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Abstract
Our goal is to build robust optimization problems that make
decisions about the future, and where complex data from the
past are used to model uncertainty. In robust optimization
(RO) generally, the goal is to create a policy for decision-
making that is robust to our uncertainty about the future. In
particular, we want our policy to best handle the the worst
possible situation that could arise, out of an uncertainty set of
possible situations. Classically, the uncertainty set is simply
chosen by the user, or it might be estimated in overly sim-
plistic ways with strong assumptions; whereas in this work,
we learn the uncertainty set from complex data from the past.
The past data are drawn randomly from an (unknown) possi-
bly complicated high-dimensional distribution. We propose a
new uncertainty set design and show how tools from statisti-
cal learning theory can be employed to provide probabilistic
guarantees on the robustness of the policy.
Keywords: machine learning, uncertainty sets, robust opti-
mization.

1 Introduction
In this work, we consider a situation often faced by deci-
sion makers: a policy needs to be created for the future that
would be a best possible reaction to the worst possible un-
certain situation; this is a question of robust optimization. In
our case, the decision maker does not know what the worst
situation might be, and uses complex data to estimate the un-
certainty set, which is the set of uncertain future situations.
Here we are interested in answering questions such as: How
might we construct a principled uncertainty set from these
complex data? Can we ensure that with high probability our
policy will be robust to whatever the future brings?

In this paper we address the important setting where de-
tailed data (features) are available to predict each possible
future situation. We turn to predictive modeling techniques
from machine learning to make predictions, and to define
uncertainty sets. Models created from finite data are uncer-
tain: given a collection of historical data, there many be
many predictive models that appear to be equally good, ac-
cording to any measure of predictive quality. This was called
the Rashomon effect by statistician Breiman in [1], and it is
this source of uncertainty in learning that we capture while
designing uncertainty sets.

Our concept is possibly best explained through an illustra-
tive example. Consider the maximum return portfolio allo-

cation problem where our goal is to construct a portfolio of
assets. Let us temporarily say that we know exactly what the
return for each of the assets in the market will be, and denote
r as the vector of these known returns. Let the covariance of
the returns be Σ which is also known in advance. We denote
π as our choice of portfolio weights. We thus solve the basic
decision-making problem:

max
π

rTπ s.t. πT1 = 1, πTΣπ ≤ c, π ≥ 0,

where ()T is the transpose operator, c is a constant and 1 is
the vector of all ones. The three constraints represent that:
(a) the sum of portfolio weights should be equal to one, (b)
the variance of the portfolio return should be bounded and
(c) the portfolio weights should be non-negative. Now let us
consider the more realistic case where the returns r are not
known in advance, and we need to make a decision about
portfolio weights π under uncertainty. If we are able to en-
code our uncertainty about these forecasted returns using an
uncertainty set U , then we can take a robust optimization
(RO) approach and solve the following:

max
π

min
r∈U

rTπ s.t. πT1 = 1, πTΣπ ≤ c, π ≥ 0,

which gives us a best response to the worst possible outcome
r in uncertainty set U . The uncertainty set U can be defined
in many ways, and the central goal of this work is how to
model U from complex data from the past. These data take
the form of features and labels; for instance in the portfolio
allocation problem, the data are {(xi, ri)}ni=1 where an
observation xi ∈ X represents information we could use to
predict the returns ri ∈ Y on past day i. These data might
include macroeconomic indicators such as interest rates,
employment statistics, retail sales and so on, as well as
features of the assets themselves. Having complex data like
this is very common, but often is not considered carefully
within the decision problem. Some of the different ways
uncertainty sets can be constructed are:

• Using a priori assumptions: We may have a priori
knowledge about the range of possible future situations. In
the portfolio allocation problem, we can assume that we
know all possible values of the returns. This knowledge can
guide us in constructing the returns uncertainty set U using
interval constraints. That is, U := {r : ∀j rj ∈ [rj , rj ]}.



Here we ignore the complex past data altogether.

• Using empirical statistics: We could create an uncertainty
set using empirical statistics of the data. In the portfolio
allocation problem, we might define U to be the set of all
return vectors that are close to return vectors ri that have
been realized in the past. Or, U could be the convex hull of
past returns vectors. Here we ignore the xi’s altogether.

• Using linear regression to model complex data: Here, we
use the complex past data {(xi, ri)}ni=1, but we make strong
(potentially incorrect) assumptions on the probability dis-
tribution these data are drawn from. We use these assump-
tions to define a class of “good” predictive models B from
X → Y . Then, given a new feature vector x, we use B to
define an intermediate uncertainty set UB of all possible out-
comes for each situation x, and an uncertainty set U−B to
capture model residuals.

For the portfolio allocation problem, we define B as all
linear models β : X → Y that fall in the confidence interval
determined using a linear regression fit under the usual nor-
mality assumption. We then define UB as predicted returns
from these “good” models given a new feature vector x.
Additionally, using past data and normality assumptions,
we can define the set of model residuals U−B. Finally, UB
and U−B are used to define the set U in the robust portfolio
allocation formulation above.

