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Abstract

In this paper, we consider a supervised learning setting where
side knowledge is provided about the labels of unlabeled ex-
amples. The side knowledge has the effect of reducing the hy-
pothesis space, leading to tighter generalization bounds, and
thus possibly better generalization. We consider two types of
side knowledge, the first leading to linear constraints on the
hypothesis space, and the second leading to quadratic con-
straints on the hypothesis space. We show how different types
of domain knowledge can lead directly to these kinds of side
knowledge. We prove bounds on complexity measures of the
hypothesis space for quadratic side knowledge, and show that
these bounds are tight in a specific sense.

1 Introduction
Surely, for many applications the amount of domain knowl-
edge we could potentially use within our learning processes
is vastly larger than the amount of domain knowledge we
actually use. One reason for this is that domain knowledge
may be nontrivial to incorporate into algorithms or analy-
sis. A few types of domain knowledge that do permit anal-
ysis have been explored quite in depth in the past few years
and used very successfully in a variety of learning tasks; this
includes knowledge about the sparsity properties of linear
models (`1-norm constraints, minimum description length)
or smoothness properties (`2-norm constraints, maximum
entropy). A reason that domain knowledge is not usually in-
corporated in theoretical analysis is that it can be very prob-
lem specific; it may be too specific to the domain to have an
overarching theory of interest. For example, researchers in
NLP (Natural Language Processing) have long figured out
various exotic domain specific knowledge that one can use
while performing a learning task (Chang, Ratinov, and Roth,
2008; Chang et al., 2008). The present work aims to provide
theoretical guarantees for a large class of problems with a
general type of domain knowledge that goes beyond spar-
sity and smoothness.

To define this large class of problems, we will keep the
usual supervised learning assumption that the training ex-
amples are drawn i.i.d. Additionally in our setting, we have a
different set of examples without labels, not necessarily cho-
sen randomly. For this set of unlabeled examples, we have
some prior knowledge about the relationships between their
labels, which affects the space of hypotheses we are search-

ing over within our learning algorithms. These assumptions
can, for example, take into account our partial knowledge
about how any learned model should predict on the unla-
beled examples if they were encountered. We consider two
types of side knowledge, namely constraints on the unla-
beled examples leading to (i) linear constraints on a linear
function class, and (ii) quadratic constraints on a linear func-
tion class. Our main contributions are:
• To show that linear and quadratic constraints on a lin-

ear hypothesis space can arise naturally in many circum-
stances, from constraints on a set of unlabeled examples.
This is in Section 2. We connect these with relevant semi-
supervised learning settings.

• To provide a bound on the complexity of the hypothesis
space for the quadratic constraint case, which is tighter
than previous results. This can be used directly in gen-
eralization bounds. Our bound is contained in Section 3.
Bounds for the case of linear constraints are found in Sec-
tion 3.2. The bounds in Section 3.2 are not original to
this paper, but their application to general side knowledge
with linear constraints is novel. The quadratic bounds of
Section 3.3 are novel to this paper.

• To show that the upper bound on the hypothesis space we
provided has a matching lower bound, also in Section 3.3.

Side knowledge can be particularly helpful in cases where
data are scarce; these are precisely circumstances when data
themselves cannot fully define the predictive model, and
thus domain knowledge can make an impact in predictive
accuracy. That said, for any type of side knowledge (spar-
sity, smoothness, and the side knowledge considered here),
the examples and hypothesis space may not conform in real-
ity to the side knowledge. (Similarly, the training data may
not be truly random in practice.) However, if they do, we can
claim lower sample complexities, and potentially improve
our model selection efforts. Thus, we cannot claim that our
side knowledge is always true knowledge, but we can claim
that if it is true, we are able to gain some benefit in learning.

2 Linear and Quadratic Constraints
We are given training sample S of n examples {(xi, yi)}ni=1
with each observation xi belong to a set X in Rp. Let the
label yi belong to a set Y in R. In addition, we are given
a set of m unlabeled examples {x̃i}mi=1. We are not given
the true labels {ỹi}mi=1 for these observations. Let F be the



function class (set of hypotheses) of interest, from which we
want to choose a function f to predict the label of future
unseen observations. Let it be linear, parameterized by coef-
ficient vector β and its description will change based on the
constraints we place on β.

