CS 301

Lecture 02 - Deterministic Finite Automata (DFAs)

Review from last time

Alphabet Finite, nonempty set of symbols
String Finite-length sequence of symbols from an alphabet
Language Set of strings over an alphabet

If Σ is an alphabet, then Σ^{*} is the language consisting of all strings over Σ

State machines

A state machine is a way to structure computation
It consists of

- a fixed set of states
- a fixed initial state
- a specification of what action to take in response to input for each state
- a current "active" state

State machine example: An automatic swinging door

The door has a front and a back sensor

We want to open the door when the front sensor is triggered, as long as it doesn't hit someone (i.e., as long as the back sensor is not triggered)

We want to close the door when the front sensor is not triggered, as long as it doesn't hit someone

State machine example: An automatic swinging door
The door can be either OPEN or CLOSED

Possible inputs to the state machine:
FRONT Someone is standing on the front sensor
REAR Someone is standing on the rear sensor
BOTH Someone is standing on both sensors
NEITHER No one is standing on either sensor

State machine example: An automatic swinging door

(1) Initially the door is CLOSED

State machine example: An automatic swinging door

(1) Initially the door is CLOSED
(2) Alice stands on the FRONT sensor and the door changes to OPEN

State machine example: An automatic swinging door

(1) Initially the door is CLOSED
(2) Alice stands on the FRONT sensor and the door changes to OPEN
(3) Alice enters as Bob approaches the door so BOTH sensors are triggered and the door stays OPEN

State machine example: An automatic swinging door

(1) Initially the door is CLOSED
(2) Alice stands on the FRONT sensor and the door changes to OPEN
(3) Alice enters as Bob approaches the door so BOTH sensors are triggered and the door stays OPEN
(4) Alice moves away as Bob enters so only the REAR sensor is triggered and the door stays OPEN

State machine example: An automatic swinging door
(1) Initially the door is CLOSED
(2) Alice stands on the FRONT sensor and the door changes to OPEN
(3) Alice enters as Bob approaches the door so BOTH sensors are triggered and the door stays OPEN
(4) Alice moves away as Bob enters so only the REAR sensor is triggered and the door stays OPEN
5 Bob moves away so NEITHER sensor is triggered and the door changes to CLOSED

State machine example: TCP

UIC

State machine example: TLS 1.3

```
Can send app data --> after here
```


State machine example: Video games

Input is received from the controller
What does the game do with the input? Depends on what state it's in

- During normal game play: perform an action (jump, run, start a conversation)
- During a cut scene: nothing or maybe end the cut scene
- During a loading screen: nothing
- ...

Deterministic finite Automaton (DFA)

DFAs are the simplest model of computation:
Given an input string, the DFA will either accept it or reject it
They are state machines

- The (finite set of) states are the DFA's memory
- It starts in a fixed start state
- It processes its input one symbol at a time; for each symbol, it will transition to a new state (or stay in the current state)
- At the end of the input, the state it is in determines if the input is accepted or rejected

DFA notation

The states of a DFA are represented as a circle

DFA notation

The states of a DFA are represented as a circle

We will usually give the states short names like q_{0} or q_{1}

DFA notation

The states of a DFA are represented as a circle
We will usually give the states short names like q_{0} or q_{1}

The initial state is represented with an arrow and is frequently named q_{0}

DFA notation

The states of a DFA are represented as a circle \square

We will usually give the states short names like q_{0} or q_{1}

The initial state is represented with an arrow and is frequently named q_{0}

Transitions between states are given by directed edges, labeled by an alphabet symbol and every state must have exactly one transition for each symbol in the alphabet

DFA notation

The states of a DFA are represented as a circle \square

We will usually give the states short names like q_{0} or q_{1}

The initial state is represented with an arrow and is frequently named q_{0}

Transitions between states are given by directed edges, labeled by an alphabet symbol and every state must have exactly one transition for each symbol in the alphabet

Accepting states are drawn with two circles q_{3}

DFA example

[^0]
DFA example

- ababb

DFA example

- ababb \quad Accepted

DFA example

- ababb
\checkmark Accepted
- bbab

DFA example

- ababb
\checkmark Accepted
- bbab

DFA example

- ababb
\checkmark Accepted
- bbab

DFA example

- ababb
\checkmark Accepted
- bbab

DFA example

- ababb
\checkmark Accepted
- bbab

XRejected

DFA example

- ababb \quad Accepted
- bbab XRejected
- ε

DFA example

- ababb
\checkmark Accepted
- bbab
- ε

KRejected
$\mathbf{X R e j e c t e d}$

DFA example

- ababb \quad Accepted
- bbab KRejected
- ε

$$
\mathbf{X}_{\text {Rejected }}
$$

What strings does this DFA accept?