• Using machine learning to model complex data: This set-
ting is more general than linear regression and with much
weaker assumptions. Methods that make strong assumptions
have limited applicability for modern datasets with thou-
sands of features, and such assumptions may hinder predic-
tion performance. In this work, we only make a single as-
sumption: with high probability, the error due to the “best
in class” model β∗ is bounded with a known constant. Our
policies need to be robust to β∗ that we would choose if we
knew the distribution of data. Thus, we make efforts to en-
sure that the set of good models B that we will construct
contains β∗. Here, B and UB are chosen in a distribution-
independent manner, based on learning theory results.

Being able to define uncertainty sets from predictive mod-
els is important: the uncertainty sets can now be specialized
to a given new situation x̃ ∈ X , and this is true even if we
have never seen x̃ before. For instance, when ordering daily
supplies ri for an ice cream parlor in Boston, an uncertainty
set that depends on the weather xi might be much smaller
than one that does not: it would not be wise to budget for
the largest possible summer sales in the middle of the win-
ter. As the amount of data used for the modeling increases,
the prediction models become more accurate, and can help
us make quantitatively better decisions. Though there have
been attempts to define uncertainty sets in the linear regres-
sion setting [2], ours is the first attempt to tackle the more
general setting in a principled way.

Our goals are twofold: (i) We would like to create un-
certainty sets for the more general machine learning setting
discussed above. In particular, our uncertainty sets are cho-
sen to include predictions from all models in the hypothesis

set B0 that have low enough training error (low in-sample
prediction error). The uncertainty sets we propose are gen-
erated using statistical learning theory [3]. (ii) We would like
to consider the problem of sample complexity. In particular,
we determine how much data the practitioner needs for a
guarantee that their chosen policy will be robust to future
situations. We will produce a probabilistic bound to deter-
mine this.

Our approach for constructing uncertainty sets is flexi-
ble, intuitive, easy to understand from a practitioner’s point
of view, and at the same time can bring all the rich theo-
retical results of learning theory to justify the data-driven
methodology. Our uncertainty set designs can handle predic-
tion models for classification, regression, ranking and other
supervised learning problems. A main theme of this work
is that RO is a new context in which many learning theory
results naturally apply and can be directly used.

In Section 3, we formulate our problem and provide a
workflow for making decisions under learning uncertainty.
In Section 4, we use learning theory techniques to define
uncertainty sets and conclude in Section 5.

2 Background Literature

There are many approaches to decision making under un-
certainty when the uncertainty stems from learning using fi-
nite data. In the optimization literature, there has been a con-
tinued interest in modeling uncertainty sets for robust opti-
mization (RO) using empirical statistics of data, along with
(strong) a priori assumptions about the probability distribu-
tion generating the parameters of a particular model for the
data (e.g., [4]). Gupta et al. [5] explore a way to specify data-
driven uncertainty sets with probabilistic guarantees, where
statistical hypothesis testing is used to construct sets. This
approach has the weaknesses that (i) the hypothesis tests re-
quire assumptions (e.g., normality), and if these assumptions
are false, then the robustness is jeopardized and the guaran-
tees are incorrect, and (ii) the method is designed for non-
complex featureless data. The closest work to ours is possi-
bly that of Goldfarb and Iyengar [2], who provide a linear-
regression-based robust decision making paradigm for port-
folio allocation problems, where they assume a multivariate
linear regression model for the learning step. A big depar-
ture from this approach is that in our work, we are able to
design uncertainty sets for a general class of decision mak-
ing problems while making weak assumptions about the dis-
tributional aspects of the historical data. We base our uncer-
tainty set design on regularized empirical risk minimization,
which allows us to include the best-in-class prediction model
in our uncertainty set with high probability.

Other paradigms that also use empirical statistics of data
are chance constrained programming [6] and various other
stochastic programming techniques. Both stochastic pro-
gramming and robust optimization have extensions, for in-
stance, for multi-stage decision making. We focus on single
stage optimization to highlight the importance of learning
uncertainty.



3 Formulation
Let x ∈ X ⊂ Rd represent a feature vector and y ∈ Y
represent a label. Let β : X 7→ Y be a prediction model
in the hypothesis class B0. For instance, B0 can be the set
of linear predictors B0 = {x 7→ βTx : ‖β‖ ≤ Bb}.
Let l(β(x), y) denote the loss function. The loss measures
the discrepancy between the prediction of a model and the
true outcome/label. For example, (β(x) − y)2 is the least
squares loss and [1 − β(x)y]+ is the hinge loss. For any
given model, let lP(β) = Ex,y[l(β(x), y)] where the expec-
tation is with respect to (x, y) ∼ Px,y which is unknown.
Let β∗ ∈ arg minβ∈B0

lP(β) be defined as the “best in class”
model with respect to our class B0. Note that we cannot cal-
culate β∗ as we do not have the distribution.

