of the terms induced by the €;. Thus, the

proof is essentially identical. The theorem follows from Mc-
Diarmid’s inequality applied as used in Theorem 5.2. O

Similar bounds can be obtained in the case that | P;| has
a geometric tail (as long as equation (14) holds) with the
right hand sides of the inequalities in the previous theorem
replaced by
887 4 log(4/6)

)
n

where B,, , is given in Theorem 5.3.

6 Algorithms and Applications for
Individual Pattern Discovery

The theoretical guarantees in Section 4 lead directly to Algo-
rithm 1, which is a general algorithm for individual pattern
discovery. Before running this algorithm:

e The user chooses a parametric class of pattern discovery
functions f3 : $(X) — [0, 1], where 8 € T..

e The user chooses a threshold 6 € [0, 1]. If a subset of
observations P scores below 6, that is fg(]:’) < 0 then we
would not consider P a pattern.

This algorithm has the advantage of being computation-
ally tractable, and is directly motivated by our choice of se-
lector function. In order to select the optimal parameter 3*,
we need only consider subsets of the true patterns, along
with an additional observation. Also, for growing new pat-
terns, the function f* was specifically trained to be able
to distinguish observations that belong in the pattern from
those that do not belong, which is ideal for this method.

Algorithm 1

Input:
- Data consisting of the collection of
observations X
- Training patterns P, ..., P,
- Seed {1, 2, ...} of a new potential pattern
to be discovered.

Output: New pattern P.

Initialize P = {x1,zs,...}.

Step 1. Train the pattern discovery algorithm on the known
patterns Q = {Py,..., P,} and X, as follows:

B = mﬁinﬁs(fﬁ; Q),

using the definitions from Section 4 to define the loss func-
tion and selector function. Let

[ = fa-
Step 2. Find new pattern.

while f*(P) > 0 do
Compute the best observation to add to the
set P:

i € argmax,, f*(P U z).
if f*(PU#) > 0 then
the pattern has a sufficiently high score,
and we should add £ to the pattern:
P« PuUs.

Return P.

6.1 Crime Pattern Detection

An algorithm that is extremely similar to the one provided
above was used by Wang et al. (2013) to detect crime series
in the area of Cambridge MA. In that application:

e X is a set of crimes, namely housebreaks, that hap-
pened between 1996 and 2007 in Cambridge MA. Many
details of each crime are available, including the date,
time, day of the week, location, type of premise (apart-
ment, house), location of entry means of entry (pried, cut
screen), whether the dwelling was ransacked, etc.

e P,... P, is a database of known crime patterns pro-
vided by the Cambridge police department that had been
curated by their Crime Analysis Unit over the decade
1996-2007. Crimes in pattern P; were all hypothesized
to have been committed by the same individual or group
(they are “crime series”).

e f(8(X)) is a nonlinear function of the details of crimes
within the pattern, called “pattern-crime similarity,” pa-
rameterized by a vector \. In particular, within function
f(8(X)) is a linear combination of similarity measures



between crimes, where \ are the linear coefficients. For
instance, if j is the coefficient for location, and the value
of the learned ); is large, it means that location is an im-
portant factor in determining whether a set of crimes is
indeed part of a crime series.

o A loss function that is similar to the one provided in Sec-
tion 4 was used to train the algorithm on past patterns
Py, ..., P, along with the rest of the crimes X" to deter-
mine values for vector \.

o A threshold similar to # was used to determine when to
stop growing the crime pattern. In particular, when the
series becomes less cohesive after adding more crimes,
the series is considered to be complete.

The algorithm of Wang et al. has successfully been able to
detect patterns of crime in Cambridge, and in a blind test
with Cambridge crime analysts, it has been able to locate 9
crimes that belong in patterns that were not previously iden-
tified as such, and it was able to exclude 8 crimes that an-
alysts previously thought were part of a pattern (they now
agree that these crimes are not part of a pattern).

