“

5.2 Further Recurrence Relations 215

This more general class of algorithms is obtained by considering divide-
and-conquer algorithms that create recursive calls on g subproblems of size
n/2 each and then combine the results in O(n) time. This corresponds to
the Mergesort recurrence (5.1) when g = 2 recursive calls are used, but other
algorithms find it useful to Spawn g > 2 recursive calls, or just a single (¢ =1)
recursive call. In fact, we will see the case g > 2 later in this chapter when we
design algorithms for integer multiplication; and we will see a variant on the
case ¢ =1 much later in the book, when we design a randomized algorithm
for median finding in Chapter 13.

If T(n) denotes the running time of an algorithm designed in this style,
then T(n) obeys the following recurrence relation, which directly generalizes
(5.1) by replacing 2 with g:

(5.3) For some constant c, o = 1 o(n)
T(n) <qT(n/2) +cn r (l)
° = O(rteg »
when n > 2, and = J
: lo
T(2) <c. > 2. o(n Szi)

We now describe how to solve (5.3) by the methods we’ve seen above:
unrolling, substitution, and partial substitution. We treat the cases g > 2 and
q =1 separately, since they are qualitatively different from each other—and
different from the case g=2as well. . o

The Case of ¢ > 2 Subproblems

We begin by unrolling (5.3) in the case q > 2, following the style we used
earlier for (5.1). We will see that the punch line ends up being quite different.

® Analyzing the first few levels: We show an example of this for the case
q$3 in Figure 5.2. At the first level of recursion, we have a single
problem of size n, which takes time at most cn plus the time spent in all
subsequent recursive calls. At the next level, we have g problems, each
of size n/2. Each of these takes time at most cn/2, for a total of at most
(q/2)cn, again plus the time in subsequent recursive calls. The next level
yields g* problems of size n/4 each, for a total time of (q%/4)cn. Since
q > 2, we see that the total work per level is increasing as we proceed
through the recursion.

® Identifying a pattern: At an arbitrary level j, we have ¢ distinct instances,
7S Cpatiern. ,)
each of size n/2/. Thus the tota] work performed at level j is den/2) =
(q/2Ycn.

216

Chapter 5 Divide and Conquer

cn time, plus
recursive calls

Level 0: cn total ’

Level 1: ecn/2 + cn/2 + cn/2 = (3/2)cn total

Figure 5.2 Unrolling the recurrence T(n) < 3T(n/2) + O(n).

e Summing over all levels of recutsion: As before, there are log, n levels of ;
recursion, and the total amount of work performed is the sum over all

these:
log; n—1 q j log, n—1 j
T(n) < =) m=cn
we 3 (§ = 3 (3

This is a geometric sum, consisting of powers of r = g/2. We can use the
formula for a geometric sum when r > 1, which gives us the formula

log,n __ log, n
T(n)<cn re-l <c r .
r—1 r—1

Since we’re aiming for an asymptotic upper bound, it is useful to figure
out what’s simply a constant; we can pull out the factor of r — 1 from
the denominator, and write the last expression as

T(n) < (——E——) nriogm,
r—1

Finally, we need to figure out what r'°82™ is. Here we use a very handy
identity, which says that, for any a > 1 and b > 1, we have a'°8? = ploa,

Thus

rlogan — plogyr _ ploga(q/2) — pdog, @)1

Thus we have

T(n) < (_E__.) n- n(lOgZ -1 < (¢ > n]ngq —_ O(nlOgZ Q)‘
TA\r-1 TA\r-1

r

We sum this up as follows.

5.2 Further Recurrence Relations

So we find that the running time is more than linear, since log, g > 1,
but still polynomial in n. Plugging in specific values of g, the running time
is O(n'0823) — O(n'*%) when g = 3: and the running time is O(nlos H=0m?
when ¢ =4. This increase in running time as q increases makes sense, of
course, since the recursive calls generate more work for larger values of ¢.

Applying Partial Substitution The appearance of log, q in the exponent
followed naturally from our solution to (5.3), but it’s not necessarily an
expression one would have guessed at the outset, We now consider how an
approach based on pbartial substitution into the recurrence yields a different
way of discovering this exponent.