Our bound will depend on how much the mass of Px,y

concentrates around β∗(x). It is always true that there exists
a set E and a scalar δe ≥ 0 such that:

Px,y (x, y : |y − β∗(x)| ∈ E) ≥ 1− δe. (1)

This is trivially satisfied if E = Y . In this case, δe can be
set to 0. The quality of the robust solution of Equation (3)
depends on the set E. For a higher quality solution, we want
set E to be as small as possible. The probabilistic guarantee
on the robust solution that we derive in Section 4 depends
on δe. For a better guarantee, we need δe to be as close as
possible to 0. If our model class B0 is very complex and able
to closely capture most y values, this could reduce the size
of set E. Thus we formalize the assumption:
Assumption A: We know a pair (E, δe) such that Equation
(1) holds.

Let {x̃j}mj=1 be the feature vectors on which we make
predictions, and these predictions parameterize a decision
making problem. In particular, let all the uncertain parame-
ters of the decision problem be denoted by a vector u and let
uβ be the part of u that is derived from a statistical model
(subscript β is used to the corresponding statistical model
β). Thus, given {x̃j}mj=1, uβ := [β(x̃1) · · ·β(x̃m)]T . Let
the remaining part of u, denoted by u−β , include the real-
izations of model residuals and realizations of any other set
of random variables parameterizing the decision problem.
Without loss of generality, let uT = [uTβ uT−β ].

Given a realization of u, let the (basic non-robust) deci-
sion making problem be written as:

min
π
f(π,u) (2)

subject to
F (π,u) ∈ K

Here π ∈ Π ⊆ Rd1 is the decision vector, u ∈ Rd2 is the
parameter and f : Π × Rd2 → R is the objective function.
Function F : Π × U → K and convex cone K ⊆ Rd3 de-
scribe the constraints of the problem.

The robust version of the decision problem in Equation
(2) is thus:

min
π

max
u∈U

f(π,u) (3)

subject to
F (π,u) ∈ K for all u ∈ U

where U ⊂ Rd2 represents the uncertainty set.
Let B represent a set of “good” prediction models. Let

U = UB × U−B such that uβ ∈ UB and u−β ∈ U−B. Here,
UB corresponds to B in the following way: UB := {uβ :
β ∈ B}. On the other hand, U−B corresponds to a set that
captures the support of most model error residuals and other
random variables.

In Section 1, the maximum return portfolio allocation
problem is a specific instance of the decision problem in
Equation (2). The robust portfolio allocation problem is
an instantiation of the robust formulation in Equation (3),
where UB captures all the predictions of a set of “good”
models and U−B captures the support of model residuals.

If we know uβ and u−β beforehand with certainty (where
they are not random anymore), then we do not need to con-
struct UB and U−B. The interesting case is when the “best
in class” model is not known and as a result modeling UB
and U−B is essential. To solve Equation (3), we prescribe
the following steps:
Step 1: Construct UB and U−B.

(a) Define B using {(xi, yi)}ni=1. We will propose procedures
for designing B using learning theory results in Section 4.
Our sets will be of the form:

B = {β : g(β) ≤ g(βAlg) + c}
where g is some function, βAlg is a specific model and c is
a parameter. These quantities will depend on the learning
algorithm and {(xi, yi)}ni=1.

(b) Define UB and U−B: Recall that UB := {uβ : β ∈ B}
where uβ = [β(x̃1) · · ·β(x̃m)]T . U−B captures the sup-
port of model residuals and other sources of randomness
in the decision problem. This is defined in Section 4 using
the property of the model residuals in Equation (1). The
cartesian product of UB and U−B is U .

Step 2: Obtain a robust solution.
Option 1: If UB and U−B are “nice” sets that can be bounded

using simple sets (such as a box or an ellipsoid)
or if they admit transforming the generic semi-
infinite formulation in Equation (3) to a finite for-
mulation, then solve the transformed problem to
obtain a robust solution π∗.

Option 2: If UB is not a “nice” set, the do the following: sam-
ple L elements {β}Ll=1 from B uniformly. For in-
stance, this can be done using geometric random
walks if B is convex. This defines a finite set UB.
If U−B is also not a “nice” set, then sample L′
elements from it. Solve the sampled version of
Equation (3) to obtain a robust solution π∗ (this
assumes we have a procedure to sample from B
and/or U−B).

4 Uncertainty Sets
We will construct the uncertainty sets UB and U−B for both
the general machine learning and linear regression settings.
Since UB is defined using the set B, we will focus our discus-
sion on constructing B and U−B. We call B the precursor un-
certainty set, or the set of “good” models. While construct-
ing U−B, we will assume that it only captures the support



of model residuals and there is no other randomness. This is
without loss of generality as other sources of uncertainty in
the decision problem can be captured using one of the four
ways mentioned in Section 1.

Let S := {(xi, yi)}ni=1 be the training data which are
independent and identically distributed. Let algorithm A
represent a generic learning procedure. That is, it takes
S as an input and outputs βAlg ∈ B0. Let lS(β) =
1
n

∑n
i=1 l(β(xi), yi) be a function of our sample S. Let A

produce βAlg according to βAlg ∈ arg minβ∈B0
lS(β). That

is, the algorithm A is minimizing the empirical loss.

