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Lecture 01 – Introduction
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What is CS 301 all about?
This is a very mathematical course with a lot of practical applications

The overarching theme is computation

Three parts to the course

1 Automata (singular is automaton) (8 weeks)
2 Computability (4 weeks)
3 Complexity (3 weeks)
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Computation I
One main theme of this course is what can be computed and what can’t

Which problems can be solved by computers and which can’t

Here are some problems we can solve with computers

• Sort a finite list
• Check if an integer is prime
• Draw some triangles on a screen
• Determine the shortest path between two vertices (nodes) in a graph
• Factor a polynomial
• Never lose at tic-tac-toe
• Never lose at checkers (solved in 2007 but took 18 years!)
• . . .
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Computation II
Everything you’ve learned in CS so far has been about solving problems

When you see a new problem, you might think,
“I know how to solve this problem”; or
“I don’t know how to solve it right now, but I’m sure I can figure it out”; or maybe
“Eventually, someone will figure out how to solve it”

Here are some problems we know we can’t solve with computers

• Given a computer program, will the program crash when run on some input?
• Given two computer programs, do they compute the same answer when given the

same input for all inputs?
• Given a multivariable, polynomial equation, determine if it has a solution in

integers
• Find the cheapest airfare between two airports (this is surprisingly complicated)
• Lots of problems in mathematics
• . . .
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Decision problems
In this course, we’re going to focus on problems whose answers are Yes/No (or
True/False)

These are decision problems

Examples

• Is an integer n even?
• Does a directed graph G have a path of length n between vertices u and v?
• Does a program P crash when run on input x?
• Is x an element of a set S?
• Does a string s end with a repeated letter?
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Models of computation
Real computers are frighteningly complex

They are much too complicated to reason about

Instead, we’re going to focus on simpler models of computation

Finite automaton used in text-processing and compilers
Context-free grammar used in programming languages and compilers
Turing machines equivalent in power to general purpose computers

The models are progressively more powerful; they let us solve more problems
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Sets I
A set is a collection of objects (numbers, symbols, other sets, anything)

The objects in the set are the elements or members

E.g., S = {2, 3, 5, 7, 11} is a 4-element set

We use ∈ and ∉ to denote set membership and nonmembership
5 ∈ S and 9 ∉ S

Common sets:
The empty set is written ∅
The set of natural numbers is written N = {1, 2, . . . }
The set of integers is written Z = {. . . ,−2,−1, 0, 1, 2, . . . }
The set of rational numbers is written Q
The set of real numbers is written R
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Sets II
We can define sets by giving rules for sets

Primes = {x ∣ x is a prime number}
Odds = {2x + 1 ∣ x ∈ Z}

T = {n ∣ n = m2 for some m ∈ N}

Set A is a subset of B (written S ⊆ B) if every element of A is an element of B
Set A is a proper subset of B (written S ⊊ B) if A ⊆ B and A ≠ B
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Set operations

Union A ∪B = {x ∣ x ∈ A or x ∈ B}; elements of either A or B

Intersection A ∩B = {x ∣ x ∈ A and x ∈ B}; elements of both A and B
Complement A = A

∁
= {x ∣ x ∉ A}; elements not in A

Difference A ∖B = {x ∣ x ∈ A and x ∉ B} = A ∩B; elements of A but not B
Power set P (A) = {S ∣ S ⊆ A}; set of subsets of A
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Set examples

A = {0, 1, 2, 3, 4}
B = {2, 4, 5}
C = {3x ∣ x ∈ Z}

A ∪B = {0, 1, 2, 3, 4, 5}
A ∩B = {2, 4}
A ∩ C = {0, 3}
B ∩ C = ∅

A ∖B = {0, 1, 3}
P (A ∖B) = {∅, {0}, {1}, {3}, {0, 1}, {0, 3}, {1, 3}, {0, 1, 3}}

P (∅) = {∅}
P (P (∅)) = {∅, {∅}}
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Tuples
Tuples are finite sequences of objects in some order

(2, 7, 8)
(a, a, b, a, b)
(∅, {0, 1}, {0})

Order of elements in a tuple matters, unlike in a set
Repeated elements in a tuple matter, unlike in a set

A tuple with k elements is called a k-tuple
A pair is a 2-tuple
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Cartesian product
A Cartesian product of two sets is defined by