Consider the empirical risk minimization problem:
minf∈F

1
n

∑n
i=1 l(f, {xi, yi}). Regularization on f acts to

enforce assumptions that the true model comes from a re-
stricted class, so that F is now defined as

{f |f : X 7→ Y, f(x) = βTx,Rl(f) ≤ cl for l = 1, ..., L},

where ()T represents the transpose operation. Here we have
appended L additional constraints for regularization to the
description of the hypothesis setF . Especially if the training
set is small, side knowledge can be very powerful in reduc-
ing the size of F . Particularly if constants {cl}Ll=1 are small,
the size of F be reduced substantially.

2.1 Assumptions leading to linear constraints
We will provide three settings to demonstrate that linear con-
straints arise in a variety of natural settings: poset, must-link,
and sparsity on {ỹi}mi=1. In all three, we will include stan-
dard regularization of the form ‖β‖q ≤ c1 by default.
Poset: Partial order information about the labels {ỹi}mi=1 can
be captured via the following constraints: f(x̃i) ≤ f(x̃k)+c
for any collection of pairs (i, k) ∈ [1, ...,m]×[1, ...,m]. This
gives us up to m2 constraints of the form βT (x̃i − x̃k) ≤
c. F can be described as: F := {f |f(x) = βTx, ‖β‖q ≤
c1, β

T (x̃i − x̃k) ≤ ci,k,∀(i, k) ∈ E}, where E is the set of
pairs of indices of unlabeled data that are constrained.
Must-link: Here we bound the absolute difference of labels
between pairs of unlabeled examples: |f(x̃i) − f(x̃j)| ≤ c.
This captures knowledge about the nearness of the labels.
This leads to two linear constraints:−c ≤ βT (x̃i− x̃j) ≤ c.
These constraints have been used extensively within the
semi-supervised (Zhu, 2005) and constrained clustering set-
tings (Lu and Leen, 2004; Basu et al., 2006) as must-link
or ‘in equivalence’ constraints. For must-link constraints, F
is defined as: F := {f |f(x) = βTx, ‖β‖q ≤ c1,−ci,j ≤
βT (x̃i − x̃j) ≤ ci,j ,∀(i, j) ∈ E}, where E is again the set
of pairs of indices of unlabeled data that are constrained.
Sparsity and its variants on a subset of {ỹi}mi=1: Similar
to sparsity assumptions on β, here we want that only a small
set of labels is nonzero among a set of unlabeled examples.
In particular, we want to bound the cardinality of the support
of the vector [ỹ1 . . . ỹ|I|] for some index set I ⊂ {1, ...,m}.
Such a constraint is nonlinear. Nonetheless, a convex con-
straint of the form ‖[ỹ1 . . . ỹ|I|]‖1 ≤ c (2|I| linear con-
straints) can be used as a proxy to encourage sparsity. The
function class is defined as: F := {f |f(x) = βTx, ‖β‖q ≤
c1, ‖[βT x̃1 . . . β

T x̃|I|]‖1 ≤ c}, A similar constraint can be
obtained if we instead had a partial information about the
dual norm ‖[ỹ1 . . . ỹ|I|]‖∞.

2.2 Assumptions leading to quadratic constraints
We will provide several settings to show that quadratic con-
straints arise naturally.

Must-link: A constraint of the form (f(x̃i) − f(x̃j))
2 ≤ c

can be written as 0 ≤ βTAβ ≤ c with A = (x̃i −
x̃j)(x̃i − x̃j)

T . Here A is rank-deficient as it is an outer
product, which leads to an unbounded ellipse; however, its
intersection with a full ellipsoid (for instance, an `2-norm
ball) is not unbounded and indeed can be a restricted hy-
pothesis set. Set F is defined by: F = {β : βTβ ≤
c1, β

T (x̃i − x̃j)(x̃i − x̃j)Tβ ≤ ci,j ; (i, j) ∈ E}, where E
is again the set of pairs of indices of unlabeled data that are
constrained.
Constraining label values for a pair of examples: We can
define the following relationship between the labels of two
unlabeled examples using quadratic constraints: if one of
them is large in magnitude, the other is necessarily small.
This can be encoded using the inequality: f(x̃i) · f(x̃j) ≤
c. If f(x) ∈ Y ⊂ R+, then f(x̃i) · f(x̃j) ≤ c gives
the following quadratic constraint on β with the associated
rank 1 matrix being A = x̃ix̃

T
j : βTAβ ≤ c. This is not

quite an ellipsoidal constraint yet because matrices asso-
ciated with ellipsoids are symmetric positive semidefinite.
Matrix A on the other hand is not symmetric. Nonethe-
less, the quadratic constraint remains intact when we re-
place matrix A with the symmetric matrix 1

2 (A + AT ). If
in addition, the symmetric matrix is also positive-definite
(which can be verified easily), then this leads to an ellip-
soidal constraint. The hypothesis space F becomes: F ={
β : βTβ ≤ C1, β

T x̃ix̃
T
j β ≤ ci,j ; (i, j) ∈ E

}
.