4.1 Using machine learning to construct B and
U−B:

First we will propose sets B and U−B and then describe the
probabilistic guarantees a robust solution of Equation (3)
enjoys when U = UB × U−B .

Constructing B: To construct B, we will need the following
quantity known as the empirical Rademacher average. For
a set H of functions, the empirical Rademacher average is
defined with respect to a given random sample S′ = {zi}ni=1
as

RS′(H) = Eσ1,...,σn

[
1

n
sup
h∈H

n∑
i=1

σih(zi)

]
where for each i = 1, .., n, σi = ±1 with equal probabil-
ity. The interpretation of the Rademacher average is that it
measures the ability of function classH to fit noise, coming
from the random σ′is. If the function class can fit noise well,
it is a highly complex class. The Rademacher average is one
of many ways to measure the richness of a function class,
including covering numbers, fat-shattering dimensions and
the Vapnik-Chervonenkis dimension.

With the above definition we can define B as follows:

B :=

{
β ∈ B0 :

lS(β) ≤ lS(βAlg) + 2RS(l ◦ B0) + 4M

√
log 3

δ

2n

 ,

(4)

where M is a bound on the range of the loss function l and δ
is pre-specified, as we discuss below. Also, n is the number
of examples in our data S, lS(βAlg) is the empirical loss of
the predictive model βAlg and RS(l ◦ B0) is the empirical
Rademacher complexity of the function class l◦B0 := {β 7→
l(β(·), ·) : β ∈ B0}.

By plugging in different loss functions, we obtain dif-
ferent uncertainty sets. For instance, when l(β(x, y)) =
(β(x)− y)2, we have:

B =
{
β :

n∑
i=1

(yi − β(xi))2 ≤

n∑
i=1

(yi − βAlg(xi))2 + 2RS(l ◦ B0) + 4M

√
log 3

δ

2n

}
.

One of the advantages of defining precursor uncertainty
set B in this way is that it directly links the uncertainty in
decision making to the loss function l(β(x), y) and S of the
machine learning step. We chose, among other choices, the
empirical Rademacher average in defining B because the
other choices such as covering number and VC-dimension
do not make use of the data sample S in their definition,
whereas the empirical Rademacher average can reflect the
properties of the particular unknown distribution Px,y of the
data source.

Constructing U−B: We define U−B := Em (m copies ofE)
where E is satisfies Equation (1) for a given δe and m is the
number of predictions (equal to the length of the vector uβ).
Intuitively, U−B is capturing the support of prediction errors
if we knew the “best in class” model β∗.

Our construction of B and U−B leads us to a theoretical
guarantee on the robust optimal solution π∗ if the loss
function that we pick is L-Lipschitz. We will not require
assumptions on the unknown data distribution to state our
guarantee. For instance, we will not assume that the data
came from a linear model with normal noise.

Theorem 4.1. If UB is defined using B described in Equa-
tion (4) and U−B is defined as described above, using Equa-
tion (1) and Assumption A, then the following hold:

1. With probability at least 1− δ, β∗ ∈ B.
2. Robust optimal solution π∗ of Equation (3) is feasible for

unknown {(x̃j , ỹj)}mj=1 with probability at least 1− (δ+
mδe). That is,

PS,{(x̃j ,ỹj)}mj=1
(F (π∗,u) ∈ K) ≥ 1− (δ +mδe),

where uT = [uTβ∗ uT−β∗ ].

This theorem provides a guarantee that the robust op-
timal solution we find will be robust to the unknown
{(x̃j , ỹj)}mj=1. In particular, π∗ will be robust to u with
components

uβ = [β∗(x̃1) . . . β∗(x̃j) . . . β∗(x̃m)]T

and
u−β = [ỹ1 . . . ỹj . . . ỹm]T−[β∗(x̃1) . . . β∗(x̃j) . . . β∗(x̃m)]T .

The theorem holds for any choice of loss function lS obeying
the Lipschitz and boundedness properties.

We attempt to insure against all possible predictions made
by the “best in class” model β∗ in a particular way: by first
ensuring β∗ belongs to B with high probability in Theorem
4.1 and then ensuring that the random errors ỹj−β∗(x̃j) are
in U−B also with high probability via Equation (1). Thus the
true {ỹj}mj=1 belong to the cartesian product UB×U−B with
high probability.
Remark 4.2. This theorem tells us how the choice of B0 af-
fects the size of our precursor uncertainty setB. Interestingly
enough, if we work with a (possibly infinite) set of predic-
tive models B0 such that their empirical Rademacher aver-
ageRS(l◦B0) scales asO(n−

1
2 ), then we have similar quan-

titative dependence on n compared to that of confidence-
interval based approaches (that make explicit distributional



assumptions; see Section 4.4). In fact, for many interesting
model classes the scaling of the empirical Rademacher com-
plexity is indeed O(n−

1
2 ) which we will show shortly.

