The Bloom Clock to Characterize Causality in
Distributed Systems

Ajay Kshemkalyani, Anshuman Misra

University of lllinois at Chicago
ajay@uic.edu

amisra7@uic.edu

September 1, 2020

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 1/23

Overview

@ Problem Statement

@ Vector Clock

e Counting Bloom Filter

@ Bloom Clock

© Bloom Clock - Performance Metrics
@ Analysis and Discussion

@ Future Work

Kshemkalyani, Misra (UIC) Bloom Clock

Problem Statement

Fundamental problem in distributed systems
Determining causality between pairs of events

Vector clocks solve this problem
But they do not scale well

Bloom Clock
Efficient probabilistic data structure to determine causality

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020

3/23

Vector Clock

@ In the system of vector clocks, the time domain is represented by
a set of n-dimensional non-negative integer vectors.

@ Each process p; maintains a vector V; [1..n], where V; [i] is the
local logical clock of p; and describes the logical time progress at

process p;.

@ V; [j] represents process p; ’s latest knowledge of the local time at
process pj.

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 4/23

Vector Clock - Protocol

Process p; uses the following two rules R1 and R2 to update its clock:

@ R1: Before executing an event, process p; updates its local logical

time as follows:
Vili] := Vili] + 1

@ R2: Each message m is piggybacked with the vector clock V; of
the sender process at sending time. On the receipt of such a
message (m, V}), process p; executes the following sequence of
actions:

» Update its global logical time as follows:

1T <k<n: VK] :=max(Vi[k], Vjk])
» Execute R1
» Deliver m

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 5/23

Counting Bloom Filter

@ A bloom filter is a probabilistic data structure used to check
whether an element is present in a set

@ A counting bloom filter is a variant of bloom filter used to check the
number of occurrences of an element

@ Bloom filters provide a space and time efficient method of
searching through a set

@ Bloom filters are prone to false positives, but false negatives do
not occur

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 6/23

Counting Bloom Filter - Example

ofojofofofofofofo]0]

H1(X) = 1
H2(X) = 3
H3(X) = 5

[1]o]1]of1]ofofofo]0]

H1(X) = 1
H2(X) = 3
H3(X) = 5

[2]o]2]of2[0]0fof0]0]

Y Hi) =1
H2(Y) = 4
H3(Y) = 6

[3[o]2[1]2[1]0f0f0]0]

Bloom Clock September 1, 2020 7/23

Kshemkalyani, Misra (UIC)

Counting Bloom Filter - Example (contd)

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 8/23

Counting Bloom Filter - Example (contd)

. H1(X) =1
X is present at most X H2(X) = 3
2 times H3(X) = 5

[3[1]2]1]2]2]1]0f0]0]

True Negative : Z is Z :égg : g
present at most 0 H3(Z) = 10

times

3[t]2]a]2][2]1]0f0f0]

H1 =2
False Positive : U is Hzggg =4
present at most 1 H3(U) =7

time

[3[1]2]1]2]2]1]0f0]0]

Bloom Clock September 1, 2020 9/23

Motivation behind Bloom Clocks

@ Vector clocks accurately create a partial order of events in a
distributed execution

@ Vector clocks have a space, time and message complexity of O(n)
@ Bloom clocks have a complexity of O(1)

@ Bloom Clocks are prone to false positives due to the probabilistic
nature of Bloom filters

@ Find a set of parameters that minimize the error rate for Bloom
clocks

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 10/23

System Model

@ A distributed system is modeled as an undirected graph (P, £),
where P is the set of processes and L is the set of links
connecting them. Let p = |P|.

@ Between any two processes, there may be at most one logical
channel over which the two processes communicate
asynchronously.

@ We do not assume FIFO logical channels.

@ The execution of process P; produces a sequence of events

E;= (€9, €], e2,---), where € is the j event at process P;.

@ An event at a process can be an internal event, a message send
event, or a message receive event.

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 11/23

System Model (contd.)
@ Let E =J,.p{e| e € E;} denote the set of events in a distributed
execution.

@ The causal precedence relation between events, denoted as —,
induces an irreflexive partial order (E, —).

o Let| e={f|fe ENf— e}|J{e} denote the causal past of e.

@ The vector timestamp of | e, V| is defined as:
Vi e [1,p], Vieli] = Veli].

@ The set of events | e[| f represents the common past of e and
f.

@ The vector timestamp of | e[| f, V|, is defined as:
Vie[1,p], Vienyrlil = min(Veli], V[i]).

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 12/23

Bloom Clock Protocol

@ Initialize B(/) = 0.

© (Atan internal event e):
apply k hash functions to (/, x) and increment the
corresponding k positions mapped to in B(/) (local tick).