DFA example

- ababb \quad Accepted
- bbab सRejected
- ε

*Rejected

What strings does this DFA accept?
Strings that end in bb
We can write this as a set: $\left\{w \mathrm{bb} \mid w \in \Sigma^{*}\right\}$

Formalizing DFAs

A DFA M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

Formalizing DFAs

A DFA M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states

Formalizing DFAs

A DFA M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is an alphabet (finite set of symbols)

Formalizing DFAs

A DFA M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is an alphabet (finite set of symbols)
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

Formalizing DFAs

A DFA M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is an alphabet (finite set of symbols)
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state

Formalizing DFAs

A DFA M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is an alphabet (finite set of symbols)
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accepting (or final) states

DFA example once again

States $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
Alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

Transitions | δ | a | b |
| :---: | :---: | :---: |
| q_{0} | q_{0} | q_{1} |
| | q_{1} | q_{0} |
| q_{2} | | |
| | q_{2} | q_{0} |q_{2}

Start state q_{0}

If we call this DFA M, then $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a complete, mathematical description of the DFA

The diagram is just helpful for humans; it doesn't contain any information not contained in in the 5 components of M

DFA acceptance and rejection

A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts a string $w \in \Sigma^{*}$ if starting from the start state q_{0} and moving from state to state according to the transition function δ on input w, the machine ends in one of the accepting states

If M does not accept w, then it rejects w

Language of a DFA

The language of a DFA M-written $L(M)$-is the set of strings that M accepts

$$
L(M)=\left\{w \in \Sigma^{*} \mid M \text { accepts } w\right\}
$$

We say that M recognizes a set A to mean $L(M)=A$

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
If we were writing a Python program to check if a string w has one or three 0 s , it might look like this

```
count = 0
for c in w:
    if c == '0':
            count += 1
if count == 1 or count == 3:
    print("ACCEPT")
else:
    print("REJECT")
```


DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
If we were writing a Python program to check if a string w has one or three 0 s , it might look like this

```
count = 0
for c in w:
    if c == '0':
        count += 1
if count == 1 or count == 3:
    print("ACCEPT")
else:
    print("REJECT")
```

 states and initial state

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
If we were writing a Python program to check if a string w has one or three 0 s , it might look like this

```
|count = 0 
    print("ACCEPT")
else:
    print("REJECT")
```

states and initial state
transition function

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
If we were writing a Python program to check if a string w has one or three 0 s , it might look like this

```
count = 0 
    print("ACCEPT")
else:
    print("REJECT")
```

states and initial state
transition function
accept states

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
Approach:
(1) We need states to keep track of how many 0s the DFA has seen so far; How many states should the DFA have?

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
Approach:
(1) We need states to keep track of how many 0s the DFA has seen so far; We need five states: corresponding to $0,1,2,3$, and ≥ 4 ' 0 ' symbols

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
Approach:
(1) We need states to keep track of how many 0s the DFA has seen so far; We need five states: corresponding to $0,1,2,3$, and ≥ 4 ' 0 ' symbols
(2) How should the DFA move from state to state?

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$
Approach:
(1) We need states to keep track of how many 0s the DFA has seen so far; We need five states: corresponding to $0,1,2,3$, and ≥ 4 ' 0 ' symbols
(2) On a 1 , we should remain in the current state and on a 0 , we should move to the next state (or stay in the ≥ 4 state)

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$

Approach:

(1) We need states to keep track of how many 0s the DFA has seen so far; We need five states: corresponding to $0,1,2,3$, and ≥ 4 ' 0 ' symbols
(2) On a 1 , we should remain in the current state and on a 0 , we should move to the next state (or stay in the ≥ 4 state)
(3) Which states should be accepting states?

DFA construction

Let's build a DFA to recognize the language
$A=\{w \mid w$ contains exactly one or three 0$\}$ with the alphabet $\Sigma=\{0,1\}$

Approach:

(1) We need states to keep track of how many 0s the DFA has seen so far; We need five states: corresponding to $0,1,2,3$, and ≥ 4 ' 0 ' symbols
(2) On a 1 , we should remain in the current state and on a 0 , we should move to the next state (or stay in the ≥ 4 state)
(3) The states corresponding to 1 and 3 should be accepting states

Running our DFA

- 0

Running our DFA

- 0
\checkmark Accepted

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101

Running our DFA

- $0 \quad \sqrt{ }$ Accepted
- 10101

Running our DFA

- $0 \quad \sqrt{ }$ Accepted
- 10101

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 XRejected

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 XRejected
- 000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 XRejected
- 000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- 000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- $000 \boldsymbol{V}$ Accepted

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- 000 Accepted
- 00000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- 000 Accepted
- 00000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- 000 Accepted
- 00000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- 000 Accepted
- 00000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- 000 Accepted
- 00000

Running our DFA

- $0 \quad \checkmark$ Accepted
- 10101 KRejected
- $000 \checkmark$ Accepted
- 00000 KRejected

Formalizing DFA computation

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let $w=w_{1} w_{2} \cdots w_{n}$ be a string where $w_{i} \in \Sigma$
M accepts w if there exist states $r_{0}, r_{1}, \ldots, r_{n} \in Q$ such that