Computing terms in the definition of B: The terms ap-
pearing in the expression for B in Equation (4) are all com-
putable; however, it may sometimes be difficult to compute
the value of RS(l ◦ B0) efficiently. In these cases, we have
two options. The first one involves finding upper bounds
on RS(l ◦ B0). This can be tricky as RS depends on the
data. The second one involves defining B directly in terms
of Rademacher averageR(l ◦ B0) and using it in the robust
decision making problem:

B :=

{
β ∈ B0 :

lS(β) ≤ lS(βAlg) + 2R(l ◦ B0) + 3M

√
log 2

δ

2n

}
, (5)

where the Rademacher average is defined to be the expecta-
tion of the empirical Rademacher average over the random
sample S:

R(H) = Ez1,...,zn [RS(H)] . (6)

It can be shown that the optimal robust solution obtained
using the set in (5) enjoys a guarantee similar to the solution
obtained using the set in (4) with slightly different constants.
Thus we can either bound the Rademacher averageR(l◦B0)
or its empirical version RS(l ◦ B0) in order to define B. In
this regard, we can make use of the various relationships in
Theorem 12 of [7]. The following are some example upper
bounds ofR(l ◦ B0) andRS(l ◦ B0).

• Linear function class with squared loss:

R(B0) ≤ XbBb√
n

, andR(l ◦ B0) ≤ 4XbBb
XbBb√

n

where the latter inequality is obtained using Corollary
3.17 in [8], which relates R(l ◦ B0) and R(B0). That
is, when the loss function l(β(x), y) is L-Lipschitz we
have: R(l ◦ B0) ≤ L · R(B0). For the squared loss
function, L = 4XbBb if ∀x ∈ X , ‖x‖2 ≤ Xb and
∀β ∈ B0, ‖β‖2 ≤ Bb. This bound does not depend on
data sample S. In general, bounds for R(l ◦ B0) can be
precomputed given a choice of loss function and model
class.

• Kernel based function classes: In this setting, the function
class B0 is:

B0 =

{
x 7→

n∑
i=1

αik(x, xi) :

n ∈ N, x ∈ X ,
∑
i,j

αiαjK(xi, xj) ≤ Bb


where k : X × X → R is a bounded kernel. (Here k is
called a kernel if an n × n Gram matrix K with entries

(K)i,j = k(xi, xj) is positive semi-definite.) This func-
tion class is used in Support Vector Machines (SVMs)
(e.g., see [9]) when the loss function is chosen to be the
hinge-loss. The following result (see Lemma 22 in [7])
can be used assuming the loss function is L-Lipschitz as
before to upper boundRS(l ◦ B0):

RS(B0) ≤ Bb
n

√√√√ n∑
i=1

k(xi, xj),

and RS(l ◦ B0) ≤ LBb
n

√√√√ n∑
i=1

k(xi, xj).

This upper bound is similar to the previous case (linear
function class and squared loss) when we choose the ap-
propriate kernel and loss function. In particular, using the
dot product kernel k(xi, xj) = (xi)Txj we get:

RS(l ◦ B0) ≤ LBb
n

√√√√ n∑
i=1

k(xi, xj) = LBb
n

√√√√ n∑
i=1

(xi)Txj

≤ LBb
n

√
nX2

b = 4XbBb
XbBb√

n
.

Proof of Theorem 4.1:
Consider the random variable lS(β∗) − lS(βAlg), which

depends on the random sample S. We can upper bound it by:

lS(β∗)−lS(βAlg)

= lS(β∗)− lP(β∗) + lP(β∗)− lS(βAlg)

≤ lS(β∗)− lP(β∗) + lP(βAlg)− lS(βAlg)

≤ lS(β∗)− lP(β∗) + max
β∈B0

(lP(β)− lS(β)) (7)

where we added and subtracted lP(β∗) in the first step, then
in the second step substituted βAlg for β∗ in the third term
to increase the value of the right hand side, and finally in the
last step, replaced the last two terms with a max operation
over B0.

The first term in the expression on the right hand side of
(7) will go to zero in probability as n → ∞ due to concen-
tration, and this can be quantified for finite n via Hoeffding’s
inequality.
Lemma 4.3. (Hoeffding’s inequality.) Let z1, ..., zn be n
i.i.d. random variables and let h be a bounded function,
a ≤ h(z) ≤ b. Then for all ε > 0 we have

Pz1,...,zn

(
1

n

n∑
i=1

h(zi)− Ez1 [h(z1)] > ε
)

≤ exp

(
− 2nε2

(b− a)2

)
.

In our case, the sample S is represented by {(xi, yi)}ni=1.
For the fixed function β∗(x), the function l(β∗(x), y) is
bounded in the interval [0,M ]. The empirical average
1
n

∑n
i=1 l(β

∗(xi), yi) (= lS(β∗)) thus gets close to its mean



E[l(β∗(x), y)] (= lP(β∗)) as n increases. Using the one-
sided version of Hoeffding’s inequality above, we see that
with probability at least 1− δ1,

lS(β∗)− lP(β∗) ≤M

√
log 1

δ1

2n
. (8)

The second term in (7), maxβ∈B0
(lP(β) − lS(β)), is a

random variable that depends on the sample S in a more
complicated way than in the first term. We can use the (one-
sided) McDiarmid’s inequality to claim that this random
variable is close to its mean as n increases.