© (Atasend event ef):
apply k hash functions to (/, x) and increment the
corresponding k positions mapped to in B(/) (local tick). Then
P; sends the message piggybacked with B(/).

© (At areceive event e for message piggybacked with B'):
P; executes
vj € [1,ml, B(i)[j] = max(B()[j], B'jl) (merge);
apply k hash functions to (/, x) and increment the
corresponding k positions mapped to in B(/) (local tick).
Then deliver the message.

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 13/23

Causality Check with Bloom Clocks

Proposition 1

Test for y — z using Bloom clocks: if B, > B, then declare y — z else
declare y /4 z.

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 14/23

Prediction Scenarios

@ True Positive
» y—zand B; > B,

© False Negative
» y—zandB; 2 B,

© True Negative
» yAzand B; 2 B,

© False Positive
» y/Azand B; > B,

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 15/23

Prediction Scenarios - Observations

Observation 1

The probability of a False negative occurring is 0 J
Observation 2

Given that the prediction is negative, the probability of true negative
occurring is 1

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 16/23

Bloom Clock - Performance Metrics

@ The probability of a false positive, pry, = pr(y # z and B; > By)

@ The probability of a positive, pr, = pr(B; > By).

@ We approximate the probability that 3/ | V, [i] > V,[i] as the
probability that 3/ | By[i] > B.[i], which equals 1 — prp.

@ pr(y /~z)=1—prp.

@ prip = pr(y # z)-pr(Bz > By) = (1 — prp) - prp.

@ Given a positive outcome, the probability that it is false,
Prot =1 —prp

@ The probability of a true positive, prip = prp - prp = prg

@ The probability of a true negative, pri, =1- (1 — prp) =1 — prp.

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 17/23

Performance Metrics - A Difference in Perspective

@ The probabilities pr,r and pry, are functions of prp.

@ Redefine pry as a step function, pr;p :
> Prspy) =1when B, > B,
> Prspy) = 0when B, # B,

@ pry, becomes (1 — prp) - prs(p)
@ pr,s remains 1 — pr, and evaluates to pry,.
@ pry, becomes pry - Prs(p)

@ pri becomes 1 — prs(p).

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 18/23

Computing pr, with Bloom Clocks

The probability of getting exactly | successes in n independent
Bernoulli trials with probability of success p is given by:

o(ln) = (§) P/ (1~ P

Utilizing the binomial distribution to compute pr, we get:

By[i]—1
5Fp(k,m,ByaBz) H(1 - Z b Bsum 1/m))

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020

19/23

Computing Metrics on an Execution Slice

Accuracy = TP+ TN Precision = L
Y= TP+ TN+ FP+ FN’ TTPLFP

FP
FP+ TN

Recall = for =

TP
TP+ FN’

Recall is always 1 with Bloom clocks

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020

20/23

Computing Metrics on an Execution Slice (contd)

1-— Z-C\C — Z:x,x’(‘I - ,OI'p(X, x")) - ,Ol’(g(p)(X7 X')
Zx,x’ 1

1_ ﬁe\cz Z:x,x'(1 —pl’p(X, X,)) -pr5(p)(x,x’)
Zx,x’(‘I - prP(X7 X/)) ’ pf(g(p)(X, X/) + pfp(X,X/)) pf(;(p)(X, X/)
_ Zx,x'(1 - ,DI‘p(X,X/)) ',Ol'(;(p)(X,X/)
Zx,x’ pr5(p)(x, X/)

for — D oxxe (1= Prp(X, X)) - Prsp) (X, X)
Y oxx (1= pro(X, X)) - prsy (X, X') + (1 = prsp) (X, X))
_ Zx,x’(1 - prP(X7 X,)) ’ pr(;(p)(X,Xl)
B Zx,x’ 11— pfp(X,X’) -pl’(;(p)(X,X')

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 21/23

Analysis and Discussion

@ pry, the probability of a positive, is low if z is close to y and this
probability increases as z goes further in the future of y.

@ pryt, the probability that a positive is false, decreases as z goes
further in the future of y.

© pry,, the probability of a false positive, which is the product of prp
and pryy, is lower than the above two probabilities. It will likely
reach a maximum of 0.25 and then decrease.

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 22/23

Future Work

@ Experiment with a large number of processes (>1000) and
compute false positive rate, precision and accuracy of bloom
clocks.

© Determine optimal values of parameters (m,k) in relation to the
number of processes.

© Ascertain applications where vector clocks can be replaced by
bloom clocks.

Kshemkalyani, Misra (UIC) Bloom Clock September 1, 2020 23/23

	Problem Statement
	Vector Clock
	Counting Bloom Filter
	Bloom Clock
	Bloom Clock - Performance Metrics
	Analysis and Discussion
	Future Work