Energy of estimated labels: We can place an upper
bound constraint on the sum of squares (the “energy”)
of the predictions, which is: ||XT

Uβ||22 =
∑
i(β

T x̃i)
2 =

βT (
∑
i x̃ix̃

T
i )β where XU is a p × m dimensional ma-

trix with x̃i’s as its columns.1 The set F is F ={
β : βTβ ≤ c1, ||XT

Uβ||22 ≤ c
}

. Extensions like having the
norm act on only a subset of the estimates of {ỹ}mi=1 follow
accordingly.
Smoothness and other constraints on {ỹi}mi=1: Consider
the general ellipsoid constraint ‖ΓXT

Uβ‖22 ≤ c where we
have added an additional transformation matrix Γ in front
of XT

Uβ. If Γ is set to the identity matrix, we get the en-
ergy constraint previously discussed. If Γ is a banded ma-
trix with Γi,i = 1 and Γi,i+1 = −1 for all i = 1, ...,m
and remaining entries zero, then we are encoding the side
knowledge that the variation in the labels of the unlabeled
examples is smoothly varying: we are encouraging the un-
labeled examples with neighboring indices to have similar
predicted values. This matrix Γ is an instance of a differ-
ence operator in the numerical analysis literature. In this
context, banded matrices like Γ model discrete derivatives.
By including this type of constraint, problems with identi-
fiability and ill-posedness of an optimal solution β are al-
leviated. That is, as with the Tikhonov regularization on β
in least squares regression, constraints derived from ma-
trices like Γ reduce the condition number. The set F is
F =

{
β : βTβ ≤ c1, ‖ΓXT

Uβ‖22 ≤ c
}
.

Graph based methods: Some graph regularization meth-
ods such as manifold regularization (Belkin and Niyogi,

1Note that this notation is not the usual notation where obser-
vations x̃i’s are stacked as rows.



2004) also encode information about the labels of the unla-
beled data. They also lead to convex quadratic constraints
on β. Here, along with the unlabeled examples {x̃i}mi=1,
our side knowledge consists of an m-node weighted graph
G = (V,E) with the Laplacian matrix LG = D − A. Here,
D is am×m-dimensional diagonal matrix with the diagonal
entry for each node equal to the sum of weights of the edges
connecting it. Further, A is the adjacency matrix containing
the edge weights aij , where aij = 0 if (i, j) /∈ E and aij =

e−c‖x̃i−x̃j‖q if (i, j) ∈ E (other choices for the weights are
also possible). The quadratic function (XT

Uβ)TLG(XT
Uβ) is

then twice the sum over all edges, of the weighted squared
difference between the two node labels corresponding to
the edge: 2

∑
(i,j)∈E aij (f(x̃i)− f(x̃j))

2
. Intuitively, if

we have the side knowledge that this quantity is small, it
means that a node should have similar labels to its neigh-
bors. For classification, this typically encourages the deci-
sion boundary to avoid dense regions of the graph. The set
F is defined as: F = {β : βTβ ≤ c1, βTXT

ULGX
T
Uβ ≤ c}.

3 Generalization Bounds
We know that every piece of additional information about
the solution, including side information, can reduce the com-
plexity of the hypothesis space and may thus promote gener-
alization. In this section, we will make this precise. We will
compute bounds on the complexity of the hypothesis space
when the types of constraints seen in Section 2 are included.