A ×B = {(x, y) ∣ x ∈ A and y ∈ B}

A Cartesian product of k sets, A1 through Ak, is defined by

A1 ×A2 ×⋯×Ak = {(x1, x2, . . . , xk) ∣ xi ∈ Ai}

If A = {a, b} and B = {1, 2, 3}, then

A ×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

We can take a repeated Cartesian product of a set with itself k times

A
k
= A ×A ×⋯×AÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

k
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Functions
Functions are mappings of elements from one set, the domain, to another set, the
range

The range is also called the codomain
Some texts use range for a related, but distinct concept

We write f ∶ X → Y where
f – name of the function
X – domain
Y – range

To each element x ∈ X, f assigns exactly one element y ∈ Y , written y = f(x)

When the function f is clear (or unnamed), we can express that mapping as x↦ y
(read “x maps to y”)
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Function examples

• inc ∶ N→ N given by n↦ n + 1 (equiv. inc(n) = n + 1)

• f ∶ Z × R→ {true, false} given by

f(n, x) = {true if ∣n − x∣ < 3
false otherwise

• g ∶ {q0, q1, q2} × {a, b}→ {q0, q1, q2} given by the table

q x g(q, x)
q0 a q1
q0 b q0
q1 a q2
q1 b q1
q2 a q0
q2 b q2

Equivalently,

g(qi, a) = qi mod 3

g(qi, b) = qi

Note that this completely specifies all 6 cases
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Function examples II

• Function of 3-tuples: h ∶ N3
→ N2 given by h(x, y, z) = (3x + z, yz)

• Bad example removed from slides, sorry! The key point was that a function
f1 ∶ X → Y is different from a function f2 ∶ P (X)→ Y . The first takes a single
element of X as an argument whereas the second takes a set of elements from X
(a subset of X) as an argument.
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Functions in CS 301
We’re going to see a lot of functions that look like

δ1 ∶ Q × Σ→ Q

δ2 ∶ Q × Σ→ P (Q)

where Q and Σ are (finite) sets

δ1 maps a pair (q, a) to an element of Q

δ2 maps a pair (q, a) to a set of elements of Q
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Functions later in CS 301
Later, we’ll see a lot of functions that look like

δ3 ∶ Q × Σ × Γ→ P (Q × Γ)
δ4 ∶ Q × Γ→ Q × Γ × {L,R}

where Γ is some other set

δ3 maps a triple (q, a, b) to a set of pairs, e.g., δ3(q, a, b) = {(r, c), (s, d)}

δ4 maps a pair (q, a) to a triple, e.g., δ4(q, a) = (r, b, L)
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Alphabets, strings, and languages
Alphabets, strings, and languages are the key building blocks for this course

Almost everything in the course boils down to asking the question: Is the string s an
element of the language L?
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Alphabets and symbols
An alphabet is a nonempty, finite set

The members of an alphabet are the symbols of the alphabet

We (usually) denote alphabets with the capital Greek letters Σ and Γ (and various
subscripts)

Σ1 = {0, 1}
Σ2 = {a, b, c}
Γ = {#, 0, 1, 2, x, y}

I will try my best to follow Sipser and write symbols in typewriter font
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Strings
A string (also called a word) is a finite, possibly empty sequence of symbols from a
given alphabet

• 0110110 is a string over the alphabet Σ1 = {0, 1}
• aababacab is a string over the alphabet Σ2 = {a, b, c}
• 2100#xxy is a string over the alphabet Γ = {#, 0, 1, 2, x, y}

The empty string is a sequence of zero symbols and is denoted ε

The length of a string w, written ∣w∣ is the number of symbols it contains

• ∣0110110∣ = 7
• ∣aababacab∣ = 9
• ∣2100#xxy∣ = 8
• ∣ε∣ = 0
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String concatenation
We can concatenate two strings to produce a new string

• If x = aab and y = ba, then xy = aabba
• Concatenating ε does not change the string: xε = εx = x
• If x and y are strings, then ∣xy∣ = ∣x∣ + ∣y∣
• If x is a string and k is a nonnegative integer, then xk

= xx⋯xÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
k

and ∣xk∣ = k ⋅ ∣x∣
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Substrings
A string s is a substring of w if all of the symbols in s appear consecutively in w

• 000 is a substring of 001000
• 0100 is a substring of 001000
• 0000 is not a substring of 001000
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String reversal
If w = w1w2⋯wn is a string of length n where wi ∈ Σ, then wR

= wnwn−1⋯w1 is the
reversal of w

• abbR = bba
• aR = a
• ε

R
= ε

23 / 43



String prefix
String x is a prefix of string y if there exists string z such that xz = y