Lemma 4.4. (McDiarmid’s inequality.) Let z1, ..., zn be n
i.i.d. random variables in a set A and h(z1, ..., zn) be a func-
tion such that for all i = 1, ..., n

sup
(z1,...,zn,z̃)∈An+1

|h(z1, ...,zi, ..., zn)

− h(z1, ..., z̃, ..., zn)| ≤ c.

Then for all ε > 0,

Pz1,...,zn

(
h(z1, ..., zn)−E[h(z1, ..., zn)] > ε

)

≤ exp

(
− 2ε2

nc2

)
.

In our case, the function h is maxβ∈B0
(lP(β)− lS(β)).

We can show that if the ith instance in the sample S is per-
turbed, the maximum change in the function value is M

n . Let
maxβ∈B0

(lP(β)− lS(β)) ≥ maxβ∈B0
(lP(β)− lSi(β))

where lSi(β) is the same as lS(β) except for the ith exam-
ple, which is changed from (xi, yi) to a new example xi◦, y

i
◦.

Also let β◦ ∈ arg maxβ∈B0
(lP(β)− lS(β)). Then,

max
β∈B0

(lP(β)− lS(β))− max
β∈B0

(lP(β)− lSi(β))

≤ (lP(β◦)− lS(β◦))− (lP(β◦)− lSi(β◦))
≤− lS(β◦) + lSi(β

◦)

=
1

n

(
l(β◦(xi◦), y

i)− l(β◦(xi), yi)
)
≤ M

n
.

We can do an identical calculation to get the same
upper bound M

n if maxβ∈B0
(lP(β)− lS(β)) ≤

maxβ∈B0
(lP(β)− lSi(β)). Thus, with probability at

least 1− δ2,

max
β∈B0

(lP(β)− lS(β)) ≤

E[max
β∈B0

(lP(β)− lS(β))] +M

√
log 1

δ2

2n
. (9)

The quantity E[maxβ∈B0
(lP(β)− lS(β))] captures the

complexity or size of B0 (or actually, its composition with
the loss function l, which is the set l ◦ B0). We can upper
bound this quantity in terms of a Rademacher average (see
Equation (6)) using a symmetrization trick.

Lemma 4.5. (Upper bound)
E[max
β∈B0

(lP(β)− lS(β))] ≤ 2R(l ◦ B0). (10)

Proof. See Theorem 8 in [7].
The empirical Rademacher average also concentrates

around its mean and this can be proved again by McDi-
armid’s inequality. In this case, from Lemma 4.4, the func-
tion h is represented by RS(l ◦ B0). We can again show
(Theorem 11 in [7]) that if the ith instance in the sample S
is perturbed, the maximum change in the function value is
M
n . Thus, with probability at least 1− δ3,

R(l ◦ B0) ≤ RS(l ◦ B0) +M

√
log 1

δ3

2n
. (11)

In summary we have the following statements for the
terms on the right hand side of (7):

1. With probability 1 − δ1 over S, lS(β∗) − lP(β∗) ≤

M

√
log 1

δ1

2n from (8).
2. With probability 1− δ2 over S,

max
β∈B0

(lP(β)− lS(β)) ≤ 2R(l ◦ B0) +M

√
log 1

δ2

2n
,

where we have substituted the value of
E[maxβ∈B0

(lP(β)− lS(β))] from (10) into (9).
3. With probability 1−δ3 over S,R(l◦B0) ≤ RS(l◦B0)+

M

√
log 1

δ3

2n from (11).
Combining these gives us the following key lemma.

Lemma 4.6. With probability at least 1− δ,

lS(β∗)− lS(βAlg) ≤ 2RS(l ◦ B0) + 4M

√
log 3

δ

2n
. (12)

Proof. Consider the three events:

E1 =

{
lS(β∗)− lP(β∗) ≤M

√
log 1

δ1

2n

}

E3 =

{
max
β∈B0

(lP(β)− lS(β))

≤ 2R(l ◦ B0) +M

√
log 1

δ2

2n

}

E2 =

{
R(l ◦ B0) ≤ RS(l ◦ B0) +M

√
log 1

δ3

2n

}
We know that with probabilities δ1, δ2, δ3 over the random
sample S, these events do not happen. Thus using the union
bound,

PS(Ē1 ∪ Ē2 ∪ Ē3) ≤ PS(Ē1) + PS(Ē2) + PS(Ē3)

= δ1 + δ2 + δ3

⇒ PS(E1 ∩ E2 ∩ E3) ≥ 1− δ1 + δ2 + δ3.

Substituting δ
3 for δ1, δ2 and δ3 and using (7), we get the

result as stated.



The implication of this lemma is that the empirical risk
for the ‘best-in-class’ function β∗ is less than the right hand
side quantities, all of which are computable. This implies
that even though we do not know β∗, we know it belongs
to our precursor uncertainty set with high probability. As the
number of instances n increases, the size of the set decreases
and we are more sure that we have captured β∗ within our
precursor uncertainty set.

