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Lecture 03 – Nondeterministic Finite Automata (NFAs)
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Review from last time
DFAs are 5-tuples M = (Q,Σ, δ, q0, F )
where

• Q is a finite set of states
• Σ is an alphabet (finite, nonempty set

of symbols)
• δ ∶ Q × Σ→ Q is the transition

function
• q0 ∈ Q is the start state
• F ⊆ Q is the set of accepting states

A language A is regular if it is recognized
by some DFA M , i.e.,
A = L(M) = {w ∈ Σ∗ ∣ M accepts w}

q0

q1

q2

ab a
b

a
b
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Operations on languages
We can define operations on languages which are functions that map from one or more
languages to a new language

Unary operations are functions that map one language to another
• Complement: A = {w ∈ Σ∗ ∣ w ∉ A}
• Reverse: AR

= {wR ∣ w ∈ A}
• Kleene star: A∗ = {w1w2⋯wk ∣ k ≥ 0 and wi ∈ A for all i}
• EndsWith(A) = {xw ∣ x ∈ Σ∗ and w ∈ A}
• . . .

Binary operations are functions that map a pair of languages to a new language
• Union: A ∪B
• Intersection: A ∩B
• Concatenation: A ◦B = {xy ∣ x ∈ A and y ∈ B}
• . . .
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Complement
Theorem
If A is a regular language, then A is a regular language.

General proof technique
1 Start by assuming that A is a regular language
2 Since (by assumption) A is regular, there is a DFA M = (Q,Σ, δ, q0, F ) that

recognizes A (i.e., L(M) = A)
3 Construct a new DFA M

′
= (Q′,Σ, δ′, q′0, F ′) that recognizes the language we

want to show is regular
4 Since the language is recognized by a DFA, it is regular
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Complement
Theorem
If A is a regular language, then A is a regular language.

Proof.
1 Assume A is a regular language recognized by DFA M = (Q,Σ, δ, q0, F )

2 Construct a new DFA M
′
= (Q,Σ, δ, q0, F

′) that is identical to M except that the
accepting and nonaccepting states have been swapped.
That is, F ′ = Q ∖ F .

3 If M accepts w, then when M is run on w, it ends in a state q ∈ F . Thus, when
M

′ is run on w, it ends in state q ∉ Q ∖ F = F
′ so M ′ rejects w.

4 If M rejects w, then when M is run on w, it ends in state q ∉ F . Thus, when M ′

is run on w, it ends in state q ∈ Q ∖ F = F
′ so M ′ accepts w.

5 Therefore, L(M ′) = A. Since DFA M
′ recognizes A, A is regular.
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Complement example
Let A = {w ∣ aba is a substring of w}

M :
a

b a

b a

b

a,b

A = {w ∣ aba is not a substring of w}

M
′:

a

b a

b a

b

a,b
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Union
Theorem
If A and B are regular languages, then A ∪B is regular.
Proof.

1 Assume DFA M1 = (Q1,Σ, δ1, q1, F1) recognizes A and M2 = (Q2,Σ, δ2, q2, F2)
recognizes B.

2 Build a new DFA M = (Q,Σ, δ, q0, F ) with states consisting of pairs of states
from M1 and M2. Formally,

Q = Q1 ×Q2

q0 = (q1, q2)
δ((q, r), t) = (δ1(q, t), δ2(r, t))

F = {(q, r) ∣ q ∈ F1 or r ∈ F2}.

As M transitions from state (q, r) to state (q′, r′), the first element changes
according to δ1 and the second according to δ2.
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Union

3 Consider running M1, M2, and M on string w. The three DFAs end in states q,
r, and (q, r), respectively. If w ∈ A, then M1 accepts w so q ∈ F1 and thus
(q, r) ∈ F so M accepts w. Similarly, if w ∈ B, then M2 accepts w so r ∈ F2 and
thus (q, r) ∈ F . If w is in neither A nor B, then q ∉ F1 and r ∉ F2 so (q, r) ∉ F .

4 Therefore, L(M) = A ∪B so A ∪B is regular.
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Union example
Let A = {w ∣ aba is not a substring of w} and M1 recognize A
Let B = {w ∣ ∣w∣ is even} and M2 recognize B

M1:
q r s t

a

b a

b a

b

a,b

M2:
e o

a,b

a,b

(q, e)

(q, o)

(r, e)

(r, o)

(s, e)

(s, o)

(t, e)

(t, o)

a
b

a
b a

b

a
b

a
b

a

b

a,ba,b

M :
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EndsWith

EndsWith(A) = {xw ∣ x ∈ Σ∗ and w ∈ A}

• A = {a, aab, bab}; EndsWith(A) = {w ∣ w ends with a, aab, or bab}
• B = {bk ∣ k > 0}; EndsWith(B) = {w ∣ w ends with 1 or more b}
• C = {akbk ∣ k ≥ 0};

EndsWith(C) = {w ∣ w ends with akbk for some k ≥ 0} = Σ∗ [Why?]
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A simple theorem
Theorem
If A is regular, then EndsWith(A) = {xw ∣ x ∈ Σ∗ and w ∈ A} is regular.