3.1 Definition of Complexity Measures
We will look at two complexity measures: the covering num-
ber of a hypothesis set and the Rademacher complexity of a
hypothesis set. Their definitions are as follows:
Definition 1. Covering Number (Kolmogorov and
Tikhomirov, 1959): Let A ⊆ Ω be an arbitrary set and
(Ω, ρ) a (pseudo-)metric space. Let | · | denote set size. For
any ε > 0, an ε-cover for A is a finite set U ⊆ Ω (not
necessarily ⊆ A) s.t. ∀ω ∈ A,∃u ∈ U with dρ(ω, u) ≤ ε.
The covering number of A is N(ε, A, ρ) := infU |U |
where U is an ε-cover for A.
Definition 2. Rademacher Complexity (Bartlett
and Mendelson, 2002): Given a training sample
S = {x1, ..., xn}, with each xi drawn i.i.d. from µX ,
and hypothesis space F , F|S is the defined as the restric-
tion of F with respect to S. The empirical Rademacher
complexity of F|S is

R̄(F|S) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
where {σi} are Rademacher random variables (σi = 1 with
probability 1/2 and σi = −1 with probability 1/2). The
Rademacher complexity of F is its expectation:

R(F) = ES∼(µX )n [R̄(F|S)].

If instead we let σi ∼ N (0, 1) in the definition, this is the
Gaussian complexity of the function class. Generalization
bounds often use both these quantities in their statements
(Bartlett and Mendelson, 2002).

3.2 Complexity results with linear constraints
We will state two results: one for a single linear constraint
and the other for multiple linear constraints. They were de-
signed for a specific type of side knowledge, namely knowl-
edge about the cost to solve a decision problem associ-
ated with the learning problem (Tulabandhula and Rudin,
2013b,a). The crux of our argument in Section 2.1 is that
these bounds extend well beyond that.

Single linear constraint
Theorem 3.1. (Theorem 2 of Tulabandhula and Rudin,
2013b) Let X = {x ∈ Rp : ‖x‖2 ≤ Xb}
and µX be the marginal probability measure on X . Let
F =

{
f |f : X 7→ Y, f(x) = βTx, ‖β‖2 ≤ Bb, aTβ ≤ 1

}
.

Further let F|S = {(f(x1), . . . , f(xn)) : f ∈ F}. Then for
all ε > 0, for any sample S,

N(ε/Xb,F|S , ‖ · ‖2) ≤ α(p, a, ε)c(p)

(
2BbXb

ε
+ 1

)p
where c(p) = πp/2

Γ(p/2+1) . Also, defining r = Bb + ε
2Xb

and
Vp(r) = c(p)rp, the function α above is:

α(p, a, ε) =

1− 1

Vp(r)

∫ 0

θ=cos−1

(
‖a‖−1

2 + ε
2Xb

r

) Vp−1(r sin θ)d(r cos θ).

It is known (Kolmogorov and Tikhomirov, 1959) that
B = {β : ‖β‖2 ≤ Bb} has a bound on its covering num-
ber of the form N(ε,B, ‖ · ‖2) ≤ c(p)

(
2Bb
ε + 1

)p
where

c(p) = πp/2/Γ(p2 + 1). Since in Theorem 3.1 the same con-
stant appears, multiplied by a factor at most one, the bound
in Theorem 3.1 can be tighter. The function α(p, a, ε) can be
considered to be the normalized volume of the ball (which
is 1) minus the portion that is the spherical cap cut off by
the linear constraint. It comes directly from formulae for the
volume of spherical caps. We are integrating over the vol-
ume of a p − 1 dimensional sphere of radius r sin θ and the
height term is d(r cos θ).

This bound shows that the covering number bound can de-
pend on a which is a direct function of the unlabeled exam-
ples {x̃i}mi=1. As the norm ‖a‖2 increases, ‖a‖−1

2 decreases,
thus α(p, a, ε) decreases, and the whole bound decreases.
This is a mechanism by which side information on the la-
bels of the unlabeled examples influences the complexity
measure of the hypothesis set, potentially improving gen-
eralization.

Multiple linear constraints and general norm constraints
Let us define the matrix [x1 . . . xn] as matrix XL where
xi ∈ X = {x : ‖x‖r ≤ Xb}. Then, XT

L can be written as
[h1 · · ·hp] with hj ∈ Rn, j = 1, ..., p. Define function class
F as

F =
{
f |f(x) = βTx, β ∈ Rp, ‖β‖q ≤ Bb,
p∑
j=1

cjνβj + δν ≤ 1, δν > 0, ν = 1, ..., V
}
,



where 1/r+1/q = 1 and {cjν}j,ν , {δν}ν andBb are known
constants.

Let {c̃jν}j,ν be proportional to {cjν}j,ν :

c̃jν :=
cjνn

1/rXbBb
‖hj‖r

∀j = 1, ..., p and ν = 1, ..., V.