We need one more lemma that extends Equation (1) to
when we have m simultaneous errors using a union bound
argument.
Lemma 4.7. With probability at least 1 −mδe over m ex-
amples {(x̃j , ỹj)}mj=1,

max
j=1,...,m

|ỹj − β∗(x̃j)| ∈ E

Proof. From Equation (1),
Px̃j ,ỹj (|ỹj − β∗(x̃j)| 6∈ E) ≤ δe j = 1, ...,m

Summing up these probabilities give us an upper boundmδe
on the probability that at least one of these errors is outside
E. The complement of this event is the event where none of
the m errors are outside E simultaneously. Computing the
probability of this event with respect to the randomness of
{(x̃j , ỹj)}mj=1 gives us the desired result.

Coming back to proving Theorem 4.1, we now make the
following observations:
• Using the definition of set B and Lemma 4.6, we see that
β∗ ∈ B with probability 1 − δ. This implies that with
probability at least 1− δ, uβ∗ ∈ UB.

• Using the definition of set U−B, which is equal to Em,
and Lemma 4.7 we see that u−β∗ ∈ U−B with probability
at least 1−mδe.
Robust optimal solution π∗ of Equation (3) is robust to

any element of U = UB × U−B. In particular, it is robust
to the random vector [uTβ∗ uT−β∗ ]

T generated by the “best
in class” model β∗ with high probability. That is, we can
combine the observations above using a union bound to get
a guarantee of robustness of π∗ to unknown future situations
determined by the unknown model β∗:

PS,{(x̃j ,ỹj)}mj=1

(
F (π∗, [uTβ∗ uT−β∗ ]

T ) ∈ K
)
≥ 1− (δ +mδe).

This concludes the proof of Theorem 4.1.

4.2 Using machine learning with a finite
hypothesis set B0 to construct B and U−B:

When B0 consists of a finite number of models, we can de-
fine B without using the notion of Rademacher averages. Let
|B0| represent the size of the set B0. Then we can define the
set of good models as:

B :=

{
β ∈ B0 :

lS(β) ≤ lS(βAlg) +M

√
log |B0|+ log 2

δ

2n
+M

√
log 2

δ

2n

}
,

(13)

where n, δ,M, lS(·) and βAlg are the same as before.

Theorem 4.8. For finite B0, the conclusion of Theorem 4.1
holds if UB is defined using B described in Equation (13).

Proof. It is sufficient to show is that with probability at least
1 − δ, β∗ ∈ B where B is defined in Equation (13). To see
this, consider the second term of Equation (7) again. It is a
function of random sample S. We can bound the probability
of the event {maxβ∈B0(lP(β)− lS(β)) > ε} as follows:

PS
(

max
β∈B0

(lP(β)− lS(β)) > ε
)

= PS
(
∪|B0|
i=1 {lP(βi)− lS(βi) > ε}

)
(a)

≤
|B0|∑
i=1

PS
(
lP(βi)− lS(βi) > ε

)
(b)
=

|B0|∑
i=1

e−
2nε2

M2 = elog |B0|− 2nε2

M2 .

Here, (a) follows from taking a union bound, and (b) follows
from applying Hoeffding’s inequality to each fixed model

βi, i = 1, ..., |B0|. Setting δ2 = elog |B0|− 2nε2

M2 and replacing
ε gives us the following equivalent way to state the same
result: with probability at least 1− δ2 over S,

max
β∈B0

(lP(β)− lS(β)) ≤M

√
log |B0|+ log( 1

δ2
)

2n
.

From Equation (8), we have the following statement for the
first term on the right hand side of (7): with probability 1−δ1
over S, lS(β∗)− lP(β∗) ≤M

√
log 1

δ1

2n .
Using a union bound with these two observations about

the first and second terms of Equation (7) gives us the
following statement when δ1 = δ2 = δ/2: with prob-
ability at least 1 − δ over S, lS(β∗) − lS(βAlg) ≤

M

√
log |B0|+log( 2

δ )

2n + M

√
log 2

δ

2n . Thus β∗ ∈ B with prob-
ability 1− δ as desired.

4.3 Using PAC-Bayes theory for classification to
construct B and U−B:

If the learning step is a classification task, we can also define
B using the PAC-Bayes framework [10] where PAC means
“probably approximately correct”. An important distinction
of this framework is that it does not seek a single empir-
ically good classifier βAlg and instead the objective is to
find a good “posterior” distribution Q over the hypothesis
set B0. The theory provides a probabilistic guarantee that
holds uniformly over all posterior distributions. The frame-
work then picks a Q using data S so that the corresponding
aQ-weighted deterministic classifier (or aQ-based random-
ized classifier) has the optimal probabilistic guarantee.