6.2 Set Completion and “Growing a List”

Another algorithm similar to Algorithm 1 was used for the
problem of set completion in information retrieval. A “set
completion engine” is a next generation search engine. It
takes a few seed examples, of almost anything, and simply
aims to produce more of them. For instance, a search start-
ing with seed “Boston Harborfest” and “South Boston Street
Festival” should yield a list of more large annual events in
Boston. The algorithm of Letham, Rudin, and Heller (2013)
for growing a list of items from a seed uses an algorithm
similar to Algorithm 1 in that at each iteration, a new item is
added to the set. Here:

e X is a set of all terms and phrases found on the internet.

e P, ..., P, is aset of gold standard completed sets, such
as the “List of . ..” articles on Wikipedia

e f(8(X)) is a linear combination of similarities between
terms, with coefficients chosen for the Bayesian Sets algo-
rithm of Ghahramani and Heller (2005). This algorithm is
unsupervised (the training step in Algorithm 1 is replaced
with a Bayesian prior). In other words, the coefficients are
chosen based on prior knowledge rather than trained from
Py, ..., P,. It would not be difficult to design a super-
vised algorithm that learns the prior hyper-parameters of
Bayesian Sets, rather than having the user choose them.

In the case of growing a list, Letham et al. showed that as
long as the feature space and score f(8(X')) are constructed
correctly, the results coming from this algorithm are accurate
enough to be used in practice, and are substantially more
accurate than other methods currently in use for set com-
pletion, including Boo!Wa!? and Google Sets.* The present
work thus provides theoretical foundations for the method-
ologies used by Wang et al. (2013) and Letham, Rudin, and
Heller (2013).

3www . boowa . com

*Google Sets is available through Google Spreadsheet.
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A Proof of Lemma 5.1

Let ALJ' denote the maximum possible change in
Lo(f, P;, Xg) due to a change in P;:

ALY = sup |La(f, Py Xq) — La(f, Py, X/,

where Q/ = {Pl, PQ, ceey Pifl, Pil, Pi+17 ey Pn} Recall
that £ (f; Pj, X¢q) consists of a sum of losses over 8(P;)
weighted by a/Zp, and a sum of losses over S_(P;, Xq)
weighted by (1 — ) /Zp; x,,-
For j # i, the sum
o

— > (1)

Pi ves(py)

from L.(f,P;, Xq) remains constant when P; changes
since it does not depend on X. The second normalizing
constant is

Zp, xq = ([ Xo| = P2 — 1),

which is the number of nontrivial subsets of P; combined
with one element that is not from P;.

Write Z = Zp; x5 Z' = Zp; X
Y = ZUeS,(Pj,XQ)E—(va)’ and AY =
Y — ZUeS,(Pj,XQ,) £_(f,U). Then we have

Y Y-AY|  |Z'Y - Z(Y - AY)|
z ‘_ 77
Y|Z' - Z| |AY|
= Tz7 o
|Z' — Z| + |AY|
< 7 ;

where we used that Y/Z < 1. At most | P;|(2/73] — 1) terms

in the sum
> (LU)

UeS_(P;,Xq)

can change value when P; changes. This is the number of
subsets of P; combined with one element of F;. Since /_ €

[0,1] and |P;| < B, we therefore have AY < |P;|(2175] —
1) < B2l —1). Also,
1Z -2 = (1P| - [PN@" ~ 1) < BEIP - 1)
and
7' = (Xo| - IRHEP - 1)
Combining these we get (for j # 7)
i Y Y -AY
ALY <(1-a) Z_Z"
2(1 — a)B(2I7il — 1)
~ (| Xq | = [P @FT 1)