Let K be a positive number. Further, let the sets PK param-
eterized byK and PKc parameterized byK and {c̃jν}j,ν be:

PK :=
{

(k1, ..., kp) ∈ Zp :
∑p
j=1 |kj | ≤ K

}
, and PKc :={

(k1, ..., kp) ∈ PK :
∑p
j=1 c̃jνkj ≤ K ∀ν = 1, ..., V

}
.

Let |PK | and |PKc | be the sizes of the sets PK and PKc
respectively. The subscript c in PKc denotes that this
polyhedron is a constrained version of PK . As the linear
constraints given by the cjν’s force the hypothesis space to
be smaller, they force |PKc | to be smaller. Define XsL to
be equal to a diagonal matrix whose jth diagonal element
is n1/rXbBb

‖hj‖r times XL. Define λmin(XsLXsL
T ) to be the

smallest eigenvalue of the matrix XsLXsL
T .

Theorem 3.2. (Theorem 6 of Tulabandhula and Rudin,
2013a)

N(
√
nε,F|S , ‖·‖2) ≤

{
min{|PK0 |, |PKc |} if ε < XbBb
1 otherwise

,

where K0 =
⌈
X2
bB

2
b

ε2

⌉
and K is the maximum of K0 and
nX2

bB
2
b

λmin(XsLXsL
T )
[

minν=1,...,V
δν∑p

j=1 |c̃jν |

]2
.

The linear assumptions on the labels of the unlabeled ex-
amples {x̃i}mi=1 determine the parameters {c̃jν}j,ν which in
turn influence the complexity measure bound.

3.3 Complexity results for quadratic structure
Consider the set F = {f : f = βTx, βTA1β ≤
1, βTA2β ≤ 1}. Assume that at least one of the matrices is
positive definite and both are positive-semidefinite, symmet-
ric. Let Ξ1 = {β : βTA1β ≤ 1} and Ξ2 = {β : βTA2β ≤
1} be the corresponding ellipsoid sets.

We first find an ellipsoid Ξintγ (with matrix Aintγ) cir-
cumscribing the intersection of the two ellipsoids Ξ1 and
Ξ2 and then find a bound on the Rademacher complexity of
a corresponding function class leading to our result for the
quadratic constraint case. We will pick matrix Aintγ to have
a particularly desirable property, namely that it is tight. We
will call a circumscribing ellipsoid tight when no other el-
lipsoidal boundary comes between its boundary and the in-
tersection (Ξ1 ∩ Ξ2). If we thus choose this property as our
criterion for picking the ellipsoid, then according to the fol-
lowing result, we can do so by a convex combination of the
original ellipsoids:
Theorem 3.3. (Circumscribing ellipsoids Kahan, 1968)
There is a family of circumscribing ellipsoids that contains
every tight ellipsoid. Every ellipsoid Ξintγ in this family has

Ξintγ ⊇ (Ξ1 ∩ Ξ2) and is generated by matrix Aintγ =
γA1 + (1− γ)A2, γ ∈ [0, 1].

Using the above theorem, we can find a tight ellipsoid
{β : βTAintγβ ≤ 1} that contains the set {β : βTA1β ≤
1, βTA2β ≤ 1} easily. Note that the right hand sides of the
quadratic constraints defining these ellipsoids can be equal
to one without loss of generality.
Theorem 3.4. (Rademacher complexity of linear function
class with two quadratic constraints) Let

F = {f : f(x) = βTx : βT Iβ ≤ B2
b , β

TA2β ≤ 1}
with A2 symmetric positive-semidefinite. Then,

R̄(F|S) ≤ 1

n

√
trace(XT

LA
−1
intγXL), (1)

where Aintγ is the matrix of a circumscribing ellipsoid {β :
βTAintγβ ≤ 1} of the set {β : βT Iβ ≤ B2

b , β
TA2β ≤ 1}

and XL is the matrix [x1 . . . xn] with examples xi’s as its
columns.

Proof. Consider the set F|S = {(βTx1, ..., β
Txn) ∈ Rn :

βT Iβ ≤ B2
b , β

TA2β ≤ 1} ⊂ Rn. Let σ = [σ1, ..., σn]T .
Also, let α = A

1/2
intγβ.

