# The Bloom Clock to Characterize Causality in Distributed Systems

#### Ajay Kshemkalyani, Anshuman Misra

University of Illinois at Chicago ajay@uic.edu amisra7@uic.edu

September 1, 2020

## Overview

- Problem Statement
- Vector Clock
- Counting Bloom Filter
- 4 Bloom Clock
- Bloom Clock Performance Metrics
- 6 Analysis and Discussion
- Future Work

#### **Problem Statement**

## Fundamental problem in distributed systems

Determining causality between pairs of events

## Vector clocks solve this problem

But they do not scale well

#### **Bloom Clock**

Efficient probabilistic data structure to determine causality

#### **Vector Clock**

- In the system of vector clocks, the time domain is represented by a set of n-dimensional non-negative integer vectors.
- Each process  $p_i$  maintains a vector  $V_i$  [1..n], where  $V_i$  [i] is the local logical clock of  $p_i$  and describes the logical time progress at process  $p_i$ .
- $V_i$  [j] represents process  $p_i$  's latest knowledge of the local time at process  $p_j$ .

#### **Vector Clock - Protocol**

Process  $p_i$  uses the following two rules R1 and R2 to update its clock:

 R1: Before executing an event, process p<sub>i</sub> updates its local logical time as follows:

$$V_i[i] := V_i[i] + 1$$

- R2: Each message m is piggybacked with the vector clock  $V_j$  of the sender process at sending time. On the receipt of such a message  $(m, V_j)$ , process  $p_i$  executes the following sequence of actions:
  - Update its global logical time as follows:

$$1 \leq k \leq n : V_i[k] := \max(V_i[k], V_j[k])$$

- ► Execute R1
- Deliver m



## **Counting Bloom Filter**

- A bloom filter is a probabilistic data structure used to check whether an element is present in a set
- A counting bloom filter is a variant of bloom filter used to check the number of occurrences of an element
- Bloom filters provide a space and time efficient method of searching through a set
- Bloom filters are prone to false positives, but false negatives do not occur

## Counting Bloom Filter - Example



## Counting Bloom Filter - Example (contd)



## Counting Bloom Filter - Example (contd)



#### Motivation behind Bloom Clocks

- Vector clocks accurately create a partial order of events in a distributed execution
- Vector clocks have a space, time and message complexity of O(n)
- Bloom clocks have a complexity of O(1)
- Bloom Clocks are prone to false positives due to the probabilistic nature of Bloom filters
- Find a set of parameters that minimize the error rate for Bloom clocks

# System Model

- A distributed system is modeled as an undirected graph  $(\mathcal{P}, \mathcal{L})$ , where  $\mathcal{P}$  is the set of processes and  $\mathcal{L}$  is the set of links connecting them. Let  $p = |\mathcal{P}|$ .
- Between any two processes, there may be at most one logical channel over which the two processes communicate asynchronously.
- We do not assume FIFO logical channels.
- The execution of process  $P_i$  produces a sequence of events  $E_i = \langle e_i^0, e_i^1, e_i^2, \cdots \rangle$ , where  $e_i^j$  is the  $j^{th}$  event at process  $P_i$ .
- An event at a process can be an internal event, a message send event, or a message receive event.

# System Model (contd.)

- Let  $E = \bigcup_{i \in \mathcal{P}} \{e \mid e \in E_i\}$  denote the set of events in a distributed execution.
- The causal precedence relation between events, denoted as →, induces an irreflexive partial order (E, →).
- Let  $\downarrow e = \{f \mid f \in E \land f \rightarrow e\} \bigcup \{e\}$  denote the causal past of e.
- The vector timestamp of  $\downarrow e$ ,  $V_{\downarrow e}$  is defined as:  $\forall i \in [1, p], V_{\downarrow e}[i] = V_e[i].$
- The set of events ↓ e ∩ ↓ f represents the common past of e and f.
- The vector timestamp of  $\downarrow e \cap \downarrow f$ ,  $V_{\downarrow e \cap \downarrow f}$  is defined as:  $\forall i \in [1, p], V_{\downarrow e \cap \downarrow f}[i] = \min(V_e[i], V_f[i]).$



#### **Bloom Clock Protocol**

- 1 Initialize  $B(i) = \overline{0}$ .
- ② (At an internal event  $e_i^x$ ): apply k hash functions to (i, x) and increment the corresponding k positions mapped to in B(i) (local tick).
- (At a send event  $e_i^x$ ): apply k hash functions to (i, x) and increment the corresponding k positions mapped to in B(i) (local tick). Then  $P_i$  sends the message piggybacked with B(i).
- (At a receive event  $e_i^x$  for message piggybacked with B'):  $P_i$  executes  $\forall j \in [1, m], B(i)[j] = max(B(i)[j], B'[j])$  (merge); apply k hash functions to (i, x) and increment the corresponding k positions mapped to in B(i) (local tick). Then deliver the message.

## Causality Check with Bloom Clocks

#### **Proposition 1**

Test for  $y \to z$  using Bloom clocks: if  $B_z \ge B_y$  then declare  $y \to z$  else declare  $y \not\to z$ .