A string of length n has n + 1 prefixes

Prefixes of aaba

1 ε

2 a

3 aa

4 aab

5 aaba

ε has exactly one prefix: ε itself

String x is a proper prefix of string y if x is a prefix of y and x ≠ y
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Languages
A language is a (possibly infinite) set of strings over an alphabet Σ

• L1 = ∅. The empty language
• L2 = {ε}. The language containing only the empty string
• L3 = {a, aa, aba}
• L4 = Σ∗. The language of all strings (remember, strings have finite length)
• L5 = Σ+. The language of all nonempty string (L5 = L4 ∖ L2)
• L6 = {anbn ∣ n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }

Languages L1, L2 and L3 are finite (meaning they have finitely many elements)

Languages L4, L5, and L6 are infinite
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Operations on languages
Languages are sets, so the usual set operations like union and intersection have the
normal meanings

The complement of a language L is the set of all strings over the alphabet that are not
in L. In symbols L = Σ∗ ∖ L

We’ll see lots of operations defined on languages throughout the course

• Reversal. LR
= {wR ∣ w ∈ L}

• Composition (or concatenation). L1 ◦ L2 = {xy ∣x ∈ L1 and y ∈ L2}
• Kleene star. L∗ = {x1x2⋯xk ∣ k ≥ 0 and each xi ∈ L}
• . . .
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Recap
Alphabets are finite, nonempty sets of symbols

E.g., Σ = {a, b}, Γ = {0, 1, . . . , 9}

Strings are finite sequences of symbols from an alphabet
E.g., ε (the empty string), aab, b5aab = bbbbbaab

Languages are (possibly infinite) sets of strings
E.g., ∅, {a}, Σ∗, {w ∣ ∣w∣ ≥ 3}
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Question 1
Are the sets ∅ and {∅} the same?

No. ∅ is the set containing no elements. {∅} is the set containing a single element,
namely the empty set.

28 / 43



Question 1
Are the sets ∅ and {∅} the same?

No. ∅ is the set containing no elements. {∅} is the set containing a single element,
namely the empty set.

28 / 43



Question 2
If S is a set, then ∅ ⊆ S. True or false?

True. ∅ is a subset of every set
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Question 3
Let S = {1, 2, 3}. Is 1 ⊆ S?

No. 1 is not a set and so it certainly cannot be a subset of S
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Question 4
Let S = {1, 2, 3}. Is {2} ∈ S?

No. {2} is a set but S doesn’t contain any sets

However, {2} ⊆ S
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Question 5
Let S = {1, 2, 3}. Is S ⊆ S

Yes. Every set is a subset of itself
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Question 6
Is {0} a valid alphabet?

Yes. It’s called a unary alphabet because it has one symbol
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Question 7
Is {0, 1} a valid alphabet?

Yes. It’s called a binary alphabet because it has two symbols
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Question 8
Is ∅ a valid alphabet?

No. Alphabets must be nonempty
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Question 9
Is {0, 1, 2, . . . } a valid alphabet?

No. Alphabets must have finitely many elements
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Question 10
Is the sequence of symbols a#b a valid string over the alphabet Σ = {a, b}?

No. All symbols in the string must come from the alphabet

It is a valid string over the alphabet Σ′ = {a, b,#}.
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Question 11
Is the empty-length sequence of symbols ε a valid string over the alphabet Σ = {a}?

Yes. The empty string is a string over any alphabet
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Question 12
Is the infinite-length sequence of a symbols, aa. . . , a valid string over the alphabet
Σ = {a, b}?

No. Strings must be finite length
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Question 13
Can a language have zero elements?

Yes. ∅ is a perfectly reasonable language
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Question 14
Can a language have infinitely many elements?

Yes. Σ∗, the set of all strings over Σ is finite for any alphabet Σ

Consider Σ = {a}, then the language Σ∗ = {ε, a, aa, aaa, . . . }

Most of the languages in this course will be infinite
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Question 15
Every language L of strings over the alphabet Σ is a subset of Σ∗. True or false?

True. Σ∗ is the set of all strings over Σ and L is some set of strings over Σ, so every
element of L is an element of Σ∗ and thus L ⊆ Σ∗
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Next time
Read chapter 0 and section 1.1 of Sipser

We’re going to talk about our first model of computation: deterministic finite
automaton (DFA)

Components of a DFA:
• A finite set of states Q
• An input alphabet Σ
• A transition function δ ∶ Q × Σ→ Q that

controls how the DFA moves from state to
state on a given input

• A start state q0 ∈ Q

• A set of accept states F ⊆ Q that control
whether or not the DFA accepts an input string

q0

q1

q2

q3

a

b

a

b

a

b

a,b
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