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Lecture 04 – Regular Expressions
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Review from last time
NFA N = (Q,Σ, δ, q0, F ) where δ ∶ Q × Σε → P (Q) maps a state and an alphabet
symbol (or ε) to a set of states

We run an NFA on an input w by keeping track of all possible states the NFA could be
in

We can convert an NFA to a DFA by letting each state of the DFA represent a set of
states in the NFA
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Building new languages using regular operation
Use regular operations to build new languages

A = {w ∣ w starts and ends with the same symbols}
B = {bka ∣ k ≥ 1}
C = {ε, ba, aaa}

D = C
∗

E = A ∪ (B ◦ C)
F = (D ◦ C) ∪ (B∗ ◦ E)
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Describing complex languages using simpler ones
Use regular operations to break complex languages down into simpler ones

A = {w ∣ w starts and ends with the same symbols}
B = {bka ∣ k ≥ 1}
C = {ε, ba, aaa}

C = {ε} ∪ {ba} ∪ {aaa}
= {ε} ∪ ({b} ◦ {a}) ∪ ({a} ◦ {a} ◦ {a})

B = {b} ◦ {b}∗ ◦ {a}
A = {a} ∪ {b} ∪ ({a} ◦ Σ∗ ◦ {a}) ∪ ({b} ◦ Σ∗ ◦ {b})
= {a} ∪ {b} ∪ ({a} ◦ ({a} ∪ {b})∗ ◦ {a}) ∪ ({b} ◦ ({a} ∪ {b})∗ ◦ {b})

We broke each language down into languages containing {a}, {b}, or {ε} and
combined them using the three regular operations ∪, ◦, and ∗
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Regular expressions
The braces aren’t adding anything since all of our sets are singletons; let’s drop them
Similarly, let’s drop the ◦ much as how we drop multiplication symbols
Let’s also replace ∪ with ∣ (which we read as “or”)

This gives us regular expressions (regex)

A = {a} ∪ {b} ∪ ({a} ◦ ({a} ∪ {b})∗ ◦ {a}) ∪ ({b} ◦ ({a} ∪ {b})∗ ◦ {b})
=

a ∣ b ∣ a(a ∣ b)∗a ∣ b(a ∣ b)∗b

B = {b} ◦ {b}∗ ◦ {a}
=

bb∗a

C = {ε} ∪ ({b} ◦ {a}) ∪ ({a} ◦ {a} ◦ {a})
=

ε ∣ ba ∣ aaa

Order of operation: ∗, ◦, ∣
Parentheses used for grouping
We underline the expression to differentiate the string aaa from the regular expression
aaa
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Regular expressions
Six types of regular expressions: three base types, three recursive types

Regex Language

∅ ∅ (very rarely used)
ε {ε}
t {t} for each t ∈ Σ
R1 ∣R2 L(R1) ∪ L(R2) R1 and R2 are regex
R1 ◦R2 L(R1) ◦ L(R2) R1 and R2 are regex
R
∗

L(R)∗ R is a regex

As a shorthand, we’ll use Σ to mean a ∣ b (or similar for other alphabets)

A = a ∣ b ∣ aΣ∗a ∣ bΣ∗b

6 / 35



Technicalities
Technically, a regular expression generates or describes a (regular) language, it is not a
language itself

Given a regular expression R, the language L(R) is the set of strings generated by R

E.g., R = ab∗a generates strings aa, aba, abba, . . .
L(R) = {abka ∣ k ≥ 0}

A DFA M recognizes a (regular) language L(M) but we don’t identify M with its
language

Similarly, we shouldn’t identify a regular expression R with its language L(R); however
it is customary to do so

Still, even if we let {aba} = aba, that doesn’t mean aba is the same as aba!
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Kleene star

• a∗ = {ak ∣ k ≥ 0}

• (a ∣ b ∣ c)∗ = {w ∣ w contains any number of a, b, or c in any order}
• (aa ∣ bab)∗ = {w ∣ w is the concatenation of 0 or more aa or bab}
• a∗b∗ = {ambn ∣ m,n ≥ 0}
• ε

∗
= {ε} = ε

• ∅∗ = {ε} = ε
• Σ

∗
= Σ∗ = {w ∣ w is a string over Σ}
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Regular expression examples

• ΣΣ = {w ∣ ∣w∣ = 2}

• (ΣΣ)∗ = {w ∣ ∣w∣ is even}
• a∗(baa∗)∗ = {w ∣ every b in w is followed by at least one a}
• (a ∣ ε)b∗ = ab∗ ∣ b∗

• a∗ba∗ = {w ∣ w contains exactly one b}
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Question 1
What strings are in the language given by the regular expression (a ∣ bb)(ε ∣ a)?

a, aa, bb, bba
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Question 2
True or false. If languages A and B each contain 2 strings, then A ◦B contains 4
strings.