## **Prediction Scenarios**

- True Positive
  - ▶  $y \rightarrow z$  and  $B_z \ge B_y$
- Palse Negative
  - ▶  $y \rightarrow z$  and  $B_z \ngeq B_y$
- True Negative
  - ▶  $y \not\rightarrow z$  and  $B_z \not\geq B_y$
- False Positive
  - ▶  $y \nrightarrow z$  and  $B_z \ge B_y$

## **Prediction Scenarios - Observations**

#### Observation 1

The probability of a False negative occurring is 0

#### Observation 2

Given that the prediction is negative, the probability of true negative occurring is 1

## Bloom Clock - Performance Metrics

- The probability of a false positive,  $pr_{fp} = pr(y \nrightarrow z \text{ and } B_z \ge B_y)$
- The probability of a positive,  $pr_p = pr(B_z \ge B_y)$ .
- We approximate the probability that  $\exists i \mid V_y[i] > V_z[i]$  as the probability that  $\exists i \mid B_y[i] > B_z[i]$ , which equals  $1 pr_p$ .
- $pr_{fp} = pr(y \nrightarrow z) \cdot pr(B_z \ge B_y) = (1 pr_p) \cdot pr_p$ .
- Given a positive outcome, the probability that it is false,  $pr_{pf} = 1 pr_p$
- The probability of a true positive,  $pr_{tp} = pr_p \cdot pr_p = pr_p^2$
- The probability of a true negative,  $pr_{tn} = 1 \cdot (1 pr_p) = 1 pr_p$ .

# Performance Metrics - A Difference in Perspective

- The probabilities  $pr_{pf}$  and  $pr_{fp}$  are functions of  $pr_p$ .
- Redefine  $pr_p$  as a step function,  $pr_{\delta(p)}$ :
  - $ightharpoonup pr_{\delta(p)} = 1 \text{ when } B_z \geq B_v$
  - ▶  $pr_{\delta(p)} = 0$  when  $B_z \geq B_y$
- $pr_{fp}$  becomes  $(1 pr_p) \cdot pr_{\delta(p)}$
- $pr_{pf}$  remains  $1 pr_p$  and evaluates to  $pr_{fp}$ .
- $pr_{tp}$  becomes  $pr_p \cdot pr_{\delta(p)}$
- $pr_{tn}$  becomes  $1 pr_{\delta(p)}$ .

## Computing $pr_p$ with Bloom Clocks

The probability of getting exactly I successes in n independent Bernoulli trials with probability of success p is given by:

$$b(l,n,p) = \binom{n}{l} p^{l} (1-p)^{(n-l)}$$

Utilizing the binomial distribution to compute  $pr_p$  we get:

$$\widehat{pr_p}(k, m, B_y, B_z) = \prod_{i=1}^m (1 - \sum_{l=0}^{B_y[i]-1} b(l, B_z^{sum}, 1/m))$$

## Computing Metrics on an Execution Slice

$$\begin{aligned} \textit{Accuracy} &= \frac{\textit{TP} + \textit{TN}}{\textit{TP} + \textit{TN} + \textit{FP} + \textit{FN}}, \textit{Precision} = \frac{\textit{TP}}{\textit{TP} + \textit{FP}}, \\ \textit{Recall} &= \frac{\textit{TP}}{\textit{TP} + \textit{FN}}, \textit{fpr} = \frac{\textit{FP}}{\textit{FP} + \textit{TN}} \end{aligned}$$

Recall is always 1 with Bloom clocks

# Computing Metrics on an Execution Slice (contd)

$$1 - \widehat{Acc} = \frac{\sum_{x,x'} (1 - pr_p(x,x')) \cdot pr_{\delta(p)}(x,x')}{\sum_{x,x'} 1}$$

$$\begin{aligned} 1 - \widehat{\textit{Prec}} &= \frac{\sum_{x,x'} (1 - \textit{pr}_{\textit{p}}(x,x')) \cdot \textit{pr}_{\delta(\textit{p})}(x,x')}{\sum_{x,x'} (1 - \textit{pr}_{\textit{p}}(x,x')) \cdot \textit{pr}_{\delta(\textit{p})}(x,x') + \textit{pr}_{\textit{p}}(x,x') \cdot \textit{pr}_{\delta(\textit{p})}(x,x')} \\ &= \frac{\sum_{x,x'} (1 - \textit{pr}_{\textit{p}}(x,x')) \cdot \textit{pr}_{\delta(\textit{p})}(x,x')}{\sum_{x,x'} \textit{pr}_{\delta(\textit{p})}(x,x')} \end{aligned}$$

$$\begin{split} \widehat{\textit{fpr}} &= \frac{\sum_{x,x'} (1 - \textit{pr}_{\textit{p}}(x,x')) \cdot \textit{pr}_{\delta(\textit{p})}(x,x')}{\sum_{x,x'} (1 - \textit{pr}_{\textit{p}}(x,x')) \cdot \textit{pr}_{\delta(\textit{p})}(x,x') + (1 - \textit{pr}_{\delta(\textit{p})}(x,x'))} \\ &= \frac{\sum_{x,x'} (1 - \textit{pr}_{\textit{p}}(x,x')) \cdot \textit{pr}_{\delta(\textit{p})}(x,x')}{\sum_{x,x'} 1 - \textit{pr}_{\textit{p}}(x,x') \cdot \textit{pr}_{\delta(\textit{p})}(x,x')} \end{split}$$

## **Analysis and Discussion**

- $pr_{pf}$ , the probability that a positive is false, decreases as z goes further in the future of y.
- $pr_{fp}$ , the probability of a false positive, which is the product of  $pr_p$  and  $pr_{pf}$ , is lower than the above two probabilities. It will likely reach a maximum of 0.25 and then decrease.

#### **Future Work**

- Experiment with a large number of processes (>1000) and compute false positive rate, precision and accuracy of bloom clocks.
- Determine optimal values of parameters (m,k) in relation to the number of processes.
- Ascertain applications where vector clocks can be replaced by bloom clocks.