Th. The GS algo is man-optimal, i.e., each man gets his best valid partner.

Proof: By contradiction.

Let S^* = stable assignment that is not man-optimal.

Let Y = 1st man rejected by his best valid partner (say, A) who prefers someone else (say, Z)

// rejection happens when Y proposes to A or when Z proposes to A

<table>
<thead>
<tr>
<th>A's list</th>
<th>Z</th>
<th>Y</th>
</tr>
</thead>
</table>

As S^* is not man-optimal, must exist some stable assignment, say S, in which Y-A paired

In S, Z-B (say), paired

$\therefore B$ is valid partner of Z

<table>
<thead>
<tr>
<th>Z's list</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
</table>

because Y's rejection at/before Z-A proposal

$\land Z$ not yet rejected by valid partner

In S, Z & A prefer each other over assigned partners (B, Y, resp.)

$\therefore Z$-A unstable in S

\therefore Stable S (w/Y-A pair) cannot exist.

$\therefore S^*$ is not not man-optimal. i.e., S^* cannot exist. \(\Box\)
Th: The GS algo is woman-pessimal, i.e., each woman gets her worst valid partner.

Proof: By contradiction.

Let S^* = stable assignment that is not woman-pessimal.

In S^*, Z-A paired but A's worst valid partner is someone else, say Y

A's list:

```
Z  Y
```

:: Must exist some stable assignment, say S, in which Y-A paired.

In S, Z-B (say) paired

:: B is valid partner of Z

Man-optimality \Rightarrow

Z's list:

```
A  B
```

In S, Z & A prefer each other over assigned partners (B, Y, resp.)

:: Z-A unstable in S

:: Stable S (w/ Y-A pair) cannot exist.

:: A's worst valid partner is Z

:: S^* cannot exist.

QED