R̄(F|S)
(a)

≤ 1

n
Eσ

[
sup

{β:βTAintγβ≤1}

n∑
i=1

σiβ
Txi

]
(b)
=

1

n
Eσ

[
sup

{α:αTα≤1}

n∑
i=1

σi(A
−1/2
intγ α)Txi

]

=
1

n
Eσ

[
sup

{α:‖α‖2≤1}
αT (A

−1/2
intγ )TXLσ

]
(c)
=

1

n
Eσ

[
‖(A−1/2

intγ )TXLσ‖2

]
(d)

≤ 1

n

√√√√Eσ

[
‖(A−1/2

intγ )TXLσ‖22

]

=
1

n

√√√√Eσ

[
trace(XT

LA
−1
intγXLσσT )

]
(e)
=

1

n

√
trace(XT

LA
−1
intγXL)

where (a) follows because we are taking the supremum over
the circumscribing ellipsoid; (b) follows because Aintγ is
positive definite, hence invertible; (c) is by Cauchy-Schwarz
(equality case); (d) uses Jensen’s inequality and (e) uses the
linearity of trace and expectation to commute them along
with the fact that E[σσT ] = I .

If Aintγ is diagonal (or axis-aligned), then we can write
the empirical complexity R̄(F|S) in terms of the eigenvalues

{λi}pi=1 as R̄(F|S) ≤ 1
n

√∑n
j=1

∑p
i=1

x2
ji

λi
and this can be

bounded by XbBb√
n

(Kakade, Sridharan, and Tewari, 2008)
when A2 = 0. In that case, all of the λi are 1

B2
b

.



Since we can choose any circumscribing matrix Aintγ in
this theorem, we can perform the following optimization to
get a circumscribing ellipsoid that minimizes the bound:

min
γ∈[0,1]

trace(XT
L (γA1 + (1− γ)A2)−1XL).

This optimization problem is a univariate non-linear pro-
gram. Again, as discussed extensively in Section 2, the ma-
trix A2 can be a function of the unlabeled data, encoding a
variety of side knowledge.

We will now show that the dependence of the complexity
on the sum of the inverse eigenvalues of Aintγ is near op-
timal. In order to do so, we will make use of the Gaussian
complexity measure instead of the Rademacher complexity
which is related to the former as follows.
Lemma 3.5. (Lemma 4 of Bartlett and Mendelson, 2002)
There are absolute constants C and D such that for every
F|S with |S| = n,

DR̄(F|S) ≤ Ḡ(F|S) ≤ C log(n)R̄(F|S).

SinceAintγ is a real symmetric matrix, we can decompose
Aintγ into a product PTDP where D is a diagonal matrix
with the eigenvalues of Aintγ as its entries and P is an or-
thogonal matrix (i.e., PTP = I). Our result of the form of
the bound of Theorem 3.4 is as follows.
Theorem 3.6.

R̄(F|S) ≥ κ

n log n

√
trace(XT

LA
−1
intγXL)

where

κ =
2

C
√

1 +
2πpnX2

b

(minj=1,...,p ‖(PXL)j‖2)2

,

C is the constant in Lemma 3.5, P is the orthogonal ma-
trix from the decomposition ofAintγ , p,Xb are problem con-
stants and n is the number of training examples.

The proof for the lower bound is similar to what one
would do for estimating the complexity of a ellipsoid itself
(without regard to a corresponding linear function class).
See also (Wainwright, 2011) for handling single ellipsoids.

Proof of Theorem 3.6:
Let us define a new variable: α := Pβ, which is a lin-

ear transformation of linear model parameter β. Then, the
scaled Gaussian complexity of our function class obeys the
following,

n · Ḡ(F|S) = Eσ

[
sup

αTDα≤1

n∑
i=1

σiα
TPxi

]
,

where {σi}ni=1 are i.i.d. standard normal random variables.
We now define a new vector ω to be a transformed ver-
sion of the random vector

∑n
i=1 σixi. That is, let ω(σ) :=

P
∑n
i=1 σixi. We will drop the dependence of ω on σ from

the notation when it is clear from the context. The expression
now becomes

n · Ḡ(F|S) = Eσ

[
sup

αTDα≤1

αTω

]
. (2)

We will need the following lemma which describes con-
centration for Lipschitz functions of gaussian random vari-
ables.
Lemma 3.7. (Concentration (Tsirelson, Ibragimov, and Su-
dakov, 1976)) If σ is a vector with i.i.d. standard normal en-
tries and G is any function with Lipschitz constant L (with
respect to the Euclidean norm), then

P[|(G(σ)− E[G(σ)]| ≥ t] ≤ 2e−
t2

2L2 .