Proof technique
Start by assuming that A is regular and thus there exists a DFA M such that
L(M) = A

Now construct a new DFA M
′ such that L(M ′) = EndsWith(A).

Ideally, this new DFA would have two parts:

1 some states that read symbols from Σ∗ (i.e., matching the symbols of x)
2 a copy of M to accept the last part of the string which should be in A
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A simple theorem proof difficulty
The two parts are individually easy

1 Match symbols from Σ∗ (assume Σ = {a, b}, easy to generalize)
a,b

2 A copy of M M

But how can we combine them?
a,b

M

?
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Determinism
DFAs are deterministic because at every step, the DFA has exactly one thing it can do

When M is in some state q ∈ Q and the next input symbol is t ∈ Σ, the only thing it
can do is move to state δ(q, t)

Graphically, we don’t allow any state to have multiple edges (transitions) labeled with
the same symbol going to different states

Similarly, we don’t allow a state to not have a transition labeled with a symbol of Σ
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Nondeterminism
Let’s build a new type of machine, a nondeterministic finite automaton (NFA), where
at each step, it has zero or more things it can do

Three new options

1 Multiple transitions from a state on the same symbol
a

a

2 Transitions on no input ε

3 States without transitions on some (or all) symbols a
b
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Example

q0 q1 q2 q3 q4 q5

a

a b a b

ε

b

a

Let’s run this on input ababb

1 Start in q0, first symbol is a, two choices, let’s stay in q0

2 Next symbol is b, but there are no transitions labeled b

3 Now the machine is dead because there’s no active state
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Example

q0 q1 q2 q3 q4 q5

a

a b a b

ε

b

a

Let’s run this on input ababb

1 Start in q0, first symbol is a, two choices, let’s stay in q0

2 Next symbol is b, but there are no transitions labeled b

3 Now the machine is dead because there’s no active state

Since the machine didn’t end in an accepting state. Is ababb $Rejected?
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Example again

q0 q1 q2 q3 q4 q5

a

a b a b

ε

b

a

Let’s run this on input ababb again

1 Start in q0, first symbol is a, two choices, let’s go to q1

2 Next symbol is b, go to q2

3 Next symbol is a, go to q3

4 We have two choices: follow the ε transition or not, let’s follow it
5 Next symbol is b, but there are no transitions labeled b

6 Now the machine is dead because there’s no active state
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Let’s run this on input ababb again
1 Start in q0, first symbol is a, two choices, let’s go to q1
2 Next symbol is b, go to q2
3 Next symbol is a, go to q3
4 We have two choices: follow the ε transition or not, let’s follow it
5 Next symbol is b, but there are no transitions labeled b
6 Now the machine is dead because there’s no active state

Once again, it didn’t end in an accepting state.
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Example yet again

q0 q1 q2 q3 q4 q5

a

a b a b

ε

b

a

Let’s run this on input ababb a third time

1 Start in q0, first symbol is a, two choices, let’s go to q1
2 Next symbol is b, go to q2
3 Next symbol is a, go to q3
4 We have two choices: follow the ε transition or not, let’s not follow it
5 Next symbol is b, go to q4
6 Next symbol is b, go to q5
7 There’s no more input and the machine ended in an accepting state so ababb is
"Accepted

19 / 44
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7 There’s no more input and the machine ended in an accepting state so ababb is
"Accepted
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Was ababb accepted or rejected?
Two choices we made led to the machine dying because it couldn’t follow a transition

The third choice we made ended in an accepting state

Let’s say an NFA accepts a string if any path through the NFA ends in an accepting
state

So ababb was "Accepted
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Language of the NFA
What strings are accepted by this NFA?

q0 q1 q2 q3 q4 q5

a

a b a b

ε

b

a

Strings starting with at least 1 a, followed by ba, optionally followed by bb, followed by
any number of as: {ambawan ∣ m ≥ 1 and n ≥ 0 and w ∈ {ε, bb}}
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Running NFAs
It was a pain to run the NFA multiple times on the same input, making difference
choices

Let’s instead keep track of all possible states the NFA N can be in at each point in its
computation

Rather than having a single current state, let’s have a set of current states, call it C

At each step, we’re going to update C
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Procedure for running NFAs
Procedure

1 Set C = {q0}, the set containing only the start state
2 Set C = {q ∣ q is reachable from C by following 0 or more ε-transitions}
3 For each successive symbol t in the input w,
4 Set C = {q ∣ there is a transition to q on symbol t from some state in C}
5 Set C = {q ∣ q is reachable from C by following 0 or more ε-transitions}
6 If C contains any accepting states, N accepts w, otherwise N rejects w
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Nondeterministic finite automaton (NFA)
A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ, δ, q0, F ) where

• Q is a finite set of states
• Σ is an alphabet
• δ ∶ Q × Σε → P (Q) is the transition function
• q0 ∈ Q is the start state
• F ⊆ Q is the set of accepting (or final) states

Σε = Σ ∪ {ε} is the alphabet Σ augmented with an additional symbol ε which we use
to denote transitions on no input

P (Q) is the power set of Q so δ returns a set of next states
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Transition functions
DFAs have transitions of the form δ ∶ Q × Σ→ Q

For each (state, symbol) pair, δ returns a single state

NFAs have transitions of the form δ ∶ Q × Σε → P (Q)
For each (state, symbol) pair, δ returns 0 or more states
For each (state, ε), δ returns 0 or more states
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Formalizing NFA computation
Let N = (Q,Σ, δ, q0, F ) be an NFA and let w = w1w2⋯wn be a string where wi ∈ Σε

N accepts w if there exist states r0, r1, . . . , rn ∈ Q such that
1 r0 = q0

[The NFA starts in the start state]
2 ri ∈ δ(ri−1, wi) for i ∈ {1, 2, . . . , n}

[The NFA moves from state ri−1 to one of the possible next states according to δ]
3 rn ∈ F

[The NFA ends in an accepting state]

Two key differences from DFAs
1 wi is either an alphabet symbol or ε

E.g., if w = abaa, then we can write w = εabεεεaεa
2 ri ∈ δ(ri−1, wi) since δ returns a set of next possible states

The sequence of n + 1 states r0, r1, . . . , rn is one of the possible sequences of states
that the NFA moves through on input w
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Language of an NFA
The language of an NFA N is L(N) = {w ∣ N accepts w}

We say N recognizes a language A to mean L(N) = A

[This is analogous to DFAs]
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Example
1

2 3

b

ε

a
a,b

a

N = (Q,Σ, δ, q0, F ) where

Q = {1, 2, 3}
Σ = {a, b}
q0 = 1
F = {1, 2}
δ ∶ a b ε

1 ∅ {2} {3}
2 {2, 3} {3} ∅
3 {1} ∅ ∅

Consider string w = abaa

Write w as εabaa then one of the possible
sequences of states N moves through is

r0 r1 r2 r3 r4 r5

1 3 1 2 3 1

All three conditions for acceptance hold

1 r0 = q0

2 ri ∈ δ(ri−1, wi) for i ∈ {1, 2, . . . , n}
3 rn ∈ F
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Converting NFAs to DFAs
Theorem
For every NFA N , there exists a DFA M such that L(M) = L(N).

We can prove this by following our procedure for running NFAs

Procedure
1 Set C = {q0}, the set containing only the start state
2 Set C = {q ∣ q is reachable from C by following 0 or more ε-transitions}
3 For each successive symbol t in the input w,
4 Set C = {q ∣ there is a transition to q on symbol t from some state in C}
5 Set C = {q ∣ q is reachable from C by following 0 or more ε-transitions}
6 If C contains any accepting states, N accepts w, otherwise N rejects w
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Some helpful notation
Given an NFA N = (Q,Σ, δ, q0, F ), define a new function E that takes a set of states
S ⊆ Q as input and returns the set of states reachable by following 0 or more
ε-transitions from states in S

Formally, E ∶ P (Q)→ P (Q) given by
E(S) = {q ∣ q is reachable from some r ∈ S by following 0 or more ε-transitions}

E(S) is called the ε-closure of S

Procedure (ver. 2)
1 Set C = E({q0})
2 For each successive symbol t in the input w,
3 Set C = {q ∣ q ∈ E(δ(r, t)) for some r ∈ C}
4 If C ∩ F ≠ ∅, N accepts w, otherwise N rejects w
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Running the procedure again
Procedure (ver. 2)

1 Set C = E({q0})
2 For each successive symbol t in the input w,
3 Set C = {q ∣ q ∈ E(δ(r, t)) for some r ∈ C}
4 If C ∩ F ≠ ∅, N accepts w, otherwise N rejects w

1

2 3

b

ε

a
a,b

a

• abaabba
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Converting an NFA to a DFA
Procedure (ver. 2)