False. Counter example: A = B = {ε, a}. A ◦B = {ε, a, aa}

Another counter example A = {a, ab} and B = {b, bb}. A ◦B = {ab, abb, abbb}
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Question 3
Is abaaa in the language given by (a ∣ ba ∣ aaa)∗?

Yes. abaaa = a ba a a
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Question 4
Write a regex for the language {w ∣ baba is a substring of w}

Σ
∗babaΣ∗
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Question 5
Write a regex for the language
{w ∣ the second symbol of w is a or the third to last symbol of w is b}

ΣaΣ∗ ∣Σ∗bΣΣ
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Question 6
Let Σ = {0, 1, . . . , 9,−} and D = 0 ∣ 1 ∣ ⋅ ⋅ ⋅ ∣ 9. What strings are generated by the
following regular expression?

((1− ∣ ε)DDD− ∣ ε)DDD−DDDD

U.S. phone numbers.

We can rewrite this regex as

1−DDD−DDD−DDDD ∣DDD−DDD−DDDD ∣DDD−DDDD
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Question 7
If R is a regular expression, then the language generated by R∗ is either infinite or
contains exactly one string. Under what condition on R is R∗ infinite? When R∗

contains exactly one string, what is the string and what is R?

R
∗ is infinite if R contains at least one nonempty string

R
∗ contains exactly one string, namely ε, when R = ε or R = ∅
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Regular expression manipulation
Let R1, R2, and R3 be regular expressions

• R1 ∣∅ = R1

• R1 ◦ ε = R1

• (R1 ∣R2)R3 = R1R3 ∣R2R3

• R1(R2 ∣R3) = R1R2 ∣R1R3

• (R∗1 )∗ = R∗1
• (R1 ∣R2)∗ = (R∗1R∗2 )∗

Theorem
Every regular expression R can be rewritten as an equivalent regular expression
R1 ∣R2 ∣⋯ ∣Rk

such that none of the Ri contain an “or” (∣)
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Converting regular expressions to NFAs
Theorem
Every regular expression R can be converted to an equivalent NFA N . I.e.,
L(N) = L(R)

Proof idea
Induction on the structure of the regex

We need to construct NFAs directly for the three base cases, ∅, ε and t for t ∈ Σ

Then, we handle the three inductive cases, R1 ∣R2, R1 ◦R2, and R
∗
1

For the inductive cases, we assume there exist NFAs for R1 and R2 and use them to
build NFAs for the three inductive cases
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Converting regular expressions to NFAs
Proof.
Base cases.

1 R = ∅

2 R = ε

3 R = t
t for t ∈ Σ

Inductive cases.

4 R = R1 ∣R2

5 R = R1 ◦R2

6 R = R
∗
1

By the inductive hypothesis, there exist NFAs N1 and N2 such that L(N1) = L(R1)
and L(N2) = L(R2).
Since regular languages are closed under union, concatenation, and Kleene star, L(R)
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Converting regular expressions to NFAs
The proof of the inductive cases applied previous theorems to show that some NFA
exists

But we know how to perform the constructions explicitly:

N1

N2

ε

ε

N1 N2ε

ε

N1

ε
ε

ε
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Regular expressions describe regular languages
The language of a regular expression is regular

This follow directly from the previous theorem:
Regular expression ⇒ NFA ⇒ DFA ⇒ regular language
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Regular expression to NFA: R = a(ba)∗ ∣ b(ab)∗

1 a a

2 b b

3 ba b ε a

4 (ba)∗ ε b ε a

ε

5 a(ba)∗ a ε ε b ε a

ε

6 b(ab)∗ b ε ε a ε b

ε

7 R

ε

ε

a ε ε b ε a

ε

b ε ε a ε b

ε
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Not the smallest possible NFA

ε

ε

a ε ε b ε a

ε

b ε ε a ε b

ε

a

b

b
a

a

b

• babab

"Accepted
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Converting from NFAs to regex
Theorem
Every NFA (and thus every DFA) can be converted to an equivalent regular expression.