In particular, consider the Q-based Gibbs classifier GQ,
which makes each prediction by choosing a classifier from
B0 according toQ. Let the Q-based Gibbs classifier have the
following risks: (a) expected risk R(GQ) := Eβ∈Q[lP(β)],



and (b) empirical risk RS(GQ) := Eβ∈Q[lS(β)] where
lP(β) and lS(β) were defined previously. The PAC-Bayes
framework guarantees that for all Q, R(GQ) is bounded by
RS(GQ) and a term which captures the deviation of Q from
a pre-specified ‘prior’ distribution P over B0.
Theorem 4.9. (Theorem 2.1 [11]) Let l(β(x), y) :=
1[β(x) 6= y]. For any Px,y , any B0, any prior P on B0,
any δ ∈ (0, 1] and any convex function D : [0, 1]2 → R, we
have

PS (∀Q on B0 : D(RS(GQ), R(GQ)) ≤
1

n

[
KL(Q||P ) + log

(
1

δ
ESEβ∼P emD(lS(β),lS(β))

)])
≥ 1− δ, (14)

where KL(Q||P ) := Eβ∼Q[log Q(β)
P (β) ].

For a certain choice of the metric D as shown in [11],
the above theorem gives a bound on R(GQ) that is pro-
portional to CnRS(GQ) + KL(Q||P ) where C is a pre-
specified constant. We can minimize this quantity to get
an optimal distribution QAlg with a closed form expression:
QAlg(β) = 1

ZP (β)e−CnlS(β) where Z is a normalizing con-
stant.

Our construction of B for the model uncertainty set UB
uses QAlg as follows:

B =

{
β ∈ B0 : lS(β) ≤ logP (β)− α

nC

}
,

where α > 0 is a fixed constant, P (β) is the prior probability
density of model β, and C is a constant that appears in the
objective when we solve for QAlg. Intuitively, the set B in-
cludes all models such that their empirical error is bounded
appropriately using their scaled log prior density values. By
our construction, if β ∈ B, then QAlg(β) is greater than the
threshold eα

Z . There is no notion of a best-in-class model β∗
in the PAC-Bayes setting and thus we do not have guarantees
similar to the case where we used uniform convergence re-
sults to define B. Nonetheless, B is data driven and captures
those models which have a high posterior density in B0. UB
and U−B are defined using B and Equation (1) in the same
way as before and used in the decision problem to obtain
robust solution π∗.

4.4 Using linear regression to construct B and
U−B:

As suggested in [2] in the specific context of robust portfolio
selection problems, we can assume distributional properties
on {(xi, yi)}ni=1 (Assumption 1) in addition to assuming
the functional form of the map x 7→ β(x) (Assumption 2).
In particular, let y = β(x) + ε where β(x) = βTx be the
functional form of the model. Let us also assume that x is
not necessarily random. The only source of randomness is
through ε which is independent from example to example
and is distributed according to N (0, σ2). Then an estimator
of β∗ (the “best” model) is given by:

βAlg = (XTX)−1XTY

where X is a matrix with n rows, one for each xi and Y is
an n × 1 vector with the ith element being yi. We assume
that the rank of X is d. Substituting Y = Xβ∗ + ε above
gives us:

βAlg − β∗ = (XTX)−1XT ε

which is then distributed as N (0, σ2(XTX)−1). Thus,
the real-valued function g(β∗, S) := 1

σ2 (βAlg −
β∗)(XTX)(βAlg−β∗) is a χ2

d distributed random variable.
We can find a range such that with high probability the χ2

d
distributed random variable g(β∗, S) belongs to it. Choos-
ing B based on this interval gives us an ellipsoid centered at
βAlg as follows:

B =

{
β :

1

σ2
(βAlg − β)(XTX)(βAlg − β) ≤ c

}
where c is a constant that determines how much of the prob-
ability mass of χ2

d is within the set B.
Set U−B can be defined using our assumption about the

model residuals: ε = (y − βTx) ∼ N (0, σ2). In particu-
lar, using Equation (1), we get interval E = [−e, e] for any
desired value of δe by solving the equation:∫ e

−e

1√
2πσ

e−
s

2σ2 ds = 1− δe

Using B and UB as defined above in the robust problem of
Equation (3) gives us a natural guarantee on the robustness
of π∗ to the “best in class” model β∗.

If σ2 is unknown, regression theory provides the follow-
ing fix. We obtain an unbiased estimator of σ2 given by
s2 =

‖Y−XβAlg‖22
n−d . The resulting scaled random variable

1
ds2 (βAlg−β)(XTX)(βAlg−β) is F−distributed with d de-
grees of freedom in the numerator and n−d degrees of free-
dom in the denominator [12]. We can again define B sim-
ilarly to the previous case. The constant c now determines
how much of the probability mass of an Fd,n−d-distributed
random variable is within B.

Note that both Assumption 1 and Assumption 2 (or their
variations for similar models) are needed to justify this con-
struction. Contrast this with the setting of Section 4.1 where
a much weaker assumption was made. In the above illustra-
tion for multivariate regression, we assumed a fixed design
(xi were not random) whereas in the setting of Section 4.1
xi are random.

5 Conclusion
In this paper, we considered a class of single-stage decision
making problems where the uncertainty is derived from sta-
tistical modeling. We present a principled way to design un-
certainty sets in the robust optimization framework for these
problems using statistical learning theory. The core idea in
the construction of the uncertainty sets is to construct B so
that it contains the “best in class” model β∗ with high proba-
bility. Then if we solve the optimization problem to be robust
to all of B, it will be robust to β∗.
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