We will now state three claims.
Note 1: The function F (ω) := supαTDα≤1 α

Tω(σ) is
Lipschitz in σ with a Lipschitz constant L bounded by
Xb

√
p·n

λmin(D) .

Note 2: The mean of F (ω) is Eσ[F (ω)] = n · Ḡ(F|S).
Note 3: For a random variable Y 2, E(Y 2) =

∫ +∞
0

P (Y 2 ≥
s)ds.

By Notes 1 and 2, and using Lemma 3.7 with G(σ) =
F (ω), we have

P[|(F (ω)− Eσ[F (ω)]| ≥ t] ≤ 2e−
t2

2L2 ,

where L = Xb

√
p·n

λmin(D) . Now we can bound the variance

of F (ω) as follows. Let Y = |(F (ω) − Eσ[F (ω)]|. Then
from the above tail bound, P (Y 2 ≥ s) ≤ 2e−

s
2L2 is also

true. The variance of F (ω) which is the same as the expec-
tation of Y 2 can thus be obtained as:

Var(F (ω)) = Eσ(Y 2)
(∗)
=

∫ +∞

0

P (Y 2 ≥ s)ds

≤2

∫ +∞

0

e−
s

2L2 ds = 4X2
b

p · n
λmin(D)

, (3)

where we substituted Xb

√
p·n

λmin(D) for L. For Equation (*)

we used Note 3.
This upper bound on the variance of F (ω) is used to

lower bound Rademacher complexity as follows. First we
will lower bound the related Gaussian complexity by con-
structing a feasible candidate α′ to substitute for the sup op-
eration in Equation (2). Then we will use the variance upper
bound on F (ω).

Lower bounding Gaussian complexity: Let j∗ ∈ {1, ..., p}
be the index at which the diagonal element D(j∗, j∗) =
λmin(D). For each realization of σ (or equivalently ω) let

α′ =

[
0 . . .

|ωj∗ |
ωj∗
√
λmin(D)

. . . 0

]
with the non-zero entry at

coordinate j∗. Clearly α′ is a feasible vector in the ellip-
soidal constraint {α : αTDα ≤ 1} seen in the complexity
expression, Equation (2). Substituting it and using the defi-
nition of F (ω), we get a lower bound on the complexity:

n · Ḡ(F|S) =Eσ[F (ω)] = Eσ

[
sup

αTDα≤1

αTω

]
(a)

≥Eσ[(α′)Tω]
(b)

≥ 1√
λmin(D)

Eσ[|ωj∗ |].



Step (a) comes from the fact that α′ is feasible in {α :
αTDα ≤ 1} but not necessarily the maximum, and step
(b) comes from the definition of α′.

Note that compared to the upper bound on the related
Rademacher complexity obtained in Theorem 3.4, the de-
pendence on Aintγ is weak (only via λmin(D)). We will use
the variance of F (ω) to obtain a lower bound very similar to
the upper bound in Equation (1). Rearranging the terms in
the previous inequality, we get:

(Eσ[F (ω)])2

(Eσ|ωj∗ |)2
≥ 1

λmin(D)
. (4)

By rewriting the variance in terms of the second and first
moments, using expression (3) and then using (4) we get

Var(F (ω)) =Eσ[F 2(ω)]− (Eσ[F (ω)])2

≤4X2
b

p · n
λmin(D)

≤ 4pnX2
b

(Eσ[F (ω)])2

(Eσ|ωj∗ |)2
.

Using expression (2) again, and then rearranging the terms
in the previous expression, we obtain another lower bound
on the scaled Gaussian complexity which is:

(
n · Ḡ(F|S)

)2
=(Eσ[F (ω)])2 ≥ Eσ[(F (ω))2]

1 +
4pnX2

b

(Eσ|ωj∗ |)2

=
Eσ[(supαTDα≤1 ω

Tα)2]

1 +
4pnX2

b

(Eσ|ωj∗ |)2
. (5)

We can now try to bound two easier quantities
Eσ[(supαTDα≤1 ω

Tα)2] and Eσ|ωj∗ | to get an expres-
sion for scaled Gaussian complexity and consequently for
Rademacher complexity.