2(1-a)B
n—1
where we have used the fact that | X¢/| — [P;| > n — 1,

since there is at least one element in each pattern. We also
have the trivial bound that ALY < 1 because £, € [0, 1].
Letting ]:E’an (f) denote R, (f) when P; is replaced by P/,
we have

sup ‘Ra,n(f) - R/a
P

n~t Z AL <p7t [ 14 Z ALTY
J J#i
_ 2(1 - a)B)
<n7? B | Yk Sl s
<n <1 +(n-1) — )
_1+42(1-a)B _ B,

)

A<

n n
B Proof of Theorem 5.1
We have

Ra,n(f) S Ra,n(f) + sup (Ra,n
frer

= ]%an(f) + Ra,n( )

+ sup {Ra,n(f/) - (f)
fleF

Ran(0) — Ran(0)}
= Ran(f) + Ran(0) — R (0)

+ sup {Eéa,n (f) = Ran(f)}, (19)
frer
where R, . (f') =0t Y0 La(f Py X))

We now wish to bound the ﬁngl two terms of (19).
First consider the term sup ;. z (ERan(f') — Ran(f')).
Note that ER,_,,(f') is a constant. On the other hand, if
one P; changes, R, ,(f') can change by at most 2B, /n
since Ra}n(f’) = Ra’n(f) — Ra,n(o) and each of these

Ra.n() terms can change by at most B,/n by Lemma
5.1. Now applying McDiarmid’s inequality with F' =

SUprer (ERQ n(f) = Ran(f )) and ¢ = 2B, /n, we have
that with probability at least 1 — 6/2,

Sllp (ERa,n(f/) - Ra,n(f/)) (20)
freF

<E sup (ERa,n(f/) - Ra,n(f/)) +
freF

An essentially identical argument applies to bounding
Ra.n(0) — Ry, (0) by noting that R,, ,,(0) is a constant and
that E[R,, »(0) — Ra,n(O)] = 0, so with probability at least
1-5/2,

Ran(0) = Ryn(0) < v/2B2In(2/8)/n.  (21)

Combining the previous two bounds with (19) gives, with
probability at least 1 — 4,

2B21n(2/0)/n

8B2 In(2/9)
n

Ran(f) < Ranlf) + (22)

+E sup (Eéan(f’) - ]N%an(f’))
freF
To complete the proof, let Pj, ..., P/ “i P and let Q =
{Pj,..., P.}. Now, writing what the expectations are with
respect to for clarity, we have

Eq sup (]EQ’Ra,n(f/) - Ra,n(f/))
freF

n
=Eq sup Eq/ [n7' Y La(f', P}, Xq) = Ran(f)|@Q
freF e
<Eg,q sup |n~ , P, X —Ra,nfl
Q@' Sup 22: Pj, Xqr) (f)

XQ/) - ‘éa(f/ap

—EQngbup ln Z

< 2Fg. sup |n? el

I, P, Xq)

<20, (Lo, F).

The first line follows from the definition of R, ,(f’). The
first inequality follows from Jensen’s inequality applied to
sup. The second equality follows by symmetry. The second
inequality follows since symmetry permits the difference in
each pair of L, terms can be bounded by twice the (worst)
of one term. The last inequality relies on Jensen’s inequality
applied to | - | and the fact that |sup-| < sup| - |. For more
details about this type of proof technique, see Bartlett and
Mendelson (2002).

B.1 Proof of Lemma 5.2
Slnce Pr}B | > B] < CA\B for B > By, Pg := Pr[|P| =

] < CA\” for B > By. Note that
a9 \Bo
9 B _ Y9
>\ A Z A AB)\ 1-—X
B=B,
> BoABo=1(1 — \) 4 A\Bo
BME = )\
Py TSV
_ )\BDBO(l —A)+A
(1=A2
Hence,
E|P] < Bo+ Y  BPg

B=Bo+1

< By(1-CA\P)+C Y BAP

B=By
Bo(l—=X)+ A

_ _ Bo By 20

= By(l—-CX7°)+CA ESNE
C Bo+1

= By+ (Bo +1/(1=X)).

1-A
Note the change in the start of the summation between the
first and second line.

XQ»]
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