Formalizing DFA computation

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let $w=w_{1} w_{2} \cdots w_{n}$ be a string where $w_{i} \in \Sigma$
M accepts w if there exist states $r_{0}, r_{1}, \ldots, r_{n} \in Q$ such that
(1) $r_{0}=q_{0}$
[The DFA starts in the start state]

Formalizing DFA computation

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let $w=w_{1} w_{2} \cdots w_{n}$ be a string where $w_{i} \in \Sigma$
M accepts w if there exist states $r_{0}, r_{1}, \ldots, r_{n} \in Q$ such that
(1) $r_{0}=q_{0}$
[The DFA starts in the start state]
(2) $r_{i}=\delta\left(r_{i-1}, w_{i}\right)$ for $i \in\{1,2, \ldots, n\}$
[The DFA moves from state to state according to δ]

Formalizing DFA computation

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let $w=w_{1} w_{2} \cdots w_{n}$ be a string where $w_{i} \in \Sigma$
M accepts w if there exist states $r_{0}, r_{1}, \ldots, r_{n} \in Q$ such that
(1) $r_{0}=q_{0}$
[The DFA starts in the start state]
(2) $r_{i}=\delta\left(r_{i-1}, w_{i}\right)$ for $i \in\{1,2, \ldots, n\}$
[The DFA moves from state to state according to δ]
(3) $r_{n} \in F$
[The DFA ends in an accepting state]

Formalizing DFA computation

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let $w=w_{1} w_{2} \cdots w_{n}$ be a string where $w_{i} \in \Sigma$
M accepts w if there exist states $r_{0}, r_{1}, \ldots, r_{n} \in Q$ such that
(1) $r_{0}=q_{0}$
[The DFA starts in the start state]
(2) $r_{i}=\delta\left(r_{i-1}, w_{i}\right)$ for $i \in\{1,2, \ldots, n\}$
[The DFA moves from state to state according to δ]
(3) $r_{n} \in F$
[The DFA ends in an accepting state]

The sequence of $n+1$ states $r_{0}, r_{1}, \ldots, r_{n}$ are the states that the DFA moves through on input w

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	
0		
10101		
000		
00000		

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0		
10101		
000		
00000		

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	
10101		
000		
00000		

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	/Accepted
10101		
000		
00000		

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	/Accepted
10101	$q_{0}, q_{0}, q_{1}, q_{1}, q_{2}, q_{2}$	
000		
00000		

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	/Accepted
10101	$q_{0}, q_{0}, q_{1}, q_{1}, q_{2}, q_{2}$	※Rejected
000		
00000		

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	乞Accepted
10101	$q_{0}, q_{0}, q_{1}, q_{1}, q_{2}, q_{2}$	※Rejected
000	$q_{0}, q_{1}, q_{2}, q_{3}$	
00000		

UIC

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	/Accepted
10101	$q_{0}, q_{0}, q_{1}, q_{1}, q_{2}, q_{2}$	※Rejected
000	$q_{0}, q_{1}, q_{2}, q_{3}$	$\boldsymbol{\wedge}$ Accepted
00000		

UIC

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted／Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	乞Accepted
10101	$q_{0}, q_{0}, q_{1}, q_{1}, q_{2}, q_{2}$	〒Rejected
000	$q_{0}, q_{1}, q_{2}, q_{3}$	久Accepted
00000	$q_{0}, q_{1}, q_{2}, q_{3}, q_{\geq 4}, q_{\geq 4}$	

Examples

Input	States $r_{0}, r_{1}, \ldots, r_{n}$	Accepted/Rejected
ε	q_{0}	※Rejected
0	q_{0}, q_{1}	乞Accepted
10101	$q_{0}, q_{0}, q_{1}, q_{1}, q_{2}, q_{2}$	※Rejected
000	$q_{0}, q_{1}, q_{2}, q_{3}$	乞Accepted
00000	$q_{0}, q_{1}, q_{2}, q_{3}, q_{\geq 4}, q_{\geq 4}$	※Rejected

Regular languages

A language is regular if some DFA recognizes it
Recall: A DFA M recognizes a language A if $A=\{w \mid M$ accepts $w\}=L(M)$

Prove some languages are regular

Let's construct some DFAs with JFLAP for the following languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

- $A=\{w \mid w$ starts and ends with a $\}$
- $B=\left\{\mathbf{a w a} \mid w \in \Sigma^{*}\right\}$
- $C=\{w \mid w$ starts and ends with different symbols $\}$
- $D=\Sigma^{*}$
- $E=\varnothing$
- $F=\{w| | w \mid$ is not a multiple of 4$\}$

[^0]: States $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
 Alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

 Transitions | δ | a | b |
 | :---: | :---: | :---: |
 | q_{0} | q_{0} | q_{1} |

 | q_{1} | q_{0} | q_{2} |
 | :--- | :--- | :--- |

 $$
 \begin{array}{l|ll}
 q_{2} & q_{0} & q_{2}
 \end{array}
 $$

 Start state q_{0}
 Accepting states $F=\left\{q_{2}\right\}$