1 Set C = E({q0})
2 For each successive symbol t in the input w,
3 Set C = {q ∣ q ∈ E(δ(r, t)) for some r ∈ C}
4 If C ∩ F ≠ ∅, N accepts w, otherwise N rejects w

Given an NFA N = (Q,Σ, δ, q0, F ), we can convert our procedure into a DFA
M = (Q′,Σ, δ′, q′0, F ′)

• States in M are sets of states in N : Q′ = P (Q)
• M ’s start state is q′0 = E({q0})
• M ’s transition function δ′ ∶ P (Q) × Σ→ P (Q) is
δ
′(C, t) = {q ∣ q ∈ E(δ(r, t)) for some r ∈ C}

• M ’s accepting states are every subset of Q that contains at least one of N ’s
accepting states: F ′ = {S ∣ S ⊆ Q and S ∩ F ≠ ∅}
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Converting our example to a DFA
N :

1

2 3

b

ε

a
a,b

a

abaababb

M :

∅{1}{2}

{3}{1, 2} {1, 3}

{2, 3} {1, 2, 3}

a,b

ab

a

b

a

b
a

b

a
b

a

b

a

b
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Converting our example to a DFA
N :

1

2 3

b

ε

a
a,b

a

abaababb $Rejected
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a

b
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b
a
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b
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Regular languages
Theorem
A language A is regular if and only if it is recognized by some NFA N .

Proof.
⟹

If A is regular, then it is recognized by a DFA M . DFAs are NFAs where each state
has exactly one next state for each alphabet symbol so M is an NFA.

⟸

If NFA N recognizes A, then using the NFA to DFA construction, we can build an
DFA M such that L(M) = A. Therefore, A is regular.
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Regular languages closed under operations
Let f be an operation on languages
[Recall that means f takes some languages as input and produces a new language as
output]

We say regular languages are closed under f to mean

Unary If A is regular, then f(A) is regular
Binary If A and B are regular, then f(A,B) is regular
n-ary If A1, A2, . . . , An are regular, then f(A1, A2, . . . , An) is regular
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Regular languages are closed under regular operations
Regular operations

Union A ∪B = {w ∣ w ∈ A or w ∈ B}
Concatenation A ◦B = {xy ∣ x ∈ A and y ∈ B}

Kleene star A∗ = {w1w2⋯wk ∣ k ≥ 0 and wi ∈ A for all i}

Theorem
Regular languages are closed under union, concatenation, and Kleene star.

In other words, if A and B are regular languages, then A ∪B, A ◦B, and A∗ are
regular.
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Union
Let A and B be regular languages recognized by DFAs M1 and M2

M1

M2

M1

M2

⇒

ε

ε
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Regular languages are closed under union
Proof.
Let A and B be regular languages
recognized by DFAs

M1 = (Q1,Σ, δ, q1, F1)
M2 = (Q2,Σ, δ, q2, F2).

Build NFA N = (Q,Σ, δ, q0, F ) where

Q = Q1 ∪Q2 ∪ {q0}
F = F1 ∪ F2

δ(q, ε) = {{q1, q2} if q = q0

∅ otherwise

δ(q, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅ if q = q0

{δ1(q, t)} for q ∈ Q1

{δ2(q, t)} for q ∈ Q2

q1

M1

q2

M2

q0

ε

ε
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Concatenation
Let A and B be regular languages recognized by DFAs M1 and M2

M1 M2

M1 M2

⇓

ε

ε

Let

M1 = (Q1,Σ, δ, q1, F1)
M2 = (Q2,Σ, δ, q2, F2).

Build NFA N = (Q,Σ, δ, q1, F2) where

Q = Q1 ∪Q2

δ(q, ε) = {{q2} if q ∈ F1

∅ otherwise

δ(q, t) = {{δ1(q, t)} for q ∈ Q1

{δ2(q, t)} for q ∈ Q2.
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Kleene Star
Let A be a regular language recognized by DFA M1

M1

M1

⇓

q0 ε
ε

ε

Let M1 = (Q1,Σ, δ, q1, F1).
Build NFA N = (Q,Σ, δ, q0, F ) where

Q = Q1 ∪ {q0}
F = F1 ∪ {q0}

δ(q, ε) = {{q1} if q ∈ F
∅ otherwise

δ(q, t) = {∅ if q = q0

{δ1(q, t)} for q ∈ Q1
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Let’s build some NFAs!

• A = {w ∣ w starts with a and ends with b}
• B = ∅

• C = {ε}
• D = {w ∣ w has an even number of as or exactly 2 bs}
• E = {aa, aba, bab, bbb}
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