T(n) < qT(n/2) + cn,

and applying the inductive hypothesis to T'(n/2), this expands to

n\4
T(n) <qk (5) +cn
_ 49, 4
-zakn +Cn

This is remarkably close to something that works: if we choose d so that
q/2% =1, then we have T(n) < kn? + cn, which is almost right except for the
extra term cn. So let’s dea] with these two issues: first, how to choose d so we
get ¢/29 = 1; and second, how to get rid of the cn term.

Choosing d is €asy: we want 24 = g, and so d = log, g. Thus we see that
the exponent log, g appears very naturally once we decide to discover which
value of d works when substituted into the recurrence.

But we still have to get rid of the cn term. To do this, we change the
form of our guess for T(n) so as to explicitly subtract it off, Suppose we try
the form T(n) <knd — ¢n, Where we’ve now decided that d = log, g but we
haven't fixed the constants k or £ Applying the new formula to T(n/2), this
expands to

217

218

Chapter 5 Divide and Conquer’

d
T(n) < gk (-’21) gt <”> v en

qkn —ggn%—cn
T d 2

L
=knd—%—n+cn

=kn? - (%‘£ — o).

This now works completely, if we simply choose ¢ so that (%‘i — ¢) ={: in other
words, ¢ = 2c/(q — 2). This completes the inductive step for n. We also need
to handle the base case n = 2, and this we do using the fact that the value of
k has not yet been fixed: we choose k large enough so that the formula is a
valid upper bound for the case n = 2.

The Case of One Subproblem

We now consider the case of fg=1i lin (5.3), since this illustrates an outcome
of yet another flavor. While we won't see a direct application of the recurrence
for ¢ =1 in this chapter, a variation on it comes up in Chapter 13, as we
mentioned earlier.

We begin by unrolling the recurrence to try constructing a sohjﬁon.

& Analyzing the first few levels: We show the first few levels of the recursion
in Figure 5.3. At the first level of recursion, we have a single problem of
size n, which takes time at most cn plus the time spent in all subsequent
recursive calls. The next level has one problem of size n/2, which

- contributes cn/2, and the level after that has one problem of size n/4,
which contributes cn/4. So we see that, unlike the previous case, the total
work per level when g =1is actually decreasing as we proceed through
the recursion.

® Identifying a pattern: At an arbitrary level j, we still have just one
instance; it has size /2 and contributes cn/2/ to the running time.

® Summing over all levels of recursion: There are log, n levels of recursion,
and the total amount of work performed is the sum over all these:

log, n— 1 log, n—1
T(n) < Z —.~—cn Z <)
j=0

This geometric sum is very easy to work out; even if we contmued it to
infinity, it would converge to 2. Thus we have

T(n) <2cn=0(n).

5.2 Further Recurrence Relations 219

cn time, plus | |
recursive calls . Level 0: cn tota

@ Level 1: cn/2 total
@ Level 2: cn/4 total

Figure 5.3 Unrolling the recurrence T'(n) < T(n/2) + O(n).

We sum this up as follows.
(5.5) Any function T¢(.) satisfying (5.3) with g = 11is bounded by O(n).

This is counterintuitive when you first see it. The algorithm is performing

lqg» n Igv_gl_s __gfﬂ_rg_cursion,mpy_t the overall running ETrﬁ’é"i?{s”{ﬁﬁi'H_‘é’é}:{ﬁ __r; The

poilr;_l‘tfis that «_ﬂg;qg}etric series with a decaying exponent is 4 powerful thing:

fully half the work performed by the algorithm is being d

Itis also useful to see how partial substitution into the recurrence works
very well in this case. Suppose we guess, as before, that the form of the solution
is T(n) < kn?. We now try to establish this by induction using (5.3), assuming
that the solution holds for the smaller value n/2:

T(n) < T(n/2)+cn

If we now simply choose d = 1 and k = 2¢, we have
T(n) < ~]2(—n +cn = (g +on=kn,

which completes the induction,

The Effect of the Parameter q. 1t is worth reflecting briefly on the role of the ('i; i e (”> ‘
barameter g in the class of Tecurrences T'(n) < qT(n/2) + O(n) defined by (5.3). =5 O (A (03 q)
\Vl/hen qg= 1*‘Efjslesult1ng running tirﬁne_ls{”}'%ggar; Wheng =2,1t's O(n log 1); Lo =
and when ¢ > 2,35 3 polynomial bound | with ¢ an exponent larger than 1 that =9 O (?1 dal
grows with g. The reason for this range of different running times lies in where