Proof idea
1 Convert the NFA to a new type of finite automaton whose edges are labeled with

regular expressions
2 Remove states and update transitions one at a time from the new automaton to

produce an equivalent automaton
3 When only the start and (single) accept state remain, the transition between them

is the regular expression
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Generalized NFA (GNFA)
A GNFA is a finite automaton with
• a single accept state,
• no transitions to the start state,
• no transitions from the accept state, and
• each transition is labeled with a regular expression

q0

q1

q2

qa

ab∗ ∣ ε

ba

aab ∣ b∗ ∣ aba

aa∗

a

b

ε
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GNFA acceptance
A GNFA transitions from one state to the next by reading a block of input symbols
generated by the regex

q0

q1

q2

qa

ab∗ ∣ ε

ba

aab ∣ b∗ ∣ aba

aa∗

a

b

ε

babaaba
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ba
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aa∗

a

b

ε

babaaba "Accepted
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Removing states in a GNFA

1 Select a state to remove r other than the start or accept states (r ∈ Q∖ {q0, qa})
2 For each q, s ∈ Q ∖ {r} we have

q r s
R1

R4

R2

R3

If a transition is missing from the GNFA, then the corresponding regex is ∅
Remove state r and replace regex R4 with R1R2

∗
R3 ∣R4

q s

R1R
∗
2R3 ∣R4
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Remove state q1

q0

q1

q2

qa

ab∗ ∣ ε

ba

aab ∣ b∗ ∣ aba

aa∗

a

b

ε

q0

q2

qa
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aa∗

a

b

ε

q0

q2

qa

R1 = ab∗ ∣ ε
R2 = aab ∣ b∗ ∣ aba

R3 = a

R4 = ∅
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Remove state q2

q0

q2

qa

(ab∗ ∣ ε)(aab ∣ b∗ ∣ aba)∗a

(ab∗ ∣ ε)(aab ∣ b∗ ∣ aba)∗aa∗ ∣ ba b(aab ∣ b∗ ∣ aba)∗a ∣ ε

b(aab ∣ b∗ ∣ aba)∗aa∗

q0 qa

((ab∗ ∣ ε)(aab ∣ b∗ ∣ aba)∗aa∗ ∣ ba)(b(aab ∣ b∗ ∣ aba)∗aa∗)∗(b(aab ∣ b∗ ∣ aba)∗a ∣ ε) ∣
((ab∗ ∣ ε)(aab ∣ b∗ ∣ aba)∗a)
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Converting GNFA to regular expression
Remove states one at a time until only the start and accept remain
The one remaining transition is an equivalent regex

q0

q1

q2

qa

ab∗ ∣ ε

ba

aab ∣ b∗ ∣ aba

aa∗

a

b

ε

G:

L(G) = ((ab∗ ∣ ε)(aab ∣ b∗ ∣ aba)∗aa∗ ∣ ba)(b(aab ∣ b∗ ∣ aba)∗aa∗)∗(b(aab ∣ b∗ ∣ aba)∗a ∣ ε) ∣

((ab∗ ∣ ε)(aab ∣ b∗ ∣ aba)∗a)
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Converting an NFA (or DFA) to a GNFA

1 Add a new start state with an epsilon transition to the original start state
2 Add a new accept state with epsilon transitions from the original accept states
3 Convert multiple transitions between a pair of nodes to a single regex using ∣ to

separate them

a,b
ε

ε

ε

a ∣ b
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Converting an NFA (or DFA) to a regular expression
Theorem
Every NFA (and thus every DFA) can be converted to an equivalent regular expression.

Proof.
Given an NFA N , convert it to an equivalent GNFA G. Convert G to an equivalent
regular expression.

(Some details missing, but see the book.)
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Example

q1 q2
a,b

b

First, convert to a GNFA. q0 q1 q2 qa

ε a ∣ b

b

ε

Next, remove q1 q0 q2 qa

ε(a ∣ b)

b(a ∣ b)

ε

Next, remove q2 q0 qa

ε(a ∣ b)(b(a ∣ b))∗ε

Equivalent regular expression ε(a ∣ b)(b(a ∣ b))∗ε

= Σ(bΣ)∗
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