Let us start first with E|ωj∗ |. By definition ω equals
PXLσ. Thus, the j∗th coordinate of ω will be

∑
i σi(Pxi)j∗

where (·)j∗ represents the j∗th coordinate of the vec-
tor. Since the σi are independent standard normal, their
weighted sum ω is also standard normal with variance∑
i(Pxi)

2
j∗ . Since for any normal random variable z with

mean zero and variance d it is true that E[|z|] =
√

2d
π , we

have

Eσ[|wj∗ |] =

√
2

π

(∑
i

(Pxi)
2
j∗

) 1
2

≥
√

2

π
min

j=1,...,p
‖(PXL)j‖2 (6)

where (PXL)j represents the jth row of the matrix PXL.
For the second moment term of (5) that we need to bound,
Eσ[(supαTDα≤1 ω

Tα)2], we can see that

sup
αTDα≤1

ωTα = sup
α̃T α̃≤1

(PXLσ)TD−1/2α̃

=‖D−1/2PXLσ‖2.

Thus,

Eσ
[(

sup
αTDα≤1

ωTα
)2]

=Eσ[‖D−1/2PXLσ‖22]

= Eσ[trace(XT
LA
−1
intγXLσσ

T )]

= trace(XT
LA
−1
intγXL). (7)

Substituting the two bounds we just derived, (6) and (7),
into (5) gives us a lower bound on the scaled Gaussian com-
plexity:

(
n · Ḡ(F|S)

)2 ≥ trace(XT
LA
−1
intγXL)

1 +
4pnX2

b

(
√

2
π minj=1,...,p ‖(PXL)j‖2)2

n · Ḡ(F|S) ≥

√√√√√ trace(XT
LA
−1
intγXL)

1 +
4pnX2

b

(
√

2
π minj=1,...,p ‖(PXL)j‖2)2

.

Using Lemma 3.5 gives:

nC log(n)R̄(F|S) ≥

√√√√√ trace(XT
LA
−1
intγXL)

1 +
4pnX2

b

(
√

2
π minj=1,...,p ‖(PXL)j‖2)2

R̄(F|S) ≥ κ

n log n

√
trace(XT

LA
−1
intγXL)

where

κ =
2

C
√

1 +
2πpnX2

b

(minj=1,...,p ‖(PXL)j‖2)2

.

In summary, we have proved matching lower bounds for
the Rademacher complexity of quadratically constrained lin-
ear function classes.

4 Related Work
It is well-known that having additional unlabeled examples
can aid in learning (Fung, Mangasarian, and Shavlik, 2002;
Shental et al., 2004; Nguyen and Caruana, 2008), and this
has been the subject of research in semi-supervised learn-
ing (Zhu, 2005). The present work is fundamentally differ-
ent than semi-supervised learning, because semi-supervised
learning exploits the distributional properties of the set of
unlabeled examples. In this work, we do not necessarily
have enough unlabeled examples to study these distribu-
tional properties, but these unlabeled examples do provide
us information about the hypothesis space. Distributional
properties used in semi-supervised learning include cluster
assumptions (Singh, Nowak, and Zhu, 2008; Rigollet, 2007)
and manifold assumptions (Belkin and Niyogi, 2004). In our
work, the information we get from the unlabeled examples
allows us to restrict the hypothesis space, which lets us be
in the framework of empirical risk minimization and give
theoretical generalization bounds via complexity measures
of the restricted hypothesis spaces (Bartlett and Mendelson,
2002; Vapnik, 1998). While the focus of many works (e.g.,
Zhang, 2002; Maurer, 2006) is on complexity measures for



ball-like function classes, our hypothesis spaces are more
complicated, and arise here from constraints on the data.

In a different framework, that of Valiant’s PAC learn-
ing, there are concentration statements about the risks in the
presence of unlabeled examples (Balcan and Blum, 2005;
Kääriäinen, 2005), though in these results, the unlabeled
points are used in a very different way than in our work.
While their results focus on exploiting unlabeled data to es-
timate distribution dependent quantities, our technology fo-
cuses on exploiting unlabeled data to restrict the hypothesis
space directly.

5 Conclusion
In this paper, we have outlined how various additional infor-
mation one might have about a learning problem can effec-
tively help in generalization.We focused our attention on two
types of additional information, one leading to linear con-
straints and the other leading to quadratic constraints, giv-
ing motivating examples and deriving complexity measure
bounds. This work goes beyond the traditional paradigm of
ball-like hypothesis spaces to study more exotic, yet realis-
tic, hypothesis spaces, and is a starting point for more work
on other interesting hypothesis spaces.
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