220

done on constant-size subproblems at the bottom of the recursion. Viewed this

‘edge”—the amount of work done at each level is exactly the same, which is

Chapter 5 Divide and Conquer

most of the work is spent in the recursion: when g =1, the total running time
is dominated by the top level, whereas when g > 2 it’s dominated by the work

way, we can appreciate that the recurrence for ¢ = 2 really represents a “knife-
p rq P

what yields the O(n log n) running time.

A Related Recurrence: T(n) < 2T(n/2) + O(n?)

We conclude our discussion with one final recurrence relation; it is illustrative
both as another application of a decaying geometric sum and as an interesting
contrast with the recurrence (5.1) that characterized Mergesort. Moreover, we
will see a close variant of it in Chapter 6, when we analyze a divide-and-

conquer algorithm for solving the Sequence Alignment Problem using a small
amount of working memory.

The recurrence is based on the following divide-and-conquer structure.

Divide the input into two pieces of equal size; solve the two subproblems
on these pieces separately by recursion; and then combine the two results
into an overall solution, spending quadratic time for the initial division
and final recombining.

For our purposes here, we note that this style of algorithm has a runnmg time
T(n) that satisfies the following recurrence. -

(5.6) For some constant c,
T(n) <2T(n/2) + cn?
when n > 2, and

T(2) <c.

One’s first reaction is to guess that the solution will be T'(n) = O(n? log n),
since it looks almost identical to (5.1) except that the amount of work per level
is larger by a factor equal to the input size. In fact, this upper bound is correct
(it would need a more careful argument than what’s in the prevmgs sentence),
but it will turn out that we can also show a stronger upper bound.

We'll do this by unrolling the recurrence, following the standard template
for doing this.

® Analyzing the first few levels: At the first level of recursion, we have a
single problem of size n, which takes time at most cn? plus the time spent
in all subsequent recursive calls. At the next level, we have two problems,
each of size /2. Each of these takes time at most c(n/2)% = cn?/4, for a

5.3 Counting Inversions

total of at most cn?/2, again plus the time in subsequent recursive calls.
At the third level, we have four problems each of size n/4, each taking
time at most c(n/4)% = cn?/16, for a total of at most cn®/4. Already we see
that something is different from our solution to the analogous recurrence
(5.1); whereas the total amount of work per level remained the same in
that case, here it’s decreasing.

@ Identifying a pattern: At an arbitrary level j of the recursion, there are 2/
Sub‘ﬁrﬁems, each of size n/2/, and hence the total work at this level ig
bounded by e(2)? = cn?/2.

@ Summing over all levels of recursion: Having gotten this far in the calcu-
lation, we’ve arrived at almost exa(;ﬂy the same sum that we had for the
case ¢ = 1in the previous recurrence. We have

/ logy n—1 en’ logy n—1 1
T(n) < —— = cn? — | <2mn* =0®m?,

where the second inequality follows from the fact that we have a con-
vergent geometric sum.

In retrospect, our initial guess of T'(n) = O(n? log), based on the analogy
to (5.1), was an overestimate because of how quickly n? decreases as we
replace it with (2)?, (H2(%)%, and so forth in the unrolling of the recurrence,
This means that we get a geometric sum, rather than one that grows by a fixed
amount over all n levels (as in the solution to (5.1)).

5.3 Counting Inversions

We’ve spent some time discussing approaches to solving a number of common
recurrences. The remainder of the chapter will illustrate the application of
divide-and-conquer to problems from a number of different domains; we will
use what we've seen in the previous sections to bound the running times
of these algorithms. We begin by showing how a variant of the Mergesort
technique can be used to solve a problem that is not directly related to sorting
numbers,

The Problem

We will consider a problem that arises in the analysis of rankings, which
are becoming important to a number of current applications. For example, a
number of sites on the Web make use of a technique known as collaborative
filtering, in which they try to match your preferences (for books, movies,
restaurants) with those of other people out on the Internet. Once the Web site
has identified people with “similar” tastes to yours—based on a